已知两点坐标求位角
- 格式:doc
- 大小:352.50 KB
- 文档页数:9
二估计坐标与坐标圆背角的基原公式之阳早格格创做统造丈量的主要手段是通过丈量战估计供出统造面的坐标,统造面的坐标是根据边少及圆背角估计出去的.底下介绍估计坐标与坐标圆背角的基原公式,那些公式是矿山丈量工中最基原最时常使用的公式.一、坐标正算战坐标反算公式1.坐标正算根据已知面的坐标战已知面到待定面的坐标圆背角、边少估计待定面的坐标,那种估计正在丈量中称为坐标正算.如图5—5所示,已知A A到B的B的坐标为}(5—1)式中.由图5—5可知}(5—2)式中.将式(5-2)代进式(5-1),则有}(5—3)当A知时,便不妨用上述公式估计出待定面B的坐标.式(5—2)是估计坐标删量的基原公式,式(5—3)是估计坐目标基原公式,称为坐标正算公式.从图5—5x轴上的投影少y轴上的投影少度,边少是有背线段,是正在真天由A量到B得到的正值.而公式中的坐标圆背角不妨从0°到360°变更,根据三角函数定义,坐标圆背角的正弦值战余弦值便有正背二种情况,其正背标记与决于坐标圆背角天圆的象限,如图5—6所示.从式(5—2)知,由于三角函数值的正背决断了坐标删量的正背,其标记归纳成表5—3.图5—5 坐标估计图5—6 坐标删量标记表5—3 坐标删量标记表例 1 已知A;边少°.供B解:根据公式(5—3)有2、坐标反算由二个已知面的坐标估计出那二个面连线的坐标圆背角战边少,那种估计称为坐标反算.由式(5—1)有}(5—4)该式证明坐标删量便是二面的坐标之好.正在图5—5中表示由A面到达B面的纵坐标之好称纵坐标删量;A面到B面的横坐标之好称横坐标删量.坐标删量也有正背二种情况,它们决断于起面战末面坐标值的大小.正在图5—5中如果A面到B面的坐标已知,需要估计AB则有} (5—5)或者公式(5—5)称为坐标反算公式.应当指出,使用公式(5—5)中第一式估计的角是象限角R,应根据⊿x、⊿y 的正背号,决定天圆象限,再将象限角换算为圆背角.果此公式(5—5)中的第一式还可表示为:例2供A、B解:由公式(5-5)有AB位于第四象限.所以根据第四象限的坐标圆背角与象限角的闭系得:AB边少为:坐标正算公式战坐标反算公式皆是矿山丈量中最基原的公式,应用格中广大.正在丈量估计时,由于公式中各元素的数字较多,丈量典型对于数字与位及估计成果做了确定.比圆图根统造面央供边少估计与至毫米;角度估计与至秒;坐标估计与至厘米.二、坐标圆背角的推算公式由公式(5-2)知,估计坐标删量需要边少战该边的坐标圆背角二个果素,其中边少是正在家中曲交丈量或者通过三角教的公式估计得到的,坐标圆背角则是根据已知坐标圆背角战火仄角推算出去的.底下介绍坐标圆背角的推算公式.如图5-7所示,箭头所指的目标为“前进”目标,位于前进目标左侧的瞅测角称为左瞅测角,简称左角;位于前进目标左侧的角称为左瞅测角,简称左角.正在图5—7与5—8中,已知ABBC180°或者小于180°.图5—7中为大于180°的情况,图5—8中为小于180°的情况.图5—7坐标圆背角推算图5—8坐标圆背角推算从图5—7可知,BC边的坐标圆背角为从图5—8可知,BC边的坐标圆背角为综上所述二式则有(5—6)式(5-6)是依照边的前进目标,根据后一条边的已知圆背角估计前一条边圆背角的基原公式.公式证明:导线前一条边的坐标圆背角等于后一条边的坐标圆背角加上左瞅测角,其战大于180°时应减去180°,小于180°时应加上180°.2.瞅测左角时的坐标圆背角估计公式从图5-7 或者图5-8不妨瞅出将该式代进式(5- 6),得当圆背角大于360°时,应减去360°,目标没有变.所以上式形成(5—7)上式证明:导线中,前一条边的坐标圆背角等于后一条边的坐标圆背角减去左瞅测角,其好大于180°时应减去180°,小于180°时应加上180°.使用式(5-6)与(5-7)时,还应注意相映二条边的前进目标必须普遍,估计截止大于360°时,则应减去360°,目标没有变.例3 图5-9 为一条收导线,已知A=101°28´,导线A°32´,M面的左瞅测角°.试推算坐标圆背角图5—9 收导线解:由式(5-6)得则有由式(5-7)得则有。
计算距离方位角的经纬度坐标随着全球定位系统(GPS)和地图定位技术的发展,人们在日常生活和工作中经常需要计算两点之间的距离和方位角。
而经纬度坐标则是描述地球上任意一点位置的常用方式。
在这篇文章中,我们将探讨如何利用经纬度坐标来计算两点之间的距离和方位角。
一、经纬度坐标的表示和计算1.1 经纬度坐标的表示经度和纬度分别用度(°)、分(′)和秒(″)来表示,例如北纬30°15′20″,东经120°59′36″。
