2013高考一轮数学人教A版课后作业3-2同角三角函数的基本关系及诱导公式
- 格式:doc
- 大小:324.50 KB
- 文档页数:13
第二讲 同角三角函数的基本关系式与诱导公式知识梳理·双基自测 知识梳理知识点一 同角三角函数的基本关系式 (1)平方关系: sin 2x +cos 2x =1 . (2)商数关系: sin xcos x =tan x .知识点二 三角函数的诱导公式重要结论1.同角三角函数基本关系式的变形应用:如sin x =tan x·cos x,tan 2x +1=1cos 2x,(sinx +cos x)2=1+2sin xcos x 等.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”.“奇”与“偶”指的是诱导公式k·π2+α(k∈Z)中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k·π2+α(k∈Z)中,将α看成锐角时k·π2+α(k∈Z)所在的象限.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × )(2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin (π+α)=-sin α成立的条件是α为锐角.( × ) (4)若sin (kπ-α)=13(k ∈Z),则sin α=13.( × )[解析] (1)根据同角三角函数的基本关系式知当α,β为同角时才正确.(2)cos α≠0时才成立.(3)根据诱导公式知α为任意角.(4)当k 为奇数和偶数时,sin α的值不同.题组二 走进教材2.(必修4P 22B 组T3改编)已知tan α=12,则sin α-cos α3sin α+2cos α=( A )A .-17B .17C .-7D .7[解析] sin α-cos α3sin α+2cos α=tan α-13tan α+2=12-13×12+2=-17.故选A.3.(必修4P 22B 组T2改编)化简cos α1-sin α1+sin α+sin α1-co s α1+cos α⎝⎛⎭⎪⎫π<α<3π2得( A )A .sin α+cos α-2B .2-sin α-cos αC .sin α-cos αD .cos α-sin α[解析] 原式=cos α1-sin α2cos 2α+sin α1-cos α2sin 2α,∵π<α<32π,∴cos α<0,sin α<0.∴原式=-(1-sin α)-(1-cos α)=sin α+cos α-2.4.(必修4P 29B 组T2改编)若sin(π+α)=-12,则sin(7π-α)= 12 ,cos ⎝ ⎛⎭⎪⎫α+3π2= 12 . [解析] 由sin(π+α)=-12,得sin α=12,则sin(7π-α)=sin(π-α)=sin α=12,cos ⎝ ⎛⎭⎪⎫α+3π2=cos ⎝ ⎛⎭⎪⎫α+3π2-2π=cos ⎝ ⎛⎭⎪⎫α-π2 =cos ⎝ ⎛⎭⎪⎫π2-α=sin α=12.题组三 走向高考5.(2019·全国卷Ⅰ)tan 255°=( D )A .-2- 3B .-2+ 3C .2- 3D .2+ 3[解析] 由正切函数的周期性可知,tan 255°=tan(180°+75°)=tan 75°=tan(30°+45°)=33+11-33=2+3,故选D.另:tan 225°=tan 75°>tan 60°=3,∴选D.6.(2015·福建)若sin α=-513,且α为第四象限角,则tan α的值等于( D )A.125B .-125C .512D .-512[解析] 因为sin α=-513,且α为第四象限角,所以cos α=1213,所以tan α=-512,故选D.7.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( A )A .-79B .-29C .29D .79[解析] 将sin α-cos α=43的两边进行平方,得sin 2α-2sin αcos α+cos 2α=169,即sin 2α=-79,故选A.考点突破·互动探究考点一 同角三角函数的基本关系式——师生共研 例1 (1)已知α为第三象限角,cos α=-817,则tan α=( D )A .-815B .815C .-158D .158(2)已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 -5 .(3)若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为 -3 .[解析] (1)因为α是第三象限角,cos α=-817,所以sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-8172=-1517,故tan α=sin αcos α=158.选D.(2)由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1,得109cos 2α=1,所以cos 2α=910,易知cos α<0,所以cos α=-31010,sin α=1010,故sin α+cos α=-105. (3)由角α的终边落在第三象限, 得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-c os α+2sin α-sin α=-1-2=-3.名师点拨(1)已知一个角的三角函数值求这个角的其他三角函数值时,主要是利用公式sin 2α+cos 2α=1,tan α=sin αcos α求解,解题时,要注意角所在的象限.并由此确定根号前的正、负号,若不能确定角所在象限要分类讨论.(2)遇sin α,cos α的齐次式常“弦化切”,如:asin α+bcos αcsin α+dcos α=atan α+b ctan α+d ;sin αcos α=sin αcos α1=sin αcos αsin 2α+cos 2α=tan α1+tan 2α; sin 2α+sin αcos α-2cos 2α=sin 2α+sin αcos α-2cos 2αsin 2α+cos 2α=tan 2α+tan α-21+tan 2α. 〔变式训练1〕(1)若α是第二象限角,tan α=-512,则sin α=( C )A.15 B .-15C .513D .-513(2)已知α是第二象限角,化简1-cos 4α-sin 4α1-cos 6α-sin 6α= 23. (3)(2017·全国卷Ⅰ)已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=2,则cos ⎝ ⎛⎭⎪⎫α-π4= 31010 .[解析] (1)∵tan α=-512,∴sin αcos α=-512.∵sin 2α+cos 2α=1,∴sin 2α+⎝ ⎛⎭⎪⎫-125sin α2=1,∴sin α=±513.又α为第二象限角,∴sin α=513,故选C.(2)解法一:原式=1-cos 2α1+cos 2α-sin 4α1-cos 2α1+cos 2α+cos 4α-sin 6α =sin 2α1+cos 2α-sin 2αsin 2α1+cos 2α+cos 4α-sin 4α =2cos 2α1+cos 2α+cos 2α-sin 2α =2cos 2α3cos 2α=23. 解法二:∵1-cos 4α-sin 4α=1-(cos 2α+sin 2α)2+2sin 2αcos 2α=2sin 2αcos 2α, ∴原式=2sin 2αcos 2α1-cos 2α+sin 2αcos 4α-cos 2αsin 2α+sin 4α =2sin 2αcos 2α1-cos 4α-sin 4α+cos 2αsin 2α =2sin 2αcos 2α3sin 2αcos 2α=23. (3)由tan α=2得sin α=2cos α. 又sin 2α+cos 2α=1,所以cos 2α=15.因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α=55,sin α=255.因为cos ⎝ ⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4, 所以cos ⎝ ⎛⎭⎪⎫α-π4=55×22+255×22=31010. 