中考数学基础训练3
- 格式:doc
- 大小:225.50 KB
- 文档页数:2
第三章函数及其图象第一节平面直角坐标系姓名:________ 班级:________ 用时:______分钟1.(2019·易错题)点(3,2)关于x轴的对称点为( )A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)2.(2018·湖南岳阳中考)函数y=x-3中自变量x的取值范围是( )A.x>3 B.x≠3C.x≥3 D.x≥03.(2017·山东济宁中考)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是( )A.① B.③C.②或④ D.①或③4.(2019·易错题)函数y=xx-2中自变量x的取值范围是__________.5.在平面直角坐标系中,点P(3,-x2-1)在第______象限.6.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(-1,0).现将△ABC 绕点A顺时针旋转90°,则旋转后点C的坐标是______________.7.(2019·改编题)如图,在平面直角坐标系中,已知点A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一根长为2 019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是________________.8.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.9.定义:直线l 1与l 2交于点O ,对于平面内任意一点M ,点M 到直线l 1,l 2的距离分别为p ,q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2B .3C .4D .510.在平面直角坐标系中,点P(-3,2)关于直线y =x 对称的点的坐标是( ) A .(-3,-2) B .(3,2) C .(2,-3)D .(3,-2)11.(2019·改编题)如图,在平面直角坐标系xOy 中,已知点M 0的坐标为(1,0),将线段OM 0绕原点O 逆时针方向旋转45°,再将其延长到M 1,使得M 1M 0⊥OM 0,得到线段OM 1;又将线段OM 1绕原点O 逆时针方向旋转45°,再将其延长到M 2,使得M 2M 1⊥OM 1,得到线段OM 2;如此下去,得到线段OM 3,OM 4,OM 5,…,根据以上规律,那么 M 2 019的坐标为_________________________.12.(2019·创新题)【阅读】在平面直角坐标系中,以任意两点P(x 1,y 1),Q(x 2,y 2)为端点的线段中点坐标为(x 1+x 22,y 1+y 22).【运用】(1)如图,矩形ONEF的对角线交于点M,ON,OF分别在x轴和y轴上,O为坐标原点,点E 的坐标为(4,3),则点M的坐标为________;(2)在平面直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A,B,C 构成平行四边形的顶点,求点D的坐标.13.(2018·浙江台州中考)甲、乙两运动员在长为100 m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5 m/s,乙跑步的速度为4 m/s,则起跑后100 s 内,两人相遇的次数为( )A.5 B.4C.3 D.2参考答案【基础训练】1.A 2.C 3.D 4.x≠2 5.四 6.(2,1) 7.(-1,1)8.解:(1)图中格点△A′B′C′是由格点△ABC 向右平移7个单位长度得到的. (2)如图,过点F 作FG∥直线a ,交DE 于点G.如果以直线a ,b 为坐标轴建立平面直角坐标系后,点A 的坐标为(-3,4),那么格点△DEF 各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,-3),S △DEF =S △DGF +S △GEF =12×5×1+12×5×1=5.【拔高训练】 9.C 10.C 11.( -21 009,21 009)12.解:(1)(2,32)(2)设点D 的坐标为(x ,y),若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合, ∴⎩⎪⎨⎪⎧1+x 2=-1+32,4+y 2=2+12,解得⎩⎪⎨⎪⎧x =1,y =-1.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合,∴⎩⎪⎨⎪⎧-1+x 2=1+32,2+y 2=4+12,解得⎩⎪⎨⎪⎧x =5,y =3.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合, ∴⎩⎪⎨⎪⎧3+x 2=-1+12,1+y 2=2+42,解得⎩⎪⎨⎪⎧x =-3,y =5.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5). 【培优训练】 13.B第二节 一次函数的图象与性质姓名:________ 班级:________ 用时:______分钟1.下列y 关于x 的函数中,是正比例函数的为( ) A .y =x 2B .y =2xC .y =x2D .y =x +122.若一次函数y =3x +b 的图象经过点(-1,2),则b 的值为( ) A .-7B .-1C .2D .53.(2018·陕西中考)若直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( ) A .(-2,0) B .(2,0) C .(-6,0)D .(6,0)4.(2019·易错题)已知y 关于x 的函数y =(m -2)x +m 2-4,当m________时,该函数为一次函数;当m__________时,该函数为正比例函数.5. (2019·易错题)已知一次函数y =(1-m)x +m -2,当__________时,y 随x 的增大而增大.6.把直线y =-x -1沿y 轴向上平移2个单位,所得直线的函数表达式为________________. 7.如图,直线y 1=x +b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x +b>kx -1的解集为____________.8. (2019·易错题)对于一次函数y =kx +b ,当1≤x≤4时,3≤y≤6,则kb 的值是____________.9.