(完整word版)接地与浮地技术(精华)
- 格式:doc
- 大小:39.50 KB
- 文档页数:6
接地的几种要求范文接地是指将电气设备与地面建筑物的大地之间建立一种低阻抗、甚至相等于零的电气连接。
良好的接地系统可以保护人身安全,防止电气设备损坏,排除电气故障和静电积聚等问题。
以下是几种接地要求的介绍。
1.电气设备的接地要求:(1)电气设备的金属外壳应通过导线与接地系统相连,以确保设备外壳在正常运行期间能保持接地状态。
(2)设备的管道和金属框架也应接地,以保证设备的完整性和可靠性。
(3)在电气设备的接地导线中间,不得有开关、断路器和插座等设备,以防止导线被误操作。
2.建筑物的接地要求:(1)建筑物的接地系统应符合国家相关标准,确保接地电阻低于一定的安全范围,一般建筑物接地电阻应小于4Ω。
(2)建筑物的接地系统应经过良好的绝缘处理,避免与其他金属构件发生电接触。
(3)建筑物周围应设置接地极,保证接地系统与大地之间有一个良好的电性连接。
(4)接地系统的导线应具有足够的截面积,低电阻,确保接地的可靠性。
3.雷击保护的接地要求:(1)建筑物的接地系统和防雷装置应相互协调工作,使雷电能够通过接地系统迅速排除。
(2)接地系统的接地极应高于建筑物的一切金属结构,以确保雷电能够首先击中接地极,并通过接地系统排除。
(3)接地电极应采用足够和可靠的接地材料,如铜杆、铜板等,以降低接地电阻。
4.防静电的接地要求:(1)静电接地应与电气接地相分离,以防止静电干扰电气设备正常运行。
(2)接地系统应通过导电性很好的云母垫片和铜带与设备连接,将静电导领到大地。
(3)杜绝静电产生的运动地板、地毯等材料,以减少静电的产生。
5.人身安全的接地要求:(1)设备和建筑物的接地系统应符合相关安全标准,确保人员在维护和操作设备时不受到触电的风险。
总结起来,接地的要求主要包括电气设备的接地、建筑物的接地、雷击保护的接地、防静电的接地和人身安全的接地。
这些要求是为了保证电气设备的正常运行,保护人身安全,预防电气故障和防止静电积聚等问题。
第1章通信设备的接地分类在通信设备和通信系统中,各种电路均有电位基准,将所有的基准点通过导体连接到一起,该导体就是通信设备或系统内部的地线,如果将这些基准点连接到一个导体平面上,则该平面就称为基准平面,所有信号都是以该平面作为零电位参考点。
通信设备常以其金属底座、外壳或铜带作为基准面,基准面并不一定都与大地相连,在通常情况下,将基准面与大地相连主要是出于两个目的:一是为设备的操作人员提供安全保障;二是提高设备的工作稳定性。
a、工作接地通信设备的工作接地主要是为了使整个电子电路有一个公共的零电位基准面,并给高频干扰信号提供低阻抗的通路,以及使屏蔽措施能发挥良好的效能。
工作接地主要有以下三种方式。
(1) 浮地浮地是指通信设备的地线在电气上与建筑物接地系统保持绝缘,如图1-1所示,两者之间的绝缘电阻一般应在50MΩ以上,这样建筑物接地系统中的电磁干扰就不能传导到通信设备上去,地电位的变化对设备也就无影响。
在许多情况下,为了防止电子设备外壳上的干扰电流直接耦合到电子电路上,常将外壳接地,而将其中的电子电路浮地。
浮地方式的优点是抗干扰能力强,缺点是容易产生静电积累,当雷电感应较强时,外壳与其内部电子电路之间可能出现很高的电压,将两者之间绝缘间隙击穿,造成电子电路的损坏。
图1-1 浮地方式(2) 单点接地把整个通信系统中某一点作为接地基准点,其各单元的信号地都连接到这一点上,如图1-2所示,该图(a)为串联式单点接地,图(b)为并联单点接地。
单点接地可以避免形成地线回路,防止通过地线回路的电流传播干扰。
在通常情况下,把低幅度的且易受干扰的小信号电路(如前置放大器等)用单独一条地线与其它电路的地线分开。
而幅度和功率较大的大信号电路(如末级放大器和大功率电路等)具有较大的工作电流,其流过地线中的电流较大,为了防止它们对小信号电路的干扰,应有自己的地线。
当采用多个电源分别供电时,每个电源都应有自己的地线,这些地线都直接连接到一点去接地。
接地分类一:控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。