考点二 诱导公式及其应用——多维探究 角度1 利用诱导公式化简三角函数式例2 (1)化简:sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 22π-αcos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin π+α= -1sin α .(2)化简1-2sin 10°sin 100°cos 80°-1-sin 2170°= -1 . [解析] (1)原式=cos α-cos αtan 2αsin α-sin α-sin α=-cos 2α·sin 2αcos 2αsin 3α=-1sin α. (2)∵cos 10°>sin10°,∴原式=1-2sin 10°cos 10°sin 10°-cos 10°=sin 210°-2sin 10°cos 10°+cos 210°sin 10°-cos 10°=|sin 10°-cos 10°|sin 10°-cos 10°=cos 10°-sin 10°-cos 10°-sin 10°=-1.角度2 “换元法”的应用例3 已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是 0 .[解析] 因为cos ⎝⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ =-cos ⎝ ⎛⎭⎪⎫π6-θ=-a.sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a ,所以cos ⎝⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0. 名师点拨(1)诱导公式的两个应用方向与原则:①求值:化角的原则与方向:负化正,大化小,化到锐角为终了. ②化简:化简的原则与方向:统一角,统一名,同角名少为终了.(2)注意已知中角与所求式子中角隐含的互余、互补关系、巧用诱导公式解题,常见的互余关系有π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等,互补关系有π3+α与2π3-α;π4+α与3π4-α等.〔变式训练2〕(1)(角度1)已知f(α)=sin α-3πcos 2π-αsin ⎝ ⎛⎭⎪⎫-α+3π2cos -π-αsin -π-α.①化简f(α);②若α是第三象限的角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f(α)的值. (2)(角度2)(2021·唐山模拟)已知α为钝角,sin ⎝ ⎛⎭⎪⎫π4+α=34,则sin ⎝ ⎛⎭⎪⎫π4-α= -74 ,cos ⎝⎛⎭⎪⎫α-π4= 34 .[解析] (1)①f(α)=sin α-3πcos 2π-αsin ⎝ ⎛⎭⎪⎫-α+3π2cos -π-αsin -π-α=-sin α·cos α·-cos α-cos α·sin α=-cos α.②因为cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α,所以sin α=-15. 又α是第三角限的角, 所以cos α=-1-⎝ ⎛⎭⎪⎫-152=-265.所以f(α)=265.(2)sin ⎝⎛⎭⎪⎫π4-α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α=cos ⎝ ⎛⎭⎪⎫π4+α, 因为α为钝角, 所以34π<π4+α<54π,所以cos ⎝ ⎛⎭⎪⎫π4+α<0.所以cos ⎝ ⎛⎭⎪⎫π4+α=-1-⎝ ⎛⎭⎪⎫342=-74.cos ⎝ ⎛⎭⎪⎫α-π4=sin ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫α-π4=sin ⎝ ⎛⎭⎪⎫π4+α=34.名师讲坛·素养提升sin x +cos x 、sin x -cos x 、sin xcos x 之间的关系例4 (2021·北京东城模拟)已知sin θ+cos θ=713,θ∈(0,π),则tan θ= -125. [解析] 解法一:因为sin θ+cos θ=713,θ∈(0,π)所以(sin θ+cos θ)2=1+2sin θcos θ=49169,sin θcos θ=-60169.由根与系数的关系,知sin θ,cos θ是方程x 2-713x -60169=0的两根,所以x 1=1213,x 2=-513.因为θ∈(0,π),所以sin θ>0.所以sin θ=1213,cos θ=-513,tan θ=sin θcos θ=-125.解法二:同解法一,得sin θcos θ=-60169,所以sin θcos θsin 2θ+cos 2θ=-60169,弦化切,得 tan θtan 2θ+1=-60169,解得tan θ=-125或tan θ=-512. 又θ∈(0,π),sin θ+cos θ=713>0,sin θcos θ=-60169<0.∴θ∈⎝ ⎛⎭⎪⎫π2,π,且sin θ>|cos θ|,∴⎪⎪⎪⎪⎪⎪sin θcos θ=|tan θ|>1,∴tan θ=-125.解法三:解方程组⎩⎪⎨⎪⎧sin θ+cos θ=713,sin 2θ+cos 2θ=1.得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513或⎩⎪⎨⎪⎧sin θ=-513,cos θ=1213.(舍去)故tan θ=-125.名师点拨sin x +cos x 、sin x -cos x 、sin xcos x 之间的关系为(sin x +cos x)2=1+2sin xcos x ,(sin x -cos x)2=1-2sin xcos x ,(sin x +cos x)2+(sin x -cos x)2=2.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值. 〔变式训练3〕(1)(2021·山东师大附中模拟)已知-π2<α<0,sin α+cos α=15,则1cos 2α-sin 2α的值为( C ) A.75 B .725 C .257D .2425(2)若1sin α+1cos α=3,则s in αcos α=( A )A .-13B .13C .-13或1D .13或-1 [解析] (1)解法一:∵sin α+cos α=15,∴(sin α+cos α)2=125,∴sin αcos α=-1225,又α∈⎝ ⎛⎭⎪⎫-π2,0,∴sin α<0,cos α>0,∴cos α-sin α=sin α-cos α2=1-2sin αcos α=75.∴1cos 2α-sin 2α=1cos α-sin αcos α+sin α=257,故选C. 解法二:由解法一知⎩⎪⎨⎪⎧sin α+cos α=15,sin α-cos α=-75,得⎩⎪⎨⎪⎧cos α=45,sin α=-35.∴tan α=sin αcos α=-34.∴1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=1+tan 2α1-tan 2α =1+9161-916=257,故选C.(2)由1sin α+1cos α=3,可得sin α+cos α=3sin αcos α,两边平方,得1+2sin αcosα=3sin 2αcos 2α,解得sin αcos α=-13或sin αcos α=1.由题意,知-1<sin α<1,-1<cos α<1,且sin α≠0,cos α≠0,所以sin αcos α≠1,故选A.。