(2018·重庆中考B 卷)如图,在平面直角坐标系中,直线l 1:y =12x 与直线l 2交点A 的横坐标为2,将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3,直线l 3与y 轴交于点B ,与直线l 2交于点C ,点C 的纵坐标为-2.直线l 2与y 轴交于点D. (1)求直线l 2的表达式; (2)求△BDC 的面积.10.如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M,若直线l2与x轴的交点为A(-2,0),则k的取值范围为( )A.-2<k<2 B.-2<k<0C.0<k<4 D.0<k<211.如图,点A,B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为____________.12.如图,在平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连结PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB 与直线y=x交于点A,且BD=2AD,连结CD,直线CD与直线y=x交于点Q,则点Q的坐标为__________.13.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位,再向上平移6个单位得到点P 3.请判断点P 3是否在直线l 上,并说明理由.参考答案【基础训练】1.C 2.D 3.B 4.≠2 =-2 5.m<1 6.y =-x +1 7.x>-1 8.2或-7 9.解:(1)把x =2代入y =12x 得y =1,∴点A 的坐标为(2,1).∵将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3, ∴直线l 3的表达式为y =12x -4,∴x=0时,y =-4,∴B(0,-4). 将y =-2代入y =12x -4,得x =4,∴点C 的坐标为(4,-2).设直线l 2的表达式为y =kx +b(k≠0), ∵直线l 2过A(2,1),C(4,-2),∴⎩⎪⎨⎪⎧2k +b =1,4k +b =-2,解得⎩⎪⎨⎪⎧k =-32,b =4,∴直线l 2的表达式为y =-32x +4.(2)∵y=-32x +4,∴x=0时,y =4,∴D(0,4).∵B(0,-4),∴BD=8, ∴△BDC 的面积=12×8×4=16.【拔高训练】10.D 11.(43,0) 12.(94,94)【培优训练】13.解:(1)P 2(3,3).(2)设直线l 所表示的一次函数的表达式为y =kx +b(k≠0), ∵点P 1(2,1),P 2(3,3)在直线l 上,∴⎩⎪⎨⎪⎧2k +b =1,3k +b =3,解得⎩⎪⎨⎪⎧k =2,b =-3. ∴直线l 所表示的一次函数的表达式为y =2x -3. (3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9), ∵2×6-3=9,∴点P 3在直线l 上.第三节 一次函数的实际应用姓名:________ 班级:________ 用时:______分钟1.(2018·江苏无锡中考)一水果店是A 酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2 600 kg 的这种水果.已知水果店每售出1 kg 该水果可获利润10元,未售出的部分每1 kg 将亏损6元,以x(单位:kg ,2 000≤x≤3 000)表示A 酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润. (1)求y 关于x 的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22 000元?2.某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动,11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家.他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回,同时,爸爸在家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距________千米,小宇在活动中心活动时间为________小时,他从活动中心返家时,步行用了________小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.3.如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).北京时间7:30 ________ 2:50首尔时间________ 12:15 ________(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦时间(夏时制)为7:30,那么此时韩国首尔时间是多少?4. (2017·河北中考)如图,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E ,点B ,E 关于x 轴对称,连结AB.(1)求点C ,E 的坐标及直线AB 的表达式; (2)设面积的和S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S △AOC ≠S,请通过计算解释他的想法错在哪里.5.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k2计算. 例如:求点P(-2,1)到直线y =x +1的距离.解:因为直线y =x +1可变形为x -y +1=0,其中k =1,b =1,所以点P(-2,1)到直线y =x +1的距离为d =|kx 0-y 0+b|1+k 2=|1×(-2)-1+1|1+12=22=2.根据以上材料,求:(1)点P(1,1)到直线y=3x-2的距离,并说明点P与直线的位置关系;(2)点P(2,-1)到直线y=2x-1的距离;(3)已知直线y=-x+1与y=-x+3平行,求这两条直线的距离.参考答案1.解:(1)由题意得当2 000≤x≤2 600时,y=10x-6(2 600-x)=16x-15 600,当2 600<x≤3 000时,y=2 600×10=26 000.(2)由题意得16x-15 600≥22 000,解得x≥2 350.