(2)模拟地:是各种模拟量信号的零电位。
(3)信号地:通常为传感器的地。
(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。
(5)直流地:直流供电电源的地。
(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。
以上这些地线处理是系统设计、安装、调试中的一个重要问题。
下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。
一般情况下,高频电路应就近多点接地,低频电路应一点接地。
在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。
一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。
(2)交流地与信号地不能共用。
由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。
(3)浮地与接地的比较。
全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。
这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。
还有一种方法,就是将机壳接地,其余部分浮空。
这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。
(4)模拟地。
模拟地的接法十分重要。
为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。
对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。
(5)屏蔽地。
在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。
根据屏蔽目的不同,屏蔽地的接法也不一样。
电场屏蔽解决分布电容问题,一般接大地;电磁场屏蔽主要避免雷达、电台等高频电磁场辐射干扰。
接地技术接地技术在现代电子领域方面得到了广泛而深入的应用。
电子设备的“地”通常有两种含义:一种是“大地”(安全地),另一种是“系统基准地”(信号地)。
接地就是指在系统与某个电位基准面之间建立低电阻的导电通路。
“接大地”是以地球的电位为基准,并以大地作为零电位,把电子设备的金属外壳、电路基准点与大地相连。
由于大地的电容非常大,一般认为大地的电势为零。
开始的时候,接地技术主要应用在电力系统中,后来,接地技术延伸应用到弱电系统中。
在弱电系统中的接地一般不是指真实意义上与地球相连的接地。
对于电力电子设备将接地线直接连在大地上或者接在一个作为参考电位的导体上,当有电流通过该参考电位时,接地点是电路中的共用参考点,这一点的电压为0V,电路中其他各点的电压高低都是以这一参考点为基准的,一般在电路图中所标出的各点电压数据都是相对接地端的大小,这样可以大大方便修理中的电压测量。
相同接地点之间的连线称为地线。
把接地平面与大地连接,往往是出于以下考虑:提高设备电路系统工作的稳定性,静电泄放,为工作人员提供安全保障。
接地的目的:安全考虑,即保护接地。
为信号电压提供一个稳定的零电位参考点(信号地或系统地)屏蔽保护作用。
一、接地的类型和作用不同的电路有不相同的接地方式,电子电力设备中常见的接地方式有以下几种:1、安全接地安全接地即将高压设备的外壳与大地连接。
一是防止机壳上积累电荷,产生静电放电而危及设备和人身安全,例如电脑机箱的接地,油罐车那根拖在地上的尾巴,都是为了使聚积在一起的电荷释放,防止出现事故;二是当设备的绝缘损坏而使机壳带电时,促使电源的保护动作而切断电源,以便保护工作人员的安全,例如电冰箱、电饭煲的外壳。
三是可以屏蔽设备巨大的电场,起到保护作用,例如民用变压器的防护栏。
2、防雷接地当电力电子设备遇雷击时,不论是直接雷击还是感应雷击,如果缺乏相应的保护,电力电子设备都将受到很大损害甚至报废。
为防止雷击,我们一般在高处(例如屋顶、烟囱顶部)设臵避雷针与大地相连,以防雷击时危及设备和人员安全。