第2讲 同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系式 (1)平方关系:01sin 2α+cos 2α=1.(2)商数关系:02sinαcosα=tan α.2.六组诱导公式 公式 一 二 三 四 五 六 角 2k π+ α(k ∈Z ) π+α -α π-α π2-απ2+α正弦 sin α -sin α -sin α sin α cos α cos α 余弦 cos α -cos α cos α -cos α sin α -sin α 正切 tan αtan α-tan α-tan α--口诀函数名不变,符号看象限函数名改变,符号看象限同角三角函数基本关系式的常用变形 (sin α±cos α)2=1±2sin αcos α; (sin α+cos α)2+(sin α-cos α)2=2; (sin α+cos α)2-(sin α-cos α)2=4sin αcos α; sin α=tan αcos α⎝ ⎛⎭⎪⎪⎫α≠π2+kπ,k∈Z ;sin2α=sin2αsin2α+cos2α=tan2αtan2α+1;cos2α=cos2αsin2α+cos2α=1tan2α+1.1.若cosα=13,α∈⎝⎛⎭⎪⎪⎫-π2,0,则tanα等于()A.-24B.24C.-22D.22答案 C解析由已知得sinα=-1-cos2α=-1-19=-223,所以tanα=sinαcosα=-22,选C.2.(2021·大同模拟)若角600°的终边上有一点(-4,a),则a的值是() A.-43B.±43C.3D.43答案 A解析∵tan600°=a-4=tan(540°+60°)=tan60°=3,∴a=-43.故选A.3.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于()A.-π6B.-π3C .π6D .π3答案 D解析 ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ=3.∵|θ|<π2,∴θ=π3.4.(2020·杭州学军中学模拟)已知cos31°=a ,则sin239°·tan149°的值为( ) A.1-a2aB .1-a2C.a2-1aD .-1-a2答案 B解析 sin239°tan149°=sin(270°-31°)tan(180°-31°)=-cos31°·(-tan31°)=sin31°=1-a2.5.化简cos ⎝⎛⎭⎪⎪⎫α-π2sin ⎝ ⎛⎭⎪⎪⎫5π2+αsin(α-π)cos(2π-α)的结果为________.答案 -sin 2α 解析 原式=sinαcosα(-sin α)cos α=-sin 2α.6.已知α是第二象限的角,tan α=-12,则cos α=________.答案 -255解析 因为α是第二象限的角,所以sin α>0,cos α<0,由tan α=-12,得sin α=-12cos α,代入sin 2α+cos 2α=1中,得54cos 2α=1,所以cos α=-255.考向一 诱导公式的应用 例1 (1)化简:错误!=________. 答案 -1 解析 原式=错误!=tanαcosαsi n ⎝ ⎛⎭⎪⎪⎫π2+α-cosαsinα=tanαcosαcosα-cosαsinα=-tanαcosαsinα=-sinαcosα·cosαsinα=-1.(2)已知cos(75°+α)=513,α是第三象限角,则sin(195°-α)+cos(α-15°)的值为________.答案 -1713解析 因为cos(75°+α)=513>0,α是第三象限角,所以75°+α是第四象限角, sin(75°+α)=-错误!=-错误!.所以sin(195°-α)+cos(α-15°) =sin[180°+(15°-α)]+cos(15°-α) =-sin(15°-α)+cos(15°-α)=-sin[90°-(75°+α)]+cos[90°-(75°+α)] =-cos(75°+α)+sin(75°+α) =-513-1213=-1713.(3)(2020·潍坊一模)在平面直角坐标系xOy 中,点P (3,1),将向量OP→绕点O 按逆时针方向旋转π2后得到向量OQ→,则点Q 的坐标是________.答案 (-1,3)解析 ∵OP→=(3,1)=(2cos θ,2sin θ),cos θ=32,sin θ=12,∴将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →=⎝ ⎛⎭⎪⎪⎫2cos ⎝ ⎛⎭⎪⎪⎫θ+π2,2sin ⎝ ⎛⎭⎪⎪⎫θ+π2=(-2sin θ,2cos θ)=(-1,3),∴点Q 的坐标是(-1,3).1.诱导公式的两个应用方向与原则(1)求值,化角的原则与方向:负化正,大化小,化到锐角为终了. (2)化简,化简的原则与方向:统一角,统一名,同角名少为终了. 2.含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α.1.(2020·江西宜春中学诊断)若α为锐角,且cos ⎝⎛⎭⎪⎪⎫α+π6=13,则cos ⎝⎛⎭⎪⎪⎫α-π3的值为( )A.223B .23 C .26D .526答案 A解析 ∵0<α<π2,∴π6<α+π6<2π3,∴sin ⎝⎛⎭⎪⎪⎫α+π6=1-cos2⎝⎛⎭⎪⎪⎫α+π6=223,∴cos ⎝ ⎛⎭⎪⎪⎫α-π3=cos ⎝ ⎛⎭⎪⎪⎫α+π6-π2=sin ⎝ ⎛⎭⎪⎪⎫α+π6=223.故选A.2.计算:sin(-1200°)cos1290°=________. 答案34解析 原式=-sin1200°cos1290°=-sin(3×360°+120°)cos(3×360°+210°)=-sin120°cos210°=-sin(180°-60°)cos(180°+30°) =sin60°cos30°=32×32=34.3.化简:错误!. 解 原式=错误!=错误! =错误!=错误!. 多角度探究突破考向二 同角三角函数的基本关系 角度1 切弦互化例2 (1)(2020·唐山第二次模拟)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A.12B .-12C .32D .-32答案 A解析 由三角函数定义,得tan α=32sinα,所以sinαcosα=32sinα,则2(1-cos 2α)=3cos α,所以(2cos α-1)(cos α+2)=0,则cos α=12.(2)(2020·济宁三模)已知tan(π-α)=2,则sinα+cosαsinα-cosα=________.答案13解析 因为tan(π-α)=2,所以tan α=-2,所以sinα+cosαsinα-cosα=tanα+1tanα-1=-2+1-2-1=13. 同角三角函数的基本关系式的功能是根据角的一个三角函数值求其他三角函数值,主要利用商数关系tan α=sinαcosα和平方关系1=sin 2α+cos 2α.4.已知α为锐角,且tan(π-α)+3=0,则sin α等于( )A.13B .31010C .377 D .355答案 B解析 因为tan(π-α)+3=0,所以tan α=3,sin α=3cos α.因为sin 2α+cos 2α=1,所以sin 2α=910. 又因为α为锐角,故sin α=31010.故选B.5.已知α是第二象限角,cos ⎝ ⎛⎭⎪⎪⎫3π2+α=45,则tan α=________.答案 -43解析 ∵cos ⎝ ⎛⎭⎪⎪⎫3π2+α=45,∴sin α=45,又α为第二象限角,∴cos α=-1-sin2α=-35,∴tan α=sinαcosα=-43.角度2 “1”的变换例3 (2021·海口模拟)已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边上有一点P (1,2),则sin2α1-3sinαcosα=________.答案 -4解析 因为角α的终边上有一点P (1,2),所以tan α=2. 所以sin2α1-3sinαcosα=sin2αsin2α+cos2α-3sinαcosα=tan2αtan2α+1-3tanα=2222+1-3×2=-4. 对于含有sin 2α,cos 2α,sin αcos α的三角函数求值题,一般可以考虑添加分母1,再将1用“sin 2α+cos 2α”代替,然后用分子分母同除以角的余弦的平方的方式将其转化为关于tan α的式子,从而求解.6.已知tan α=2,则(1)3sinα-2cosαsinα+cosα=________;(2)23sin 2α+14cos 2α=________. 答案 (1)43 (2)712解析 因为tan α=2,所以, (1)原式=3tanα-2tanα+1=3×2-22+1=43.(2)原式=23·sin2αsin2α+cos2α+14·cos2αsin2α+cos2α =23·tan2αtan2α+1+14·1tan2α+1 =23×2222+1+14×122+1=712. 角度3 sin x +cos x ,sin x -cos x ,sin x cos x 之间的关系例4 (1)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32B .32C .