∴当A酒店本月对这种水果的需求量小于等于3 000 kg,不少于2 350 kg时,该水果店销售这批水果所获的利润不少于22 000元.2.解:(1)22 2 2 5(2)由题意知,点B 的坐标为(3,22),点C 的坐标为(175,20),设线段BC 的函数关系式为y =kx +b , 把点B 和点C 的坐标代入, 得⎩⎪⎨⎪⎧3k +b =22,175k +b =20,解得⎩⎪⎨⎪⎧k =-5,b =37,所以线段BC 所表示的y(千米)与x(小时)之间的函数关系式是y =-5x +37.(3)爸爸开车接上小宇前行驶路程为20千米,用时25小时,速度为20÷25=50(千米/小时),接上小宇后开车返回的速度是50千米/小时,路程为20千米,需要2050=25(小时),到家时间为8+3+25+25=1145时,即11时48分,所以小宇能在12:00前回到家.3.解:(1)从图1看出,同一时刻,首尔时间比北京时间多1小时, 故y 关于x 的函数表达式是y =x +1.填表如下:(2)从图2看出,设伦敦时间(夏时制)为t 时,则北京时间为(t +7)时, 由第(1)题,知韩国首尔时间为(t +8)时,所以,当伦敦时间(夏时制)为7:30时,韩国首尔时间为15:30. 4.解:(1)在直线y =-38x -398中,令y =0,则有0=-38x -398,∴x=-13,∴C(-13,0).令x =-5,则有y =-38×(-5)-398=-3,∴E(-5,-3).∵点B ,E 关于x 轴对称,∴B(-5,3). ∵A (0,5),∴设直线AB 的表达式为y =kx +5, ∴-5k +5=3,∴k=25,∴直线AB 的表达式为y =25x +5.(2)由(1)知,E(-5,-3),∴DE=3,∵C(-13,0),∴CD=-5-(-13)=8, ∴S △CDE =12CD·DE=12.由题意知,OA =5,OD =5,BD =3, ∴S 四边形ABDO =12(BD +OA)·OD=20,∴S=S △CDE +S 四边形ABDO =12+20=32. (3)由(2)知,S =32, 在△AOC 中,OA =5,OC =13, ∴S △AOC =12OA·OC=652=32.5,∴S≠S △AOC .理由:由(1)知,直线AB 的表达式为y =25x +5,令y =0,则0=25x +5,∴x=-252≠-13.∴点C 不在直线AB 上,即点A ,B ,C 不在同一条直线上, ∴S △AOC ≠S.5.解:(1)∵点P(1,1),∴点P 到直线y =3x -2的距离为d =|3×1-1-2|1+32=0, ∴点P 在直线y =3x -2上. (2)∵y=2x -1,∴k=2,b =-1. ∵P(2,-1),∴d=|2×2-(-1)-1|1+22=455. ∴点P(2,-1)到直线y =2x -1的距离为455.(3)在直线y =-x +1任意取一点P , 当x =0时,y =1,∴P(0,1). ∵直线y =-x +3,∴k=-1,b =3, ∴d=|-0-1+3|1+(-1)2=2,∴两平行线之间的距离为 2.第四节 反比例函数姓名:________ 班级:________ 用时:______分钟1.(2018·浙江宁波模拟)若y =(m +1)x m -2是反比例函数,则m 的取值为( )A .1B .-1C .±1D .任意实数2.以下各点中,与点(-2,6)在同一个反比例函数图象上的是( ) A .(6,2) B .(-2,-6) C .(3,4)D .(4,-3)3.(2019·易错题)已知点A(1,y 1),B(2,y 2),C(-3,y 3)都在反比例函数y =4x 的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 3<y 1<y 2 B .y 1<y 2<y 3 C .y 2<y 1<y 3D .y 3<y 2<y 14.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,反比例函数y =3x的图象经过点D ,则正方形ABCD 的面积是( )A .10B .11C .12D .135.(2018·江西中考)在平面直角坐标系中,分别过点A(m ,0),B(m +2,0)作x 轴的垂线l 1和l 2,探究直线l 1,直线l 2与双曲线y =3x的关系,下列结论中错误的是( )A .两直线中总有一条与双曲线相交B .当m =1时,两直线与双曲线的交点到原点的距离相等C .当-2<m <0时,两直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2 6. (2019·易错题)已知反比例函数y =-8x,下列结论:①图象必经过(-2,4);②图象在第二、四象限;③y 随x 的增大而增大;④当x>-1时,则y>8.其中错误的结论有( ) A .3个B .2个C .1个D .0个7.已知反比例函数y =6x 在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半轴上一点,连结AO ,AB ,且AO =AB ,则S △AOB =______.8.如图,一次函数y =kx +b 与反比例函数y =ax 的图象在第一象限交于A ,B 两点,B 点的坐标为(3,2),连结OA ,OB ,过点B 作BD⊥y 轴,垂足为点D ,交OA 于点C ,若OC =CA.(1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积.9.已知k 1<0<k 2,则函数y =k 1x -1和y =k 2x的图象大致是( )10.如图,点P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )在函数y =1x (x>0)的图象上,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n -1A n 都是等腰直角三角形,斜边OA 1,A 1A 2,A 2A 3,…,A n -1A n 都在x 轴上(n 是大于或等于2的正整数),则点P 3的坐标是______________;点P n 的坐标是______________(用含n 的式子表示).11.如图,已知点A(4,0),B(0,43),把一个直角三角尺DEF 放在△OAB 内,使其斜边FD 在线段AB 上,三角尺可沿着线段AB 上下滑动.其中∠EFD=30°,ED =2,点G 为边FD 的中点.(1)求直线AB 的函数表达式;(2)如图1,当点D 与点A 重合时,求经过点G 的反比例函数y =kx (k≠0)的函数表达式;(3)在三角尺滑动的过程中,经过点G 的反比例函数的图象能否同时经过点F ?