在计算机编程中,经纬度通常用小数表示,例如东经120.xxx°、北纬30.xxx°。
1.2 经纬度坐标的计算计算两点之间的距离和方位角通常涉及地球的曲率和球面三角学的知识。
常见的计算方法包括球面三角学公式、Vincenty公式等。
二、计算两点之间距离的方法2.1 球面三角学公式球面三角学公式是最基本的计算地球表面两点之间距离的方法之一。
其基本原理是根据两点的经纬度坐标来计算它们之间的大圆弧距离。
2.2 Vincenty公式Vincenty公式是一种更精确的计算地球表面两点之间距离的方法,它考虑了地球的椭球体形状和扁率因素,因此在距离较大的情况下精度更高。
三、计算两点之间方位角的方法3.1 利用正弦定理在已知两点的经纬度坐标后,可以利用正弦定理来计算它们之间的方位角,即两点连线与正北方向的夹角。
3.2 利用方位角公式另一种计算方位角的方法是利用方位角公式,根据两点的经纬度坐标和球面三角学的知识来计算它们之间的方位角。
四、实际应用和注意事项4.1 在实际应用中,除了纯粹的数学计算外,还需要考虑地图投影方式、坐标系转换等因素。
4.2 在计算距离和方位角时,需要注意经纬度坐标的单位转换,比如将度分秒转换为小数表示。
4.3 对于距离较短的情况,可以采用简化的计算方法来近似计算两点之间的距离和方位角。
计算距离和方位角的经纬度坐标是一项涉及到地理信息和数学知识的复杂计算。
已知两点坐标计算方位角方位角是地理学和导航中常用的概念,用于描述一个点相对于另一个点的方向。
通过已知两点的坐标,我们可以计算出它们之间的直线距离和方位角。
本文将介绍如何通过已知两点坐标来计算方位角,并提供详细步骤和示例。
1. 确定两点坐标首先,我们需要明确两点的坐标。
假设点A的坐标为(x1,y1),点B的坐标为(x2,y2)。
这些坐标可以通过地图、导航系统或其他方式获取。
2. 计算直线距离直线距离是指点A到点B之间的最短距离。
我们可以利用两点之间的距离公式来计算直线距离:d = √((x2 - x1)² + (y2 - y1)²)其中,d表示直线距离,√表示平方根。
3. 计算方位角方位角是指点A相对于点B的方向。
为了计算方位角,我们可以利用以下公式:θ = atan2(y2 - y1, x2 - x1)其中,θ表示方位角,atan2表示求反正切。
需要注意的是,不同的计算机语言和工具可能对atan2函数的参数顺序有所差异。
4. 将方位角转化为度数方位角通常以弧度表示,但为了方便理解,我们常常将其转化为度数。
转化的公式如下:angle = (θ * 180) / π其中,angle表示方位角的度数,π表示圆周率。
举例说明:假设点A坐标为(2,3),点B坐标为(5,7)。
我们可以按照上述步骤计算方位角。
首先,计算直线距离:d = √((5 - 2)² + (7 - 3)²)= √(9 + 16)= √25= 5然后,计算方位角:θ = atan2(7 - 3, 5 - 2)= atan2(4, 3)最后,将方位角转化为度数:angle = (θ * 180) / π通过计算,我们可以得到点A相对于点B的方位角为51.34度。
总结:通过已知两点的坐标,我们可以计算出它们之间的直线距离和方位角。
直线距离可以通过两点之间的距离公式计算,方位角则可以通过atan2函数来求解。
已知A点的坐标和标高还有一个方位角怎样测出其它两点坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。
编辑本段计算实例实例1,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为: XB=XA+ΔXAB (5.1) YB=YA+ΔYAB (5.2) 式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。
由图5.3中,根据三角函数,可写出坐标增量的计算公式为:ΔXAB=DAB·cosαAB (5.3) ΔYAB=DAB·sinαAB (5.4) 式中ΔX、ΔY 的符号取决于方位角α所在的象限。
实例2. 已知直线B1的边长为125.36m,坐标方位角为211°07′53〃,其中一个端点B的坐标为(1536.86 ,837.54),求直线另一个端点1的坐标X1,Y1。
解: 先代入公式(5.3)、(5.4),求出直线B1的坐标增量:ΔXB1=DB1·CosαB1=125.36×cos211°07′53〃=-107.31mΔYB1=DB1·sinαB1=125.36×sin211°07′53〃〃=-64.81m 然后代入公式(5.1)、(5.2),求出直线另一端点1的坐标:X1=XB+ΔXB1=1536.86-107.31=1429.55m Y1=YB+ΔYB1=837.54-64.81=772.73m根据直线的起点和终点的坐标,计算直线的水平距离和坐标方位角。