-34D .34答案 B解析 ∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|,∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32.(2)若θ∈⎝ ⎛⎭⎪⎪⎫π2,π,则 错误!等于( )A .sin θ-cos θB .cos θ-sin θC .±(sin θ-cos θ)D .sin θ+cos θ答案 A 解析 因为错误! =1-2sinθcosθ=错误!=|sin θ-cos θ|,又θ∈⎝ ⎛⎭⎪⎪⎫π2,π,所以sin θ-cos θ>0,所以原式=sin θ-cos θ.故选A.(1)已知a sin x +b cos x =c 可与sin 2x +cos 2x =1联立,求得sin x ,cos x .(2)sin x +cos x ,sin x -cos x ,sin x cos x 之间的关系为 (sin x +cos x )2=1+2sin x cos x , (sin x -cos x )2=1-2sin x cos x , (sin x +cos x )2+(sin x -cos x )2=2.因此,已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值.7.若1sin α+1cosα=3,则sin αcos α=( )A .-13B .13C .-13或1D .13或-1答案 A 解析 由1sinα+1cosα=3,可得sin α+cos α=3sin αcos α,两边平方,得1+2sin αcos α=3sin 2αcos 2α,解得sin αcos α=-13或sin αcos α=1.由题意,知-1<sin α<1,-1<cos α<1,且sin α≠0,cos α≠0,所以sin αcos α≠1.故选A.8.已知sin α+cos α=12,α∈(0,π),则1-tanα1+tanα=( )A .-7B .7 C.3D .-3答案 A解析 因为(sin α+cos α)2=1+2sin αcos α=14,所以sin αcos α=-38,又α∈(0,π),所以sin α>0,cos α<0.因为(sin α-cos α)2=1-2sin αcos α=74,所以cos α-sin α=-72.所以1-tanα1+tanα=cosα-sinαcosα+sinα=-7212=-7.故选A.一、单项选择题1.sin210°cos120°的值为( ) A.14B .-34C .-32D .34答案 A解析 sin210°cos120°=sin(180°+30°)cos(180°-60°)=-sin30°·(-cos60°)=⎝ ⎛⎭⎪⎪⎫-12×⎝ ⎛⎭⎪⎪⎫-12=14.故选A. 2.(2020·潍坊模拟)已知cos ⎝ ⎛⎭⎪⎪⎫3π2-φ=32,且|φ|<π2,则tan φ等于( )A .-33B .33 C .3 D .-3答案 D解析 由cos ⎝ ⎛⎭⎪⎪⎫3π2-φ=-sin φ=32,得sin φ=-32,又|φ|<π2,得到-π2<φ<π2,∴cos φ=1-⎝ ⎛⎭⎪⎪⎫-322=12,则tan φ=-3212=-3.故选D.3.已知α∈⎝ ⎛⎭⎪⎪⎫π2,π,tan α=-34,则sin(α+π)=( )A.35 B .-35C.45 D .-45答案 B解析由题意可知⎩⎪⎨⎪⎧sinαcosα=-34,sin2α+cos2α=1,由此解得sin 2α=925,又α∈⎝ ⎛⎭⎪⎪⎫π2,π,因此有sin α=35,sin(α+π)=-sin α=-35.故选B. 4.已知A =错误!+错误!(k ∈Z ),则A 的值构成的集合是( ) A .{1,-1,2,-2} B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}答案 C解析 当k 为偶数时,A =sinαsinα+cosαcosα=2;当k 为奇数时,A =-sinαsinα-cosαcosα=-2.故A 的值构成的集合是{2,-2}.5.(2020·天津西青区模拟)已知sin α+cos α=-2,则tan α+1tanα=( )A .2B .12C .-2D .-12答案 A解析 ∵sin α+cos α=-2,∴(sin α+cos α)2=2,∴1+2sin αcos α=2,∴sin αcos α=12.tan α+1tanα=sinαcosα+cosαsinα=sin2α+cos2αsinαcosα=112=2.故选A.6.已知sin ⎝ ⎛⎭⎪⎪⎫α-π12=13,则cos ⎝ ⎛⎭⎪⎪⎫α+17π12的值为( ) A.13B .223 C .-13D .-223答案 A解析 由cos ⎝ ⎛⎭⎪⎪⎫α+17π12=cos ⎝ ⎛⎭⎪⎪⎫α-π12+3π2=sin ⎝⎛⎭⎪⎪⎫α-π12=13. 7.(2020·济宁模拟)直线l :2x -y +e =0的倾斜角为α,则sin(π-α)sin ⎝ ⎛⎭⎪⎪⎫π2+α的值为( )A .-25B .-15C .15D .25答案 D解析 ∵直线l :2x -y +e =0的倾斜角为α,∴tan α=2,∴sin(π-α)sin ⎝ ⎛⎭⎪⎪⎫π2+α=sin αcos α=sinαcosαsin2α+cos2α=tanα1+tan2α=21+22=25.故选D.8.化简1+sinα+cosα+2sinαcosα1+sinα+cosα的结果是( )A .2sin αB .2cos αC .sin α+cos αD .sin α-cos α答案 C解析 原式=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=错误! =错误!=sin α+cos α.故选C.9.若sin θ+sin 2θ=1,则cos 2θ+cos 6θ+cos 8θ的值为( ) A .0 B .1 C .-1 D .5-12答案 B解析 由sin θ+sin 2θ=1,得sin θ=1-sin 2θ=cos 2θ,∴cos 2θ+cos 6θ+cos 8θ=sin θ+sin 3θ+sin 4θ=sin θ+sin 2θ(sin θ+sin 2θ)=sin θ+sin 2θ=1.10.(2020·海口模拟)若对任意x ∈R ,都有cos ⎝ ⎛⎭⎪⎪⎫2x -5π6=sin(ωx +φ)(ω∈R ,|φ|<π),则满足条件的有序实数对(ω,φ)的对数为( )A .0B .1C .2D .3 答案 C解析 cos ⎝ ⎛⎭⎪⎪⎫2x -5π6=cos ⎝ ⎛⎭⎪⎪⎫2x -π3-π2=sin ⎝ ⎛⎭⎪⎪⎫2x -π3,由条件知ω=±2.若ω=2,由φ=-π3+2k π(k ∈Z )且|φ|<π,得φ=-π3;若ω=-2,sin(-2x +φ)=sin(2x +π-φ),则π-φ=-π3+2k π(k ∈Z ),所以φ=-2k π+4π3(k ∈Z ),又|φ|<π,则φ=-2π3,故满足条件的有序数对(ω,φ)的对数为2.二、多项选择题11.在△ABC 中,下列结论正确的是( ) A .sin(A +B )=sin C B .sin B +C2=cos A2C .tan(A +B )=-tan C ⎝ ⎛⎭⎪⎪⎫C ≠π2D .cos(A +B )=cos C 答案 ABC解析 在△ABC 中,有A +B +C =π,则sin(A +B )=sin(π-C )=sin C ;sin B +C2=sin ⎝ ⎛⎭⎪⎪⎫π2-A 2=cos A 2;tan(A +B )=tan(π-C )=-tan C ⎝ ⎛⎭⎪⎪⎫C ≠π2;cos(A +B )=cos(π-C )=-cos C .12.(2020·湖北宜昌高三模拟)定义:角θ与φ都是任意角,若满足θ+φ=π2,则称θ与φ“广义互余”.已知sin(π+α)=-14,下列角β中,可能与角α“广义互余”的是( )A .sin β=154B .cos(π+β)=14C .tan β=15D .tan β=155答案 AC解析 ∵sin(π+α)=-sin α=-14,∴sin α=14,若α+β=π2,则β=π2-α.sin β=sin ⎝ ⎛⎭⎪⎪⎫π2-α=cos α=±154,故A 符合条件;cos(π+β)=-cos ⎝ ⎛⎭⎪⎪⎫π2-α=-sin α=-14,故B 不符合条件;tan β=15,即sin β=15cos β,又sin 2β+cos 2β=1,所以sin β=±154,故C 符合条件;tan β=155,即sin β=155cos β,又sin 2β+cos 2β=1,所以sin β=±64,故D 不符合条件.