如果能,求出此时反比例函数的表达式;如果不能,说明理由.12.(2018·江苏泰州中考)平面直角坐标系xOy 中,横坐标为a 的点A 在反比例函数y 1=kx (x>0)的图象上,点A′与点A 关于点O 对称,一次函数y 2=mx +n 的图象经过点A′. (1)设a =2,点B(4,2)在函数y 1,y 2的图象上. ①分别求函数y 1,y 2的表达式;②直接写出使y 1>y 2>0成立的x 的范围;(2)如图1,设函数y 1,y 2的图象相交于点B ,点B 的横坐标为3a ,△AA′B 的面积为16,求k 的值;(3)设m =12,如图2,过点A 作AD⊥x 轴,与函数y 2的图象相交于点D ,以AD 为一边向右侧作正方形ADEF ,试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.参考答案【基础训练】1.A 2.D 3.D 4.C 5.D 6.B 7.68.解:(1)∵反比例函数的表达式为y =a x ,且反比例函数经过点B(3,2),∴2=a3,即a =6.∴反比例函数的表达式为y =6x .如图,过点A 作AE⊥y 轴于点E , ∵过点B 作BD⊥y 轴,OC =CA ,∴CD 是△AOE 的中位线,即OE =2OD =4. 又∵点A 在反比例函数y =6x 的图象上,∴点A 的坐标为(32,4).∵一次函数的表达式为y =kx +b ,且经过A ,B 两点,根据题意,得 ⎩⎪⎨⎪⎧3k +b =2,32k +b =4,解得⎩⎪⎨⎪⎧k =-43,b =6, ∴一次函数的表达式为y =-43x +6.(2)∵CD 是△AOE 的中位线,∴CD=12AE =34,∴BC=BD -CD =3-34=94.∴S △AOB =S △ABC +S △BOC =12BC·OE=12×94×4=92.【拔高训练】 9.A10.(3+2,3-2) (n +n -1,n -n -1) 11.解:(1)设直线AB 的函数表达式为y =k′x+b. ∵点A(4,0),B(0,43),∴⎩⎨⎧4k′+b =0,b =43,解得⎩⎨⎧k′=-3,b =43,∴直线AB 的函数表达式为y =-3x +4 3.(2)∵在Rt△DEF 中,∠EFD=30°,ED =2,∴EF=23,DF =4. ∵点D 与点A 重合,∴点D(4,0), ∴点F(2,23),∴点G(3,3). ∵反比例函数y =kx 经过点G ,∴k=33,∴反比例函数的表达式为y =33x.(3)经过点G 的反比例函数的图象能同时经过点F ,理由如下: ∵点F 在直线AB 上, ∴设点F(t ,-3t +43).又∵ED=2,∴点D(t +2,-3t +23). ∵点G 为边FD 的中点. ∴G(t+1,-3t +33).若过点G 的反比例函数的图象也经过点F , 设此时反比例函数表达式为y =mx,则⎩⎪⎨⎪⎧-3t +33=mt +1,-3t +43=mt,整理得(-3t +33)(t +1)=(-3t +43)t , 解得t =32,∴m=1534,∴经过点G 的反比例函数的图象能同时经过点F ,这个反比例函数的表达式为y =1534x .【培优训练】12.解:(1)①由已知,点B(4,2)在y 1=kx (x >0)的图象上,∴k=8,∴y 1=8x.∵a=2,∴点A 坐标为(2,4),A′坐标为(-2,-4). 把B(4,2),A′(-2,-4)代入y 2=mx +n ,⎩⎪⎨⎪⎧2=4m +n ,-4=-2m +n , 解得⎩⎪⎨⎪⎧m =1,n =-2.∴y 2=x -2.②当y 1>y 2>0时,y 1=8x 图象在y 2=x -2图象上方,且两函数图象在x 轴上方,∴由图象得2<x <4.(2)如图,分别过点A ,B 作AC⊥x 轴于点C ,BD⊥x 轴于点D ,连结BO.∵O 为AA′的中点, ∴S △AOB =12S △AA′B =8,∵点A ,B 在双曲线上, ∴S △AOC =S △BOD , ∴S △AOB =S 四边形ACDB =8.由已知得,点A ,B 坐标为(a ,k a ),(3a ,k3a ),∴12(k 3a +ka)·2a=8,解得k =6. (3)由已知A(a ,k a ),则A′为(-a ,-ka ).把A′代入到y 2=12x +n 中,则-k a =-12a +n ,∴n=12a -k a,∴A′D 的表达式为y 2=12x +12a -ka .当x =a 时,点D 纵坐标为a -ka ,∴AD=2ka-a.∵AD=AF ,∴点F 和点P 横坐标为a +2k a -a =2ka .∴点P 纵坐标为12·2k a +12a -k a =12a.∴点P 在y 1=kx (x >0)的图象上.第五节 二次函数的图象与性质姓名:________ 班级:________ 用时:______分钟1.(2019·易错题)将二次函数y =x 2-2x +3化为y =(x -h)2+k 的形式,结果为( ) A .y =(x +1)2+4 B .y =(x +1)2+2 C .y =(x -1)2+4D .y =(x -1)2+22.(2017·浙江丽水中考)将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位3.(2018·湖南益阳中考)已知二次函数y =ax 2+bx +c 的图象如图所示,则下列说法正确的是( )A .ac <0B .b <0C .b 2-4ac <0 D .a +b +c <04.如图是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是_________________________.5.(2019·改编题)矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x 2,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为________________________.6.已知二次函数y =ax 2-bx -2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为( ) A.34或1 B.14或1 C.34或12D.14或347.如图,反比例函数y =k x 的图象经过二次函数y =ax 2+bx 图象的顶点(-12,m)(m>0),则有( )A.a=b+2kB.a=b-2kC.k<b<0D.a<k<08.(2018·山东德州中考)如图,函数y=ax2-2x+1和y=ax-a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( )9.