编辑本段计算原理及方法如图中所示,已知一条直线的起点和终点坐标分别为A(x1,y1),B (x2,y2),通过坐标反算来计算直线AB的水平距离S ab和坐标方位角α ab。
由于反三角函数计算的结果有多值性所以在计算坐标方位角α ab之前,要先计算象限角R ab。
计算步骤:①tan R ab=|△y ab|╱|△x ab|=|y b-y a|╱|x b-x a|;②R ab=arctan|y b-y a|╱|x b-x a|;③S ab==|△y ab|╱sinα ab=|△x ab|╱cosα ab ④根据“②”中所求的R ab,求坐标方位角α ab,⑴若坐标方位角为第一象限角,则:R ab=α ab;⑵若坐标方位角为第二象限角,则:α ab=180°-R ab;⑶若坐标方位角为第三象限角,则:α ab=180°+R ab;⑷若坐标方位角为第四象限角,则:αab=360°-R ab。
坐标反算公式坐标反算是一种通过已知测点坐标和观测方位角、距离等数据,推算出未知测点坐标的数学计算方法。
坐标反算公式是根据测量原理和几何关系得出的数学表达式,它们可以用于测量工程、地理信息系统和导航定位等领域。
在坐标反算中,最常用的公式是三角形反算公式和方位角反算公式。
三角形反算公式是基于三角形相似原理推导出来的,它适用于通过已知测点坐标和观测距离、方位角来计算未知测点坐标的情况。
三角形反算公式可以分为正算和反算两种情况。
正算是已知测点坐标和测量数据,推算出未知测点坐标的过程。
其中,已知点坐标和测量数据通过正算公式进行计算,从而得到未知点的坐标。
反算是已知部分测点坐标和测量数据,推算出其他未知测点坐标的过程。
反算公式是用来求解未知测点坐标的公式,通过已知部分点的坐标和测量数据,通过反算公式推算出未知点的坐标。
三角形反算公式中常用的有正弦定理、余弦定理等。
这些公式通过三角函数的计算,可以根据已知测点和测距、方位角等数据,计算出未知点的坐标。
方位角反算公式是用来计算已知两点坐标时,求解两点之间的方位角的公式。
方位角是指从某一点指向另一点的水平方向与真北方向的夹角。
方位角反算公式可以通过正切函数的计算,根据已知点的坐标和两点之间的坐标差值,得到两点之间的方位角。
除了三角形反算公式和方位角反算公式,还有其他坐标反算公式,例如高程反算公式、大地坐标反算公式等,它们适用于不同的测量场景和问题。
坐标反算公式是测量学和地理学等领域中的基础知识和常用工具,它们方便了测量和定位的准确性和效率。
通过运用合适的坐标反算公式,人们可以更加准确地进行测距、定位、导航等工作,提升测量和定位技术的应用能力。
直线上任意一点坐标计算一、方位角计算1、方位角定义 方位角又称地平经度(Azimuth (angle)缩写Az) 是在平面上量度物体之间的角度差的方法之一。
是从某点的指北方向线起 依顺时针方向到目标方向线之间的水平夹角。
2、方位角的种类1 真方位角 某点指向北极的方向线叫真北方向线 而经线 也叫真子午线。
由真子午线方向的北端起 顺时针量到直线间的夹角 称为该直线的真方位角 一般用A表示。
通常在精密测量中使用。
2 磁方位角 地球是一个大磁体 地球的磁极位置是不断变化的真方位角 某点指向磁北极的方向线叫磁北方向线 也叫磁子午线。
在地形图南、北图廓上的磁南、磁北两点间的直线 为该图的磁子午线。
由磁子午线方向的北端起 顺时针量至直线间的夹角 称为该直线的磁方位角 用Am表示。
3 坐标方位角。
由坐标纵轴方向的北端起 顺时针量到直线间的夹角 称为该直线的坐标方位角 常简称方位角 用a表示。
3、方位角的计算公式 设点A (X 1、Y 1) 点B(X 2、Y 2),求A-B的方位角 F A-B =arc tanY 2- Y 1/X 2- X 1,若F A-B小于0则加180° 在计算器中arc tan输入为tan-1 。
二、距离计算公式设点AX 1,Y 1 点B X 2 Y 2 求A-B的距离 S A-B=√(X 2- X 1)2+(Y 2- Y 1)2三、坐标正算 1、定义:坐标正算为已知一点坐标、方位角、与另一点距离 求另一点坐标。
四、2、计算公式:已知点A坐标X 1、Y 1;A-B之间的方位角为F A-B, A-B之间的距离为S A-B。
求B点坐标X 2、Y 2。
X 2= X 1+ S A-B ×CosF A-B。
Y 2= Y 1+ S A-B×SinF A-B。
五、坐标反算1、定义:坐标反算为已知两点坐标求方位角、距离。
2、计算公式:已知点A坐标X 1、Y 1。
B点坐标X 2、Y 2。