故选AC.三、填空题13.sin 4π3cos 5π6tan ⎝ ⎛⎭⎪⎪⎫-4π3的值是________.答案 -334解析 原式=sin ⎝ ⎛⎭⎪⎪⎫π+π3cos ⎝ ⎛⎭⎪⎪⎫π-π6tan ⎝ ⎛⎭⎪⎪⎫-π-π3=⎝ ⎛⎭⎪⎪⎫-sin π3⎝ ⎛⎭⎪⎪⎫-cos π6⎝ ⎛⎭⎪⎪⎫-tan π3=⎝⎛⎭⎪⎪⎫-32×⎝ ⎛⎭⎪⎪⎫-32×(-3)=-334.14.已知sin θ=13,则错误!=________.答案98解析 原式=错误!=错误!=错误!=错误!=错误!.15.已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎪⎫θ-π4=________.答案 -43解析 因为θ是第四象限角,且sin ⎝ ⎛⎭⎪⎪⎫θ+π4=35,所以θ+π4为第一象限角,所以cos ⎝ ⎛⎭⎪⎪⎫θ+π4=45,所以tan ⎝ ⎛⎭⎪⎪⎫θ-π4=sin ⎝ ⎛⎭⎪⎪⎫θ-π4cos ⎝ ⎛⎭⎪⎪⎫θ-π4=-cos π2+⎝ ⎛⎭⎪⎪⎫θ-π4sin π2+⎝ ⎛⎭⎪⎪⎫θ-π4=-cos ⎝ ⎛⎭⎪⎪⎫θ+π4sin ⎝⎛⎭⎪⎪⎫θ+π4=-43.16.已知α为第二象限角,则cos α1+tan2α+sin α·1+1tan2α=________.答案 0解析 原式=cos αsin2α+cos2αcos2α+sin αsin2α+cos2αsin2α=cos α1|cosα|+sin α1|sinα|,因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cosα|+sin α1|sinα|=-1+1=0,即原式等于0.四、解答题17.已知α为第三象限角,f (α)=错误!.(1)化简f (α);(2)若cos ⎝ ⎛⎭⎪⎪⎫α-3π2=15,求f (α)的值.解 (1)f (α)=错误! =错误!=-cos α.(2)因为cos ⎝ ⎛⎭⎪⎪⎫α-3π2=15,所以-sin α=15,从而sin α=-15.又因为α为第三象限角, 所以cos α=-1-sin2α=-265,所以f (α)=-cos α=265.18.已知tanαtanα-1=-1,求下列各式的值.(1)sinα-3cosαsinα+cosα; (2)sin 2α+sin αcos α+2. 解 由已知得tan α=12.(1)sinα-3cosαsinα+cosα=tanα-3tanα+1=-53. (2)sin 2α+sin αcos α+2=sin2α+sinαcosαsin2α+cos2α+2=tan2α+tanαtan2α+1+2=⎝ ⎛⎭⎪⎪⎫122+12⎝ ⎛⎭⎪⎪⎫122+1+2=135.19.已知0<α<π2,若cos α-sin α=-55,试求2sinαcosα-cosα+11-tanα的值.解 ∵cos α-sin α=-55,∴1-2sin αcos α=15.∴2sin αcos α=45.∴(sin α+cos α)2=1+2sin αcos α=1+45=95.∵0<α<π2,∴sin α+cos α=355.与cos α-sin α=-55联立,解得 cos α=55,sin α=255.∴tan α=2.∴2sinαcosα-cosα+11-tanα=45-55+11-2=55-95. 20.是否存在α∈⎝ ⎛⎭⎪⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,说明理由.解 存在.由sin ()3π-α=2cos ⎝ ⎛⎭⎪⎪⎫π2-β得sin α=2sin β,①由3cos(-α)=-2cos(π+β)得3cos α=2cos β,②∴sin 2α+3cos 2α=2(sin 2β+cos 2β)=2,∴1+2cos 2α=2,∴cos 2α=12,又α∈⎝ ⎛⎭⎪⎪⎫-π2,π2,∴cosα=22,从而α=π4或-π4,当α=π4时,由①知sinβ=12,由②知cosβ=32,又β∈(0,π),∴β=π6,当α=-π4时,由①知sinβ=-12,与β∈(0,π)矛盾,舍去.∴存在α=π4,β=π6,符合题意.21 / 21。
学必求其心得,业必贵于专精高三一轮 3.2同角三角函数的基本关系与诱导公式【教学目标】1。
理解同角三角函数的基本关系式:sin2α+cos2α=1,错误!=tan α。
2.能利用单位圆中的三角函数线推导出错误!±α,π±α的正弦、余弦、正切的诱导公式.【重点难点】1.教学重点:同角三角函数的基本关系与诱导公式的灵活应用;2.教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】课时在高考中一般不直接考查, 常与三角恒等变形进行综合考查.真题再现θθθ31.(20161),sin ,45tan .4全国已知是第四象限角且 则ππ⎛⎫+= ⎪⎝⎭⎛⎫-= ⎪⎝⎭34,sin(),cos(),4545解:由题意ππθθ+=+=θθθθθθθsin sin()424tan()4cos()cos 442cos()443sin()4πππππππππ⎡⎤⎛⎫+- ⎪-⎢⎥⎝⎭⎣⎦-==⎡⎤⎛⎫-+- ⎪⎢⎥⎝⎭⎣⎦-+==-+2.【2015福建高考】若, 且为第四象限角,则的值等于( ).125cos sin tan ,13121351cos ,135sin ,1cos sin 【解析】222-===--=-==+αααααααα可得;)(则所以;为第四象限的角,因为3。
(2014年安徽)设函数))((R x x f ∈满足.sin )()(x x f x f +=+π当学生通过对高考真题的解决,感受高考题的考察视角。
π<≤x 0时,0)(=x f ,则=)623(πf ( )A.21 B 。
23C.0D 。
21-环节二:知识梳理: 知识点1 同角三角函数的基本关系1.平方关系:sin 2α+cos 2α=1. 2.商数关系:tan α=错误!错误!。
知识点2 三角函数的诱导公式1.下列各角的终边与角α的终边的关引导学生通过对基础知识的逐点扫描,来澄清概念,加强。
2013高考数学人教A 版课后作业1.(2011·武汉调研)若cos α=35,-π2<α<0,则tan α=( )A.43B.34 C .-43 D .-34 [答案] C[解析] 依题意得,sin α=-45,tan α=sin αcos α=-43,选C.2.(2010·河北唐山)已知cos ⎝ ⎛⎭⎪⎫α-π4=14,则sin2α=( )A .- 78 B.78 C .- 3132 D.3132[答案] A[解析] sin2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos2⎝ ⎛⎭⎪⎫α-π4=2cos 2⎝ ⎛⎭⎪⎫α-π4-1=2×⎝ ⎛⎭⎪⎫142-1=-78.3.(2010·福建省福州市)已知sin10°=a ,则sin70°等于( ) A .1-2a 2B .1+2a 2C .1-a 2D .a 2-1 [答案] A[解析] 由题意可知,sin70°=cos20°=1-2sin 210°=1-2a 2,故选A. 4.(2011·天津模拟)若cos(2π-α)=53且α∈(-π2,0),则sin(π-α)=( ) A .-53 B .- 23 C .- 13 D .±23[答案] B[解析] ∵cos(2π-α)=53,∴cos α=53, ∵α∈(-π2,0),∴sin α=-23,∴sin(π-α)=sin α=-23.5.(2011·杭州二检)若a =(32,sin α),b =(cos α,13),且a ∥b ,则锐角α=( )A .15°B .30°C .45°D .60°[答案] C[解析] 依题意得32×13-sin αcos α=0,即sin2α=1.又α为锐角,故2α=90°,α=45°,选C.6.(2011·哈师大附中、东北师大附中、辽宁实验中学联考)已知cos α=45,α∈(-π4,0),则sin α+cos α等于( )A.15 B .-15 C .-75 D.75 [答案] A[解析] 由于cos α=45,α∈(-π4,0),所以sin α=-35,所以sin α+cos α=15,故选A.7.(2011·山东烟台模拟)若sin(π+α)=12,α∈(-π2,0),则tan α=________.[答案] -33[解析] 由已知得sin α=-12,又α∈(-π2,0),所以cos α=1-sin 2α=32,因此tan α=sin αcos α=-33.8.