接地与接零的技术要求1、引言接地与接零是电气工程中非常基础且重要的技术,它们在保证电气设备安全可靠运行方面起着至关重要的作用。
本文将从技术要求的角度,对接地与接零进行详细介绍。
2、接地技术要求(1) 接地电阻要求电气设备的接地电阻是衡量接地效果的重要指标之一,其大小对设备的安全性能有着直接的影响。
一般来说,接地系统的接地电阻应该控制在一定的范围内,如小于10欧姆,以确保接地效果良好。
同时,在接地电阻测试中还需要考虑测量仪器的精度和准确性,以减少测量误差。
(2) 接地极性要求接地系统的极性有正极性和负极性两种,正极性即将导体通过接地电极将电流引入地下,负极性即将导体通过接地电极将电流从地下排出。
在不同的应用场景中,选择适当的接地极性可以提高电气设备的安全性和可靠性。
(3) 接地布线要求接地系统的布线要求也是影响接地效果的重要因素之一。
在接地布线中应注意以下几个方面:- 接地线路应尽量短,避免过长的接地线路增加了接地电阻。
- 接地线路应经过合理的敷设,避免与其他电缆线路相互干扰,同时注意接地线的绝缘性能。
- 接地线应选用耐候性和耐腐蚀性好的导线材料,确保接地线寿命长且可靠。
(4) 接地连接要求接地连接的质量直接影响接地系统的可靠性。
在接地连接过程中应注意以下几个方面:- 接地导体应与地下接地电极之间建立良好的接触,接触面积足够大,接触面应清洁,并采取防腐措施,以保证接地导体与接地电极之间的接触电阻尽量小。
- 接地导体的连接采用牢固可靠的接地夹具或专用的接地连接器,避免松动或接触不良,以确保接地系统运行稳定可靠。
3、接零技术要求(1) 接零电阻要求接零系统的接零电阻是测试其接零效果的重要指标之一。
一般来说,接零电阻应该控制在较小的范围内,如小于5欧姆,以确保接零效果良好。
同时,在接零电阻测试中还需要注意使用精度较高的测量仪器,避免测量误差。
(2) 接零线路要求接零系统的线路布置也是影响接零效果的重要因素之一。
“接地”有设备内部的信号接地和设备接大地,两者概念不同,目的也不同。
“地”的经典定义是“作为电路或系统基准的等电位点或平面”。
一:信号“地”又称参考“地”,就是零电位的参考点,也是构成电路信号回路的公共端。
(1) 直流地:直流电路“地”,零电位参考点。
(2) 交流地:交流电的零线。
应与地线区别开。
(3) 功率地:大电流网络器件、功放器件的零电位参考点。
(4) 模拟地:放大器、采样保持器、A/D转换器和比较器的零电位参考点。
(5) 数字地:也叫逻辑地,是数字电路的零电位参考点。
(6) “热地”:开关电源无需使用工频变压器,其开关电路的“地”和市电电网有关,即所谓的“热地”,它是带电的。
(7) “冷地”:由于开关电源的高频变压器将输入、输出端隔离;又由于其反馈电路常用光电耦合器,既能传送反馈信号,又将双方的“地”隔离;所以输出端的地称之为“冷地”,它不带电。
信号接地设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。
有单点接地,多点接地,浮地和混合接地。
(这里主要介绍浮地)单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上。
在低频电路中,布线和元件之间不会产生太大影响。
通常频率小于1MHz的电路,采用一点接地。
多点接地是指电子设备中各个接地点都直接接到距它最近的接地平面上(即设备的金属底板)。
在高频电路中,寄生电容和电感的影响较大。
通常频率大于10MHz的电路,常采用多点接地。
浮地,即该电路的地与大地无导体连接。
『虚地:没有接地,却和地等电位的点。
』其优点是该电路不受大地电性能的影响。
浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。
其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。
一个折衷方案是在浮地与公共地之间跨接一个阻值很大的泄放电阻,用以释放所积累的电荷。
注意控制释放电阻的阻抗,太低的电阻会影响设备泄漏电流的合格性。