一、判断题1.地面上AB两点间绝对高程之差与相对高程之差是相同的。
( )2.在测量工作中采用的独立平面直角坐标系,规定南北方向为X轴,东西方向为Y轴,象限按反时针方向编号。
( )3.地形图的比例尺小,表示地物、地貌愈简略。
( )4.某钢尺经检定,其实际长度比名义长度长0.01m,现用此钢尺丈量10个尺段距离,如不考虑其他因素,丈量结果将必比实际距离长了0.1m。
( )5.一条直线的正反坐标方位角永远相差180°,这是因为作为坐标方位角的标准方向线是始终平行的()6. 如果考虑到磁偏角的影响,正反方位角之差不等于180°。
7.水准仪的水准管轴应平行于视准轴,是水准仪各轴线间应满足的主条件。
( )8. 当经纬仪各轴间具有正确的几何关系时,观测同一竖直面内不同高度目标时,水平度盘的读数是一样的。
( )9. 地面上一点到两目标的方向线间所夹的水平角,就是过该两方向线所作两竖直面间的两面角。
( )10.在地形图上按一定方向绘制纵断面图时,其高程比例尺和水平距离比例尺一般应相同。
( )11.同一条等高线上的高程不一定相同()三、选择题1.大地水准面可定义为( )(a)处处与重力方向相垂直的曲面 (b)通过静止的平均海水面的曲面(c)把水准面延伸包围整个地球的曲面 (d)地球大地的水准面2.如果A、B两点的高差h AB为正,则说明( )(a)A点比B点高 (b)B点比A点高 (c) h AB的符号不取决于A、B两点的高程,而取决首次假定3.大地体指的是( )(a)由水准面所包围的形体; (b)地球椭球体; (c)由大地水准面所包围的形体。
4.所谓大比例尺,即: ( )(a)比例尺分母大,在图上表示地面图形会较大 (b)比例尺分母小,在图上表示地面图形会较小(c)比例尺分毋小,在图上表示地面图形会较大。
5.斜坡上丈量距离要加倾斜改正,其改正数符号A( )(a)恒为负 (b)恒为正 (c)上坡为正,下坡为负 (d)根据高差符号来决定6.由于直线定线不准确,造成丈量偏离直线方向,其结果使距离A( )(a)偏大 (b)偏小 (c)无一定的规律 (d)忽大忽小相互抵消结果无影响7.某钢尺名义长30m,经检定实际长度为29.995m,用此钢尺丈量10段,其结果是A( )A使距离长了0.05m B使距离短了0.05m C使距离长了0.5m D使距离短了0.5m8.子午线收敛角的定义为( )(a)过地面点真子午线方向与磁子午线方向之夹角(b)过地面点磁子午线方向与坐标纵轴方向之夹角(c))过地面点真子午线方向与坐标纵轴方向之夹角9.双面水准尺的黑面是从零开始注记,而红面起始刻划()(a)两根都是从4687开始; (b)两根都是从4787开始;(c)一根从4687开始,另一根从4787开始; (d)一根从4677开始,另一根从4787开始。
已知两点坐标求方位角AB α——坐标方位角。
将式(5-2)代入式(5-1),则有 ABAB A BABAB A B S y yS x x ααsin cos +=+= }(5—3)当A 点的坐标Ax 、Ay 和边长ABS 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B的坐标。
式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。
从图5—5可以看出ABx ∆是边长ABS 在x 轴上的投影长度,ABy ∆是边长ABS 在y 轴上的投影长度,边长是有向线段,是在实地由A 量到B 得到的正值。
而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。
从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。
图5— 5 坐标计算图5—6 坐标增量符号表5—3 坐标增量符号表坐标方位角(°)所在象限坐标增量的正负号⊿x⊿y0~9090~ⅠⅡⅢ+++-例1 已知A 点坐标Ax =100.00m ,Ay =300.10m ;边长ABs =100m ,方位角ABα=330°。
求B 点的坐标Bx 、By 。
解:根据公式(5—3)有 ms y yms x x AB AB A BAB AB A B 6.249330sin 1001.300sin 1.186330cos 100100cos =︒⋅+=+==︒⋅+=+=αα2、坐标反算由两个已知点的坐标计算出这两个点连线的坐标方位角和边长,这种计算称为坐标反算。
由式(5—1)有 AB ABAB AB y y y x x x -=∆-=∆ }(5—4)该式说明坐标增量就是两点的坐标之差。
在图5—5中ABx ∆ 表示由A 点到达B 点的纵坐标之差称纵坐标增量; ABy ∆表示由A 点到B 点的横坐标之差称横坐标增量。