(文)(2010·苏北四市)设α是第三象限角,tan α=512,则cos(π-α)=________.[答案]1213[解析] ∵α为第三象限角,tan α=512,∴cos α=-1213,∴cos(π-α)=-cos α=1213.(理)(2010·浙江杭州质检)若sin ⎝ ⎛⎭⎪⎫3π2-2x =35,则tan 2x 等于________.[答案] 4 [解析] sin ⎝⎛⎭⎪⎫3π2-2x =-cos2x =sin 2x -cos 2x =35,又sin 2x +cos 2x =1,∴⎩⎪⎨⎪⎧sin 2x =45cos 2x =15,∴tan 2x =sin 2xcos 2x=4.1.(2010·新乡市模考)已知α∈⎝ ⎛⎭⎪⎫-π2,0,cos α=45,则tan2α等于( ) A .- 247 B.247 C .- 724 D.724[答案] A[解析] ∵-π2<α<0,cos α=45,∴sin α=-1-cos 2α=-35,∴tan α=sin αcos α=-34,∴tan2α=2tan α1-tan 2α=-247,故选A. 2.(2011·绵阳二诊)已知tan θ>1,且sin θ+cos θ<0,则cos θ的取值范围是( ) A .(-22,0) B .(-1,-22) C .(0,22) D .(22,1) [答案] A[解析] 如图,依题意结合三角函数线进行分析可知,2k π+5π4<θ<2k π+3π2,k ∈Z ,因此-22<cos θ<0.选A.3.(2010·河南南阳调研)在△ABC 中,3sin A +4cos B =6,4sin B +3cos A =1,则C 等于( )A .30°B .150°C .30°或150°D .60°或120°[答案] A[解析] 两式平方后相加得sin(A +B )=12,∴A +B =30°或150°,又∵3sin A =6-4cos B >2,∴sin A >23>12,∴A >30°,∴A +B =150°,此时C =30°.4.(文)(2011·湖北联考)已知tan x =sin(x +π2),则sin x =( )A.-1±52 B.3+12 C.5-12 D.3-12[答案] C[解析] ∵tan x =sin(x +π2),∴tan x =cos x ,∴sin x =cos 2x ,∴sin 2x +sin x -1=0,解得sin x =-1±52,∵-1≤sin x ≤1,∴sin x =5-12.故选C. (理)(2011·重庆诊断)已知2tan α·sin α=3,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α-π6的值是( ) A .0 B.32 C .1 D.12[答案] A[解析] ∵2tan αsin α=3,∴2sin 2αcos α=3,即-cos 2αcos α=3,∴2cos 2α+3cos α-2=0, ∵|cos α|≤1,∴cos α=12,∵-π2<α<0,∴sin α=-32,∴cos ⎝ ⎛⎭⎪⎫α-π6 =cos αcos π6+sin αsin π6=12×32-32×12=0.5.(2011·盐城模拟)已知cos(5π12+α)=13,且-π<α<-π2,则cos(π12-α)=________.[答案] - 223[解析] ∵-π<α<-π2,∴-7π12<5π12+α<-π12,∵cos(5π12+α)=13,∴sin(5π12+α)=-223,∴cos(π12-α)=cos[π2-(5π12+α)]=sin(5π12+α)=-223.6.(文)设a =12cos16°-32sin16°,b =2tan14°1+tan 214°,c =1-cos50°2,则a 、b 、c 的大小关系为________(从小到大排列).[答案] a <c <b[解析] a =sin14°,b =2sin14°cos14°cos 214°+sin 214°=sin28°,c =sin25°, ∵y =sin x 在(0°,90°)上单调递增,∴a <c <b .(理)(2011·江西上饶四校联考)对任意的a ∈(-∞,0),总存在x 0使得a cos x +a ≥0成立,则sin(2x 0-π6)的值为________.[答案] -12[解析] 若对任意的a ∈(-∞,0),总存在x 0使得a cos x +a ≥0成立,则cos x 0+1≤0, 又cos x 0+1≥0,即cos x 0+1=0, 所以cos x 0=-1,则x 0=2k π+π(k ∈Z), 所以sin(2x 0-π6)=sin(4k π+2π-π6)=sin(-π6)=-sin π6=-12.7.(文)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且tan A =12,cos B =31010.(1)求tan C 的值;(2)若△ABC 最长的边为1,求b .[解析] (1)∵cos B =31010>0,∴B 为锐角,sin B =1-cos 2B =1010∴tan B =sin B cos B =13.∴tan C =tan[π-(A +B )]=-tan(A +B ) =-tan A +tan B1-tan A ·tan B =-12+131-12·13=-1.(2)由(1)知C 为钝角,所以C 是最大角,所以最大边为c =1 ∵tan C =-1,∴C =135°,∴sin C =22. 由正弦定理:b sin B =csin C得,b =c sin B sin C=1·101022=55. (理)(2010·南充市模拟)已知三点:A (4,0),B (0,4),C (3cos α,3sin α). (1)若α∈(-π,0),且|AC →|=|BC →|,求角α的值; (2)若AC →·BC →=0,求2sin 2α+sin2α1+tan α的值.[解析] (1)由题得AC →=(3cos α-4,3sin α),BC →=(3cos α,3sin α-4) 由|AC →|=|BC →|得,(3cos α-4)2+9sin 2α=9cos 2α+(3sin α-4)2⇒sin α=cos α∵α∈(-π,0),∴α=-3π4. (2)由AC →·BC →=0得,3cos α(3cos α-4)+3sin α(3sin α-4)=0, 解得sin α+cos α=34,两边平方得2sin αcos α=-716∴2sin 2α+sin2α1+tan α=2sin 2α+2sin αcos α1+sin αcos α=2sin αcos α=-716.8.(文)(2010·北京东城区模拟)已知向量a =(cos α,1),b =(-2,sin α),α∈⎝ ⎛⎭⎪⎫π,3π2,且a ⊥b . (1)求sin α的值; (2)求tan ⎝⎛⎭⎪⎫α+π4的值.[解析] (1)∵a =(cos α,1),b =(-2,sin α),且a ⊥b . ∴a ·b =(cos α,1)·(-2,sin α)=-2cos α+sin α=0. ∴cos α=12sin α.∵sin 2α+cos 2α=1,∴sin 2α=45.∵α∈⎝ ⎛⎭⎪⎫π,3π2,∴sin α=-255. (2)由(1)可得cos α=-55,则tan α=2. tan ⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=-3. (理)已知向量m =(-1,cos ωx +3sin ωx ),n =(f (x ),cos ωx ),其中ω>0,且m ⊥n ,又函数f (x )的图象任意两相邻对称轴间距为32π.(1)求ω的值;(2)设α是第一象限角,且f ⎝ ⎛⎭⎪⎫32α+π2=2326,求sin ⎝⎛⎭⎪⎫α+π4π+2α的值.[解析] (1)由题意得m ·n =0,所以,f (x )=cos ωx ·(cos ωx +3sin ωx )=1+cos2ωx 2+3sin2ωx 2=sin ⎝⎛⎭⎪⎫2ωx +π6+12, 根据题意知,函数f (x )的最小正周期为3π. 又ω>0,所以ω=13.(2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫23x +π6+12.所以f ⎝ ⎛⎭⎪⎫32α+π2=sin ⎝⎛⎭⎪⎫α+π2+12=cos α+12=2326,解得cos α=513,因为α是第一象限角,故sin α=1213,所以,sin ⎝⎛⎭⎪⎫α+π4π+2α=sin ⎝⎛⎭⎪⎫α+π4cos2α=22α+cos αcos 2α-sin 2α=22·1cos α-sin α=-13214.1.