1:浮地技术的应用a交流电源地与直流电源地分开一般交流电源的零线是接地的。
但由于存在接地电阻和其上流过的电流,导致电源的零线电位并非为大地的零电位。
另外,交流电源的零线上往往存在很多干扰,如果交流电源地与直流电源地不分开,将对直流电源和后续的直流电路正常工作产生影响。
因此,采用把交流电源地与直流电源地分开的浮地技术,可以隔离来自交流电源地线的干扰。
对于放大器而言,特别是微小输入信号和高增益的放大器,在输入端的任何微小的干扰信号都可能导致工作异常。
因此,采用放大器的浮地技术,可以阻断干扰信号的进入,提高放大器的电磁兼容能力。
c 浮地技术的注意事项1)尽量提高浮地系统的对地绝缘电阻,从而有利于降低进入浮地系统之中的共模干扰电流。
2)注意浮地系统对地存在的寄生电容,高频干扰信号通过寄生电容仍然可能耦合到浮地系统之中。
3)浮地技术必须与屏蔽、隔离等电磁兼容性技术相互结合应用,才能收到更好的预期效果。
4)采用浮地技术时,应当注意静电和电压反击对设备和人身的危害。
2:混合接地混合接地使接地系统在低频和高频时呈现不同的特性,这在宽带敏感电路中是必要的。
电容对低频和直流有较高的阻抗,因此能够避免两模块之间的地环路形成。
当将直流地和射频地分开时,将每个子系统的直流地通过10~100nF的电容器接到射频地上,这两种地应在一点有低阻抗连接起来,连接点应选在最高翻转速度(di/dt)信号存在的点。
二:设备接大地在工程实践中,除认真考虑设备内部的信号接地外,通常还将设备的信号地,机壳与大地连在一起,以大地作为设备的接地参考点。
设备接大地的目的是1)保护地,保护接地就是将设备正常运行时不带电的金属外壳(或构架)和接地装置之间作良好的电气连接。
为了保护人员安全而设置的一种接线方式。
保护“地”线一端接用电器外壳,另一端与大地作可靠连接。
2)防静电接地,泄放机箱上所积累的电荷,避免电荷积累使机箱电位升高,造成电路工作的不稳定。
3)屏蔽地,避免设备在外界电磁环境的作用下使设备对大地的电位发生变化,造成设备工作的不稳定。
此外还有防雷接地和音响中的音频专用地等等。
Q1:为什么要接地?Answer:接地技术的引入最初是为了防止电力或电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护建筑物的作用。
同时,接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险电压产生,由此生成的故障电流就会流经PE线到大地,从而起到保护作用。
随着电子通信和其它数字领域的发展,在接地系统中只考虑防雷和安全已远远不能满足要求了。
比如在通信系统中,大量设备之间信号的互连要求各设备都要有一个基准‘地’作为信号的参考地。
而且随着电子设备的复杂化,信号频率越来越高,因此,在接地设计中,信号之间的互扰等电磁兼容问题必须给予特别关注,否则,接地不当就会严重影响系统运行的可靠性和稳定性。
最近,高速信号的信号回流技术中也引入了“地”的概念。
Q2:接地的定义Answer: 在现代接地概念中、对于线路工程师来说,该术语的含义通常是‘线路电压的参考点’;对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色安全地线或接到大地的意思。
一个比较通用的定义是“接地是电流返回其源的低阻抗通道”。
注意要求是”低阻抗”和“通路”。
Q3:常见的接地符号Answer: PE,PGND,FG-保护地或机壳;BGND或DC-RETURN-直流-48V(+24V)电源(电池)回流;GND-工作地;DGND-数字地;AGND-模拟地;LGND-防雷保护地Q4:合适的接地方式Answer: 接地有多种方式,有单点接地(指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上),多点接地以及混合类型的接地。
而单点接地又分为串联单点接地和并联单点接地。
一般来说,单点接地用于简单电路,不同功能模块之间接地区分,以及低频(f<1MHz)电子线路。
当设计高频(f>10MHz)电路时就要采用多点接地了或者多层板(完整的地平面层)。