(2018·浙江杭州中考)设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由;(2)若该二次函数图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式;(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.10.如图,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的表达式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.11.(2018·四川南充中考)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ; ④当n =-1a 时,△ABP 为等腰直角三角形.其中正确结论是________(填写序号).参考答案【基础训练】 1.D 2.D 3.B4.y =-19(x +6)2+4 5.y =x 2+8x +14【拔高训练】 6.A 7.D 8.B9.解:(1)由题意知Δ=b 2-4a[-(a +b)]=b 2+4ab +4a 2=(2a +b)2≥0, ∴该二次函数图象与x 轴的交点的个数有2个或1个. (2)当x =1时,y =a +b -(a +b)=0 ∴该二次函数图象不经过点C. 把点A(-1,4),B(0,-1)分别代入得⎩⎪⎨⎪⎧4=a -b -(a +b ),-1=-(a +b ),解得⎩⎪⎨⎪⎧a =3,b =-2.∴该二次函数的表达式为y =3x 2-2x -1. (3)证明:当x =2时,m =4a +2b -(a +b)=3a +b >0,① ∵a+b <0,∴-a -b >0.② ①+②得2a >0,∴a>0.10.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的表达式为y =x 2-4x +3.(2)方法1:如图1,过点P 作PG∥CF 交CB 于点G ,由题意知∠BCO=∠CFE=45°,F(0,m),C(0,3),∴△CFE 和△GPE 均为等腰直角三角形, ∴EF=22CF =22(3-m),PE =22PG. 设x P =t(1<t<3),则PE =22PG =22(-t +3-t -m) =22(-m -2t +3),t 2-4t +3=t +m , ∴PE+EF =22(-m -2t +3)+22(3-m)=22(-2t -2m +6)=-2(t +m -3)=-2(t 2-4t)=-2(t -2)2+42,∴当t =2时,PE +EF 的最大值为4 2.方法2:(几何法)如图2,由题易知直线BC 的表达式为y =-x +3,OC =OB =3, ∴∠OCB=45°. 同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形,以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于点H ,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2. (3)①由(1)知对称轴x =2,设D(2,n),如图3.当△BCD 是以BC 为直角边的直角三角形时,D 在BC 上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(32)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形时,D 在BC 下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(32)2=(2-0)2+(n -3)2,解得n =-1. ∴当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图4,以BC 的中点T(32,32),12BC 为半径作⊙T,与对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角,得∠CD 3B =∠CD 4B =90°. 设D(2,m),由DT =12BC =322得(32-2)2+(32-m)2=(322)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172).又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,D 点在线段D 1D 3或D 2D 4上时(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.【培优训练】 11.②④第六节 二次函数的综合应用姓名:________ 班级:________ 用时:______分钟1.(2018·湖北孝感中考)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是________________________.2.(2018·浙江湖州中考)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.3.(2019·易错题)某校在基地参加社会实践活动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69 m的不锈钢栅栏围成,与墙平行的一边留一个宽为3 m的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x m(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?4. (2018·湖北襄阳中考)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数表达式为y =⎩⎪⎨⎪⎧mx -76m (1≤x<20,x 为正整数),n (20≤x≤30,x 为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本). (1)m =________,n =________;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少? (3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?5.(2018·山东泰安中考)一元二次方程(x +1)(x -3)=2x -5根的情况是( ) A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于36.