一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。
2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。
所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。
为了说明直线所在的象限,在前应加注直线所在象限的名称。
四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。
象限角和坐标方位角之间的换算公式列于表1-4。
表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。
设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。
水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。
设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。
二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。
坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。
如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。
已知两点坐标求位角
————————————————————————————————作者:————————————————————————————————日期:
二 计算坐标与坐标方位角的基本公式
控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。
下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。
一、坐标正算和坐标反算公式 1.坐标正算
根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。
如图5—5所示,已知A 点的坐标为A x 、A y
,A 到B 的边长和坐标方位角分别为AB S 和
AB α,则待定点B 的坐标为
AB
A B AB A B y y y x x x ∆+=∆+= } (5—1)
式中 AB x ∆ 、AB y ∆——坐标增量。
由图5—5可知
AB
AB AB AB AB AB S y S x ααsin cos =∆=∆ } (5—2)
式中 AB S ——水平边长;
AB α——坐标方位角。
将式(5-2)代入式(5-1),则有
AB
AB A B AB AB A B S y y S x x ααsin cos +=+= } (5—3)
当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。
式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。
从图5—5可以看出AB x ∆是边长AB S 在x 轴上的投影长度,AB y ∆是边长AB S 在y 轴上的投影长度,边长是有向线段,是在实地由A 量到B 得到的正值。
而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种 情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。
从式(5—2)知,由于
三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。
图5—5 坐标计算 图5—6 坐标增量符号 表5—3 坐标增量符号表
坐标方位角 (°) 所在象限
坐标增量的正负号 ⊿x ⊿y 0~90 90~180 180~270 270~360
Ⅰ Ⅱ Ⅲ Ⅳ + - - +
+ + - -
例1 已知A 点坐标A x =100.00m ,A y =300.10m ;边长AB s =100m ,方位角AB α=330°。
求B 点的坐标B x 、B y 。
解:根据公式(5—3)有
m
s y y m s x x AB AB A B AB AB A B 6.249330sin 1001.300sin 1.186330cos 100100cos =︒⋅+=+==︒⋅+=+=αα
2、坐标反算
由两个已知点的坐标计算出这两个点连线的坐标方位角和边长,这种计算称为坐标反算。