(2010·重庆一中)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且∠A =2∠B ,则sin Bsin3B等于( ) A.b c B.c b C.b a D.a c[答案] A[解析] ∵A =2B ,∴sin Bsin3B =sin BA +B=sin B π-C =sin B sin C =bc.2.(2010·安徽铜陵一中)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知a 、b 、c 成等比数列,且a +c =3,tan B =73,则△ABC 的面积为( ) A.74 B.54 C.72 D.52[答案] A[解析] ∵a 、b 、c 成等比数列,∴b 2=ac , ∵tan B =73,∴sin B =74,cos B =34, ∵a +c =3,b 2=a 2+c 2-2ac cos B ,∴ac =2, ∴S △ABC =12ac sin B =74.3.(2011·石家庄质检)已知x ∈(π2,π),cos2x =a ,则cos x =( )A.1-a2B .-1-a2 C.1+a2D .-1+a2[答案] D[解析] a =cos2x =2cos 2x -1, ∵x ∈(π2,π),∴cos x <0,∴cos x =-a +12.4.(2010·北京东城区)函数y =1-2sin 2⎝ ⎛⎭⎪⎫x -π4是( ) A .最小正周期为π的偶函数 B .最小正周期为π的奇函数 C .最小正周期为π2的偶函数D .最小正周期为π2的奇函数[答案] B[解析] y =1-2sin 2⎝ ⎛⎭⎪⎫x -π4=cos2⎝ ⎛⎭⎪⎫x -π4 =cos ⎝⎛⎭⎪⎫2x -π2=sin2x 为奇函数且周期T =π.5.已知sin ⎝ ⎛⎭⎪⎫π6-α=14,则sin ⎝ ⎛⎭⎪⎫π6+2α=______. [答案] 78[解析] sin ⎝ ⎛⎭⎪⎫π6+2α=cos ⎝⎛⎭⎪⎫π2-π6-2α=cos ⎝ ⎛⎭⎪⎫π3-2α=1-2sin 2⎝ ⎛⎭⎪⎫π6-α=78.6.(2010·浙江宁波十校)若sin76°=m ,则cos7°=______. [答案]2m +22[解析] ∵sin76°=m ,∴cos14°=m , 即2cos 27°-1=m ,∴cos7°=2+2m2. 7.已知函数f (x )=⎩⎪⎨⎪⎧2cos π3x x ≤2000x -102 x >2000,则f [f (2012)]=________.[答案] -1[解析] 由f (x )=⎩⎪⎨⎪⎧2cos π3x x ≤2000x -102 x >2000得,f (2012)=2012-102=1910,f (1910)=2cos ⎝ ⎛⎭⎪⎫π3×1910=2cos(636π+2π3)=2cos 2π3=-1,故f [f (2012)]=-1.。
1.(2011·武汉调研)若cos α=35,-π2<α<0,则tan α=( )A.43B.34 C .-43 D .-34 [答案] C[解析] 依题意得,sin α=-45,tan α=sin αcos α=-43,选C.2.(2010·河北唐山)已知cos ⎝ ⎛⎭⎪⎫α-π4=14,则sin2α=( ) A .- 78 B.78 C .- 3132 D.3132[答案] A[解析] sin2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos2⎝ ⎛⎭⎪⎫α-π4 =2cos 2⎝ ⎛⎭⎪⎫α-π4-1=2×⎝ ⎛⎭⎪⎫142-1=-78.3.(2010·福建省福州市)已知sin10°=a ,则sin70°等于( ) A .1-2a 2B .1+2a 2C .1-a 2D .a 2-1 [答案] A[解析] 由题意可知,sin70°=cos20°=1-2sin 210°=1-2a 2,故选A.4.(2011·天津模拟)若co s(2π-α)=53且α∈(-π2,0),则sin(π-α)=( )A .-53 B .- 23 C .- 13 D .±23[答案] B[解析] ∵cos(2π-α)=53,∴cos α=53, ∵α∈(-π2,0),∴sin α=-23,∴sin(π-α)=sin α=-23.5.(2011·杭州二检)若a =(32,sin α),b =(cos α,13),且a ∥b ,则锐角α=( )A .15°B .30°C .45°D .60° [答案] C[解析] 依题意得32×13-sin αcos α=0,即sin2α=1.又α为锐角,故2α=90°,α=45°,选C.6.(2011·哈师大附中、东北师大附中、辽宁实验中学联考)已知cos α=45,α∈(-π4,0),则sin α+cos α等于( ) A.15 B .-15 C .-75 D.75 [答案] A[解析] 由于cos α=45,α∈(-π4,0),所以sin α=-35,所以sin α+cos α=15,故选A.7.(2011·山东烟台模拟)若sin(π+α)=12,α∈(-π2,0),则tan α=________.[答案] -33[解析] 由已知得sin α=-12,又α∈(-π2,0),所以cos α=1-sin 2α=32, 因此tan α=sin αcos α=-33.8.(文)(2010·苏北四市)设α是第三象限角,tan α=512,则cos(π-α)=________.[答案] 1213[解析] ∵α为第三象限角,tan α=512,∴cos α=-1213,∴cos(π-α)=-cos α=1213.(理)(2010·浙江杭州质检)若sin ⎝ ⎛⎭⎪⎫3π2-2x =35,则tan 2x 等于________.[答案] 4[解析] sin ⎝ ⎛⎭⎪⎫3π2-2x =-cos2x =sin 2x -cos 2x =35,又sin 2x +cos 2x =1,∴⎩⎪⎨⎪⎧sin 2x =45cos 2x =15,∴tan 2x =sin 2xcos 2x=4.1.(2010·新乡市模考)已知α∈⎝ ⎛⎭⎪⎫-π2,0,cos α=45,则tan2α等于( )A .- 247 B.247 C .- 724 D.724[答案] A[解析] ∵-π2<α<0,cos α=45,∴sin α=-1-cos 2α=-35,∴tan α=sin αcos α=-34,∴tan2α=2tan α1-tan 2α=-247,故选A. 2.(2011·绵阳二诊)已知tan θ>1,且sin θ+cos θ<0,则cos θ的取值范围是( )A .(-22,0) B .(-1,-22) C .(0,22) D .(22,1)[答案] A[解析] 如图,依题意结合三角函数线进行分析可知,2k π+5π4<θ<2k π+3π2,k ∈Z ,因此-22<cosθ<0.选A.3.(2010·河南南阳调研)在△ABC 中,3sin A +4cos B =6,4sin B +3cos A =1,则C 等于( )A .30°B .150°C .30°或150°D .60°或120° [答案] A[解析] 两式平方后相加得sin(A +B )=12,∴A +B =30°或150°,又∵3sin A =6-4cos B >2,∴sin A >23>12,∴A >30°,∴A +B =150°,此时C =30°.4.(文)(2011·湖北联考)已知tan x =sin(x +π2),则sin x =( )A.-1±52B.3+12C.5-12 D.3-12[答案] C[解析] ∵tan x =sin(x +π2),∴tan x =cos x ,∴sin x =cos 2x ,∴sin 2x +sin x -1=0,解得sin x =-1±52,∵-1≤sin x ≤1,∴sin x =5-12.故选C.(理)(2011·重庆诊断)已知2tan α·sin α=3,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α-π6的值是( )A .0 B.32 C .1 D.12[答案] A[解析] ∵2tan αsin α=3,∴2sin 2αcos α=3,即2(1-cos 2α)cos α=3,∴2cos 2α+3cos α-2=0, ∵|cos α|≤1,∴cos α=12,∵-π2<α<0,∴sin α=-32,∴cos ⎝⎛⎭⎪⎫α-π6 =cos αcos π6+sin αsin π6=12×32-32×12=0.5.