如图,已知直线y =-34x +3分别交x 轴、y 轴于点A ,B ,P 是抛物线y =-12x 2+2x +5上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线y =-34x +3于点Q ,则当PQ =BQ 时,a 的值是__________________________.7.如图,抛物线y =a(x -1)2+c 与x 轴交于点A(1-3,0)和点B ,将抛物线沿x 轴向上翻折,顶点P 落在点P′(1,3)处. (1)求原抛物线的函数表达式;(2)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x 轴的平行线交抛物线于C ,D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W ,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比5-12(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少(参考数据:5≈2.236,6≈2.449,结果可保留根号).8.(2017·湖南邵阳中考)如图所示,顶点为(12,-94)的抛物线y =ax 2+bx +c 过点M(2,0).(1)求抛物线的表达式;(2)点A 是抛物线与x 轴的交点(不与点M 重合),点B 是抛物线与y 轴的交点,点C 是直线y =x +1上一点(处于x 轴下方),点D 是反比例函数y =kx (k >0)图象上一点,若以点A ,B ,C ,D 为顶点的四边形是菱形,求k 的值.参考答案【基础训练】1.x 1=-2,x 2=1 2.-23.解:(1)AB =x m ,可得BC =69+3-2x =(72-2x)m. (2)小英说法正确,理由如下:矩形面积S =x(72-2x)=-2(x -18)2+648, ∵72-2x>0, ∴x<36,∴0<x<36.∴当x =18时,S 取最大值, 此时x≠72-2x ,∴面积最大的不是正方形.4.解:(1)第12天的售价为32元/千克,代入y =mx -76m ,得32=12m -76m , 解得m =-12.第26天的售价为25元/千克,代入y =n , 则n =25,故答案为m =-12,n =25.(2)由题意知,第x 天的销售量为20+4(x -1)=4x +16, 当1≤x<20时,W =(4x +16)(-12x +38-18)=-2x 2+72x +320=-2(x -18)2+968,∴当x =18时,W 最大=968元.当20≤x≤30时,W =(4x +16)(25-18)=28x +112. ∵28>0,∴W 随x 的增大而增大, ∴当x =30时,W 最大=952元. ∵968>952,∴当x =18时,W 最大=968元.(3)当1≤x<20时,令-2x 2+72x +320=870, 解得x 1=25,x 2=11.∵抛物线W =-2x 2+72x +320的开口向下, ∴11≤x≤25时,W≥870. 又∵11≤x<20,x 为正整数, ∴有9天利润不低于870元,当20≤x≤30时,令28x +112≥870, 解得x≥27114.∴27114≤x≤30.∵x 为正整数,∴有3天利润不低于870元.∴综上所述,当天利润不低于870元的天数共有12天. 【拔高训练】5.D 6.-1,4,4+25,4-2 57.解:(1)∵点P 与点P′(1,3)关于x 轴对称, ∴点P 的坐标为(1,-3).设原抛物线的表达式为y =a(x -1)2-3,∵其过点A(1-3,0), ∴0=a(1-3-1)2-3,解得a =1.∴原抛物线的函数表达式为y =(x -1)2-3,即y =x 2-2x -2. (2)∵CD∥x 轴,P′(1,3)在CD 上, ∴C,D 两点纵坐标均为3.由(x -1)2-3=3,解得x 1=1-6,x 2=1+6,∴C,D 两点的坐标分别为(1-6,3),(1+6,3),∴CD=2 6. ∴“W”图案的高与宽(CD)的比为326=64(或约等于0.612).【培优训练】8.解:(1)依题意可设抛物线的表达式为 y =a(x -12)2-94(a≠0),将点M(2,0)代入可得a(2-12)2-94=0,解得a =1.故抛物线的表达式为y =(x -12)2-94.(2)由(1)知,抛物线的表达式为y =(x -12)2-94,其对称轴为x =12,∴点A 与点M(2,0)关于直线x =12对称,∴A(-1,0).令x =0,则y =-2, ∴B (0,-2).在Rt△OAB 中,OA =1,OB =2,则AB = 5. 设直线y =x +1与y 轴交于点G , 易求G(0,1).∴△AOG 是等腰直角三角形, ∴∠AGO=45°.∵点C 是直线y =x +1上一点(处于x 轴下方),而k >0,∴反比例函数y =kx (k >0)的图象位于第一、三象限.故点D 只能在第一、三象限,因此符合条件的菱形只能有如下2种情况: ①此菱形以AB 为边且AC 也为边,如图1所示,过点D 作DN⊥y 轴于点N , 在Rt△BDN 中,∵∠DBN =∠AGO=45°, ∴DN=BN =52=102,∴D(-102,-102-2). ∵点D 在反比例函数y =kx (k >0)图象上,∴k=-102×(-102-2)=52+10. ②此菱形以AB 为对角线,如图2,作AB 的垂直平分线CD 交直线y =x +1于点C ,交反比例函数y =kx (k >0)的图象于点D.再分别过点D ,B 作DE⊥x 轴于点F ,BE⊥y 轴,DE 与BE 相交于点E. 在Rt△BDE 中,同①可证∠AGO=∠DB O =∠BDE=45°, ∴BE=DE.可设点D 的坐标为(x ,x -2). ∵BE 2+DE 2=BD 2, ∴BD=2BE =2x. ∵四边形ABCD 是菱形, ∴AD=BD =2x.∴在Rt△ADF 中,AD 2=AF 2+DF 2,即(2x)=(x +1)2+(x -2)2, 解得x =52,∴点D 的坐标是(52,12).∵点D 在反比例函数y =kx (k >0)的图象上,∴k=52×12=54,综上所述,k 的值是52+10或54.。