由式(5—1)有
A
B AB A B AB y y y x x x -=∆-=∆ } (5—4)
该式说明坐标增量就是两点的坐标之差。
在图5—5中AB x ∆ 表示由A 点到达B 点的纵坐标之差称纵坐标增量; AB y ∆表示由A 点到B 点的横坐标之差称横坐标增量。
坐标增量也有正负两种情况,它们决定于起点和终点坐标值的大小。
在图5—5中如果A 点到B 点的坐标已知,需要计算AB 边的坐标方位角AB α和边长时
AB S ,
则有
AB
AB
A B A B AB x y x x y y ∆∆=
--=
αtan
AB
AB
AB AB AB y x S ααsin cos ∆=∆=
}
(5—5)
或 ()()22AB AB AB y x S ∆+∆=
公式(5—5)称为坐标反算公式。
应当指出,使用公式(5—5)中第一式计算的角是象限角R ,应根据⊿x 、⊿y 的正负号,确定所在象限,再将象限角换算为方位角。
因此公式(5-—5)中的第一式还可表示为:
AB
AB A B A B AB x y
x x y y R ∆∆=--=arctan arctan
例2.已知A x =300m, A y =500m,B x =500m,B y =300m,求A 、B 二点连线的坐标方位角AB
α和边长AB S 。
解:由公式(5-5)有
)1arctan(300
500500
300arctan arctan
-=--=--=A B A B AB x x y y R
因为AB x ∆为正 、AB y ∆为负,直线AB 位于第四象限。
所以︒=45NW R AB 根据第四象限的坐标方位角与象限角的关系得:
︒=︒-︒=31545360AB α
AB 边长为:
m y y x x S A B A B AB 8.282)500300()300500()()(2222=-+-=-+-=
坐标正算公式和坐标反算公式都是矿山测量中最基本的公式,应用十分广泛。
在测量计算时,由于公式中各元素的数字较多,测量规范对数字取位及计算成果作了规定。
例如图根控制点要求边长计算取至毫米;角度计算取至秒;坐标计算取至厘米。
二、坐标方位角的推算公式
由公式(5-2)知,计算坐标增量需要边长和该边的坐标方位角两个要素,其中边长是 在野外直接测量或通过三角学的公式计算得到的,坐标方位角则是根据已知坐标方位角和水平角推算出来的。
下面介绍坐标方位角的推算公式。
如图5-7所示,箭头所指的方向为“前进”方向,位于前进方向左侧的观测角称为左观测角,简称左角;位于前进方向右侧的角称为右观测角,简称右角。
1.观测左角时的坐标方位角计算公式
在图5—7与5—8中,已知AB 边的方位角为AB α,左β为左观测角,需要求得BC 边的方位角BC α。
左β是外业观测得到的水平角,从图上可以看出已知方位角AB α与左观测角
左β之和有两种情况:即大于180°或小于180°。
图5—7中为大于180°的情况,图5—8
中为小于180°的情况。
图5—7坐标方位角推算 图5—8坐标方位角推算 从图5—7可知,BC 边的坐标方位角为
180-+=左βααAB BC
从图5—8可知,BC 边的坐标方位角为
180++=左βααAB BC
综上所述两式则有 180±+=左后前
βαα (5—6)
式(5-6)是按照边的前进方向,根据后一条边的已知方位角计算前一条边方位角的基本公式。
公式说明:导线前一条边的坐标方位角等于后一条边的坐标方位角加上左观测角,其和大于180°时应减去180°,小于180°时应加上180°。
2.观测右角时的坐标方位角计算公式 从图5-7 或图5-8可以看出 右左
ββ-= 360
将该式代入式(5- 6),得 360)180(+±-=右后前
βαα
当方位角大于360°时,应减去360°,方向不变。
所以上式变为
180±-=右后前βαα
(5—7)
上式说明:导线中,前一条边的坐标方位角等于后一条边的坐标方位角减去右观测角,
其差大于180°时应减去180°,小于180°时应加上180°。
使用式(5-6)与(5-7)时,还应注意相应两条边的前进方向必须一致,计算结果大于360°时,则应减去360°,方向不变。
例3 图5-9 为一条支导线,已知A 点的坐标方位角BA α =101°28´,导线A 点的左观测角左β =108°32´,M 点的右观测角 右β =75°。
试推算坐标方位角 AM α、MN α。
图5—9 支导线 解 :由式(5-6)得
180±+=左βααBA AM
则有
30180'32108'28101=-+=AM α 由式(5-7)得
180±-=右βααAM MN
则有
1351807530=+-=MN α。