(2011·盐城模拟)已知cos(5π12+α)=13,且-π<α<-π2,则cos(π12-α)=________.[答案] -223[解析] ∵-π<α<-π2,∴-7π12<5π12+α<-π12,∵cos(5π12+α)=13,∴sin(5π12+α)=-223,∴cos(π12-α)=cos[π2-(5π12+α)]=sin(5π12+α)=-223.6.(文)设a =12cos16°-32sin16°,b =2tan14°1+tan 214°,c =1-cos50°2,则a 、b 、c 的大小关系为________(从小到大排列).[答案] a <c <b[解析] a =sin14°,b =2sin14°cos14°cos 214°+sin 214°=sin28°,c =sin25°, ∵y =sin x 在(0°,90°)上单调递增,∴a <c <b .(理)(2011·江西上饶四校联考)对任意的a ∈(-∞,0),总存在x 0使得a cos x +a ≥0成立,则sin(2x 0-π6)的值为________.[答案] -12[解析] 若对任意的a ∈(-∞,0),总存在x 0使得a cos x +a ≥0成立,则cos x 0+1≤0,又cos x 0+1≥0,即cos x 0+1=0, 所以cos x 0=-1,则x 0=2k π+π(k ∈Z), 所以sin(2x 0-π6)=sin(4k π+2π-π6)=sin(-π6)=-sin π6=-12.7.(文)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且tan A =12,cos B =31010.(1)求tan C 的值;(2)若△ABC 最长的边为1,求b . [解析] (1)∵cos B =31010>0,∴B 为锐角,sin B =1-cos 2B =1010∴tan B =sin B cos B =13.∴tan C =tan[π-(A +B )]=-tan(A +B ) =-tan A +tan B 1-tan A ·tan B =-12+131-12·13=-1.(2)由(1)知C 为钝角,所以C 是最大角,所以最大边为c =1 ∵tan C =-1,∴C =135°,∴sin C =22.由正弦定理:b sin B =csin C 得,b =c sin B sin C =1·101022=55.(理)(2010·南充市模拟)已知三点:A (4,0),B (0,4),C (3cos α,3sin α). (1)若α∈(-π,0),且|AC→|=|BC →|,求角α的值; (2)若AC →·BC →=0,求2sin 2α+sin2α1+tan α的值. [解析] (1)由题得AC →=(3cos α-4,3sin α),BC →=(3cos α,3sin α-4) 由|AC→|=|BC →|得,(3cos α-4)2+9sin 2α=9cos 2α+(3sin α-4)2 ⇒sin α=cos α ∵α∈(-π,0),∴α=-3π4. (2)由AC →·BC →=0得,3cos α(3cos α-4)+3sin α(3sin α-4)=0, 解得sin α+cos α=34,两边平方得2sin αcos α=-716∴2sin 2α+sin2α1+tan α=2sin 2α+2sin αcos α1+sin αcos α=2sin αcos α=-716. 8.(文)(2010·北京东城区模拟)已知向量a =(cos α,1),b =(-2,sin α),α∈⎝ ⎛⎭⎪⎫π,3π2,且a ⊥b . (1)求sin α的值;(2)求tan ⎝ ⎛⎭⎪⎫α+π4的值. [解析] (1)∵a =(cos α,1),b =(-2,sin α),且a ⊥b . ∴a ·b =(cos α,1)·(-2,sin α)=-2cos α+sin α=0. ∴cos α=12sin α.∵sin 2α+cos 2α=1,∴sin 2α=45.∵α∈⎝ ⎛⎭⎪⎫π,3π2,∴sin α=-255.(2)由(1)可得cos α=-55,则tan α=2. tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=-3. (理)已知向量m =(-1,cos ωx +3sin ωx ),n =(f (x ),cos ωx ),其中ω>0,且m ⊥n ,又函数f (x )的图象任意两相邻对称轴间距为32π.(1)求ω的值;(2)设α是第一象限角,且f ⎝ ⎛⎭⎪⎫32α+π2=2326,求sin ⎝ ⎛⎭⎪⎫α+π4cos (4π+2α)的值. [解析] (1)由题意得m ·n =0,所以, f (x )=cos ωx ·(cos ωx +3sin ωx )=1+cos2ωx 2+3sin2ωx2=sin ⎝ ⎛⎭⎪⎫2ωx +π6+12,根据题意知,函数f (x )的最小正周期为3π. 又ω>0,所以ω=13.(2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫23x +π6+12. 所以f ⎝ ⎛⎭⎪⎫32α+π2=sin ⎝ ⎛⎭⎪⎫α+π2+12=cos α+12=2326,解得cos α=513,因为α是第一象限角,故sin α=1213,所以,sin ⎝ ⎛⎭⎪⎫α+π4cos (4π+2α)=sin ⎝ ⎛⎭⎪⎫α+π4cos2α=22(sin α+cos α)cos 2α-sin 2α=22·1cos α-sin α=-13214.1.(2010·重庆一中)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且∠A =2∠B ,则sin B sin3B等于( ) A.b c B.c b C.b a D.a c[答案] A[解析] ∵A =2B ,∴sin B sin3B =sin B sin (A +B )=sin B sin (π-C )=sin B sin C =b c . 2.(2010·安徽铜陵一中)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知a 、b 、c 成等比数列,且a +c =3,tan B =73,则△ABC 的面积为( )A.74B.54C.72D.52[答案] A[解析] ∵a 、b 、c 成等比数列,∴b 2=ac ,∵tan B =73,∴sin B =74,cos B =34,∵a +c =3,b 2=a 2+c 2-2ac cos B ,∴ac =2,∴S △ABC =12ac sin B =74. 3.(2011·石家庄质检)已知x ∈(π2,π),cos2x =a ,则cos x =( ) A.1-a 2 B .-1-a2 C.1+a 2 D .-1+a2[答案] D[解析] a =cos2x =2cos 2x -1,∵x ∈(π2,π),∴cos x <0,∴cos x =-a +12.4.(2010·北京东城区)函数y =1-2sin 2⎝ ⎛⎭⎪⎫x -π4是() A .最小正周期为π的偶函数B .最小正周期为π的奇函数C .最小正周期为π2的偶函数D .最小正周期为π2的奇函数[答案] B[解析] y =1-2sin 2⎝ ⎛⎭⎪⎫x -π4=cos2⎝ ⎛⎭⎪⎫x -π4=cos ⎝ ⎛⎭⎪⎫2x -π2=sin2x 为奇函数且周期T =π.5.已知sin ⎝ ⎛⎭⎪⎫π6-α=14,则sin ⎝ ⎛⎭⎪⎫π6+2α=______.[答案] 78[解析] sin ⎝ ⎛⎭⎪⎫π6+2α=cos ⎝ ⎛⎭⎪⎫π2-π6-2α =cos ⎝ ⎛⎭⎪⎫π3-2α=1-2sin 2⎝ ⎛⎭⎪⎫π6-α=78. 6.(2010·浙江宁波十校)若sin76°=m ,则cos7°=______.[答案] 2m +22[解析] ∵sin76°=m ,∴cos14°=m ,即2cos 27°-1=m ,∴cos7°=2+2m 2. 7.已知函数f (x )=⎩⎨⎧ 2cos π3x x ≤2000x -102 x >2000,则f [f (2012)]=________. [答案] -1[解析] 由f (x )=⎩⎪⎨⎪⎧ 2cos π3x x ≤2000x -102 x >2000得,f (2012)=2012-102=1910,f (1910)=2cos ⎝ ⎛⎭⎪⎫π3×1910=2cos(636π+2π3)=2cos 2π3=-1,故f [f (2012)]=-1.。