Q5:信号回流和跨分割的介绍Answer:对于一个电子信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。
第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。
第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。
所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线旁边并行走一两条地线,起到屏蔽和就近提供回流的功能。
第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。
当然,不是严格要求不能跨越电源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。
对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。
(这是针对多层板多个电源供应情况说的)Q6:为什么要将模拟地和数字地分开,如何分开?Answer:模拟信号和数字信号都要回流到地,因为数字信号变化速度快,从而在数字地上引起的噪声就会很大,而模拟信号是需要一个干净的地参考工作的。
如果模拟地和数字地混在一起,噪声就会影响到模拟信号。
一般来说,模拟地和数字地要分开处理,然后通过细的走线连在一起,或者单点接在一起。
总的思想是尽量阻隔数字地上的噪声窜到模拟地上。
当然这也不是非常严格的要求模拟地和数字地必须分开,如果模拟部分附近的数字地还是很干净的话可以合在一起。
Q7:单板上的信号如何接地?Answer:对于一般器件来说,就近接地是最好的,采用了拥有完整地平面的多层板设计后,对于一般信号的接地就非常容易了,基本原则是保证走线的连续性,减少过孔数量;靠近地平面或者电源平面,等等。
Q8:单板的接口器件如何接地?Answer:有些单板会有对外的输入输出接口,比如串口连接器,网口RJ45连接器等等,如果对它们的接地设计得不好也会影响到正常工作,例如网口互连有误码,丢包等,并且会成为对外的电磁干扰源,把板内的噪声向外发送。
一般来说会单独分割出一块独立的接口地,与信号地的连接采用细的走线连接,可以串上0欧姆或者小阻值的电阻。
细的走线可以用来阻隔信号地上噪音过到接口地上来。
同样的,对接口地和接口电源的滤波也要认真考虑。
Q9:带屏蔽层的电缆线的屏蔽层如何接地?Answer:屏蔽电缆的屏蔽层都要接到单板的接口地上而不是信号地上,这是因为信号地上有各种的噪声,如果屏蔽层接到了信号地上,噪声电压会驱动共模电流沿屏蔽层向外干扰,所以设计不好的电缆线一般都是电磁干扰的最大噪声输出源。
当然前提是接口地也要非常的干净。
Q10:PCB的信号地和机壳的系统地,最后要接到一起,然后接入大地?Answer:PCB的信号地和机壳的系统地,最后要接到一起,然后通过电源线的地线接入大地一:信号“地”又称参考“地”,就是零电位的参考点,也是构成电路信号回路的公共端。
(1) 直流地:直流电路“地”,零电位参考点。
(2) 交流地:交流电的零线。
应与地线区别开。
(3) 功率地:大电流网络器件、功放器件的零电位参考点。
(4) 模拟地:放大器、采样保持器、A/D转换器和比较器的零电位参考点。
(5) 数字地:也叫逻辑地,是数字电路的零电位参考点。
(6) “热地”:开关电源无需使用工频变压器,其开关电路的“地”和市电电网有关,即所谓的“热地”,它是带电的。
(7) “冷地”:由于开关电源的高频变压器将输入、输出端隔离;又由于其反馈电路常用光电耦合器,既能传送反馈信号,又将双方的“地”隔离;所以输出端的地称之为“冷地”,它不带电。
信号接地设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。
有单点接地,多点接地,浮地和混合接地。
(这里主要介绍浮地)单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上。
在低频电路中,布线和元件之间不会产生太大影响。
通常频率小于1MHz的电路,采用一点接地。