中考数学复习专题——规律探索一.选择题1. (2018·湖北随州·3 分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如 1,3, 6,10…)和“正方形数”(如 1,4,9,1,在小于 200 的数中,设最大的“三角形数”为 m ,最大的 “正方形数”为 n ,则 m +n 的值为( )A .33B .301C .386D .5712.(2018•山东烟台市•3 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆 下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( )3.(2018•山东济宁市•3 分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的是( )A .B . B.C .D .4. (2018 湖南张家界 3.00 分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…, 则 2+22+23+24+25+…+21018 的末位数字是( )A .8B .6C .4D .0二、填空题 1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·3 分)如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P3A2A3,…都是等2.(2018•江苏淮安•3 分)如图,在平面直角坐标系中,直线l为正比例函数y=x 的图象,点A1的坐标为(1,,过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x 轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l 于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n的面积是(92)n﹣1 .3.(2018•山东东营市•3分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=15x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,那么点A2018的纵坐标是20173()2.4.(2018•临安•3 分.)已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+ba=102×ba符合前面式子的规律,则a+b= .5. (2018•广西桂林•3分)将从1开始的连续自然数按如图规律排列:规定位于第m行,第n列的自然记为6. (2018•广西南宁•3 分)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可 得 30+31+32+…+32018 的结果的个位数字是 .7. (2018·黑龙江龙东地区·3 分)如图,已知等边△A BC 的边长是 2,以 B C 边上的高 AB 1 为边作等边三角 形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1 的 B 1C 1边上的高 AB 2 为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△A B 2C 2 的B 2C 2边上的高 A B 3 为边作等边三角形,得到第三个等边△AB 3C 3;…,记△B 1CB 2 的面积为 S 1,△B 2C 1B 3 的面积为 S 2,△B 3C 2B 4 的面积为 S 3,如此下去,则 S n = .8.(2018·黑龙江齐齐哈尔·3 分)在平面直角坐标系中,点 A (3,1)在射线 O M 上,点 B (3,3)在 射线 ON 上,以 AB 为直角边作 Rt △A BA 1,以 BA 1 为直角边作第二个 Rt △BA 1B 1,以A 1B 1 为直角边作第三个 Rt△A 1B 1A 2,…,依次规律,得到 R t △B 2017A 2018B 2018,则点 B 2018 的纵坐标为 . 9.(2018•广东•3 分)如图,已B 1 作 B 1A 2∥OA 1 交双曲线于点 A 2,过 A 2 作 A 2B 2∥A 1B 1 交 x 轴于点 B 2,得到第二个等边△B 1A 2B 2;过 B 2 作 B 2A 3∥B 1A 2 交双曲线于点 A 3,过 A 3 作 A 3B 3∥A 2B 2 交 x 轴于点 B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点 B 6 的坐标 为 ( ) .nn201810. (2018•广西北海•3 分)观察下列等式: 30 = 1, 31 = 3, 32 = 9 , 33 = 27 , 34 = 81, 35= 243,…,根据其中规律可得 01220183+3+3+...3+的结果的个位数字是 。
中考数学教学建议随着中考的临近,数学教学也进入了关键阶段。
为了帮助学生们更好地备考,以下是一些关于中考数学教学的建议。
一、明确教学目标与重点在中考数学教学中,首先要明确教学目标,即帮助学生掌握数学基础知识,提高解题能力和思维水平。
同时,要根据中考大纲的要求,确定教学重点,如代数、几何、概率统计等知识点。
在教学过程中,要注重知识点的串联和整合,使学生能够形成完整的知识体系。
二、强化基础训练中考数学试题中,基础题占据较大比例。
因此,在数学教学中要注重基础训练,帮助学生熟练掌握基础知识。
通过大量的练习,使学生能够灵活运用所学知识解决实际问题。
同时,要注重培养学生的计算能力和解题速度,以适应中考的考试要求。
三、注重解题思路与方法在数学教学中,不仅要注重知识的传授,更要注重解题思路与方法的培养。
教师要引导学生分析题目,理清思路,掌握解题方法。
对于难题和典型题目,要进行深入剖析,帮助学生理解题目的本质和解题关键。
同时,要鼓励学生多尝试不同的解题方法,培养他们的创新思维和解题能力。
四、加强课堂互动与沟通在数学教学中,教师要加强与学生的互动与沟通,及时了解学生的学习情况和问题。
通过提问、讨论等方式,激发学生的学习兴趣和积极性。
同时,要关注学生的学习差异,针对不同学生的特点进行因材施教,使每个学生都能得到充分的发展。
五、合理安排教学进度与作业量在数学教学中,要合理安排教学进度和作业量,确保学生能够有足够的时间进行复习和练习。
同时,要注重作业的质量与批改,及时发现和纠正学生的错误,帮助他们巩固所学知识。
此外,还要合理安排复习时间,使学生能够在中考前进行充分的复习和准备。
六、培养学生的非智力因素除了数学知识本身外,还要注重培养学生的非智力因素如自信心、毅力、心态等。
教师要关注学生的心理变化,鼓励他们积极面对困难和挑战。
同时,要通过各种方式激发学生的学习兴趣和热情使他们能够以更加饱满的精神状态投入到学习中去。
综上所述中考数学教学需要注重基础训练、解题思路与方法的培养以及课堂互动与沟通等方面的工作。
第五节多边形与平行四边形基础训练1.(2017苏州中考)如图,在正五边形ABCDE中,连接BE,贝iJZABE的度数为(B)A.30°B.36°C.54°D.72°“(第1题图)2.(湘西屮考)下列说法错误的是(D)A.对角线互相平分的四边形是平行四边形2两组对边分别相等的四边形是平行四边形C 一组对边平行冃相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形3・(2015石家屮四十三屮模拟)如图,在口ABCD屮,延长AB到点E,使BE = AB,连接DE交BC于点F,则下列结论不一定成立的是(D)A. ZE=ZCDF B・ EF=DFC. AD = 2BFD. BE=2CF4.(2017 丽水中考)如图,在口ABCD 中,连接AC, ZABC= ZCAD=45° , AB =2,则BC的长是(C)A.y[2B. 2C. 2^2 D・ 45.(荷泽中考)在口ABCD中,AB = 3, BC=4,当口ABCD的面积最大时,下列结论正确的有(B)①AC = 5;②ZA+ZC=180° ;③AC丄BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6・(孝感中考)在口ABCD中,AD = 8, AE平分ZBAD交BC于点E” DF平分ZADC 交BC于点F,且EF=2,则AB的长为(D)儿 3 B. 5C 2或3 〃・3或57.平行四边形ABCD与等边AAEF如图放置,如果ZB = 45° ,那么ZBAE 的大小是(A)A.75°B.70°C.65°D.60°8.(北京中考)如图是由射线AB, BC, CD, DE, EA组成的平面图形,则Z1 + Z2+Z3+Z4+Z5= 360°9・(江西中考)如图所示,在oABCD中,ZC = 40° ,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则ZBEF的度数为§0。
专题练习尺规作图一、选择题1.如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于AB的长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于()A. 40°B. 50°C. 60°D. 70°2.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为()A. 90°B. 95°C. 100°D. 105°3.按下列条件画三角形,能唯一确定三角形形状和大小的是()A. 三角形的一个内角为60°,一条边长为3cmB. 三角形的两个内角为30°和70°C. 三角形的两条边长分别为3cm和5cmD. 三角形的三条边长分别为4cm、5cm和8cm4.下列画图语句中正确的是()A. 画射线OP=5cmB. 画射线OA的反向延长线C. 画出A、B两点的中点D. 画出A、B两点的距离5.图中的尺规作图是作()A. 线段的垂直平分线B. 一条线段等于已知线段C. 一个角等于已知角D. 角的平分线6.已知线段a,b和m,求作△ABC,使BC=a,AC=b,BC边上的中线AD=m,作法合理的顺序依次为()①延长CD到B,使BD=CD;②连接AB;③作△ADC,使DC=a,AC=b,AD=m.A. ③①②B. ①②③C. ②③①D. ③②①7.在一次数学活动课上小芳,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=8,AB=30,请你帮助她算一下△ABD的面积是()A. 150B. 130C. 240D. 1208.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是()A. 边边边B. 边角边C. 角边角D. 角角边9.下列作图语句正确的是()A. 作线段AB,使α=ABB. 延长线段AB到C,使AC=BCC. 作∠AOB,使∠AOB=∠αD. 以O为圆心作弧10.下列画图语句中,正确的是()A. 画射线OP=3cmB. 连接A,B两点C. 画出A,B两点的中点D. 画出A,B两点的距离二、填空题11.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出 ________个.12.如图,在平行四边形ABCD中,连接AC,按一下步骤作图,分别以点A,点C为圆心,以大于AC的长为半径画弧,两弧分别相交于点M、N,作直线MN交CD于点E,交AB于点F,若AB=5,BC=3,则△ADE的周长为________.13.如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F,为圆心,大于长为半径作圆弧,两弧交于点G,作射线BG交CD于点H。
初三数学专题复习【基础训练】1.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则tan∠BED 等于.2.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC沿A﹣D的方向平移AD 长,得△DEF(B、C的对应点分别为E、F),则BE长为.3.如图,在4×4的网格纸中,△ABC的三个顶点都在格点上.现要在这张网格纸中找出一格点作为旋转中心,绕着这个中心旋转后的三角形的顶点也在格点上,若旋转前后的两个三角形构成中心对称图形,那么满足条件的旋转中心有个.4.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(画出图形)(3)△A2B2C2的面积是平方单位.【典型例题】例1.(1)如图所示的网格是正方形网格,则∠BAC﹣∠DAE=°(点A,B,C,D,E是网格线交点).(2)10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为.例2.如图是4×4的正方形网格,每个小正方形的边长均为1且顶点称为格点,点A,B均在格点上.在网格中建立平面直角坐标系,且A(﹣1,1),B(1,2).如果点C也在此4×4的正方形网格的格点上,且△ABC是等腰三角形,那么当△ABC的面积最大时,点C的坐标为.例3.如图,每个小正方形的边长都是1的方格纸中,有线段AB和线段CD,点A、B、C、D的端点都在小正方形的顶点上.(1)在方格纸中画出一个以线段AB为一边的菱形ABEF,所画的菱形的各顶点必须在小正方形的顶点上,并且其面积为20.(2)在方格纸中以CD为腰画出等腰三角形CDK,点K在小正方形的顶点上,且∠KCD=45°.(3)在(1)、(2)的条件下,连接EK,请直接写出线段EK的长.例4.定义:如果一个直角三角形的两条直角边的比为1:2,那么这个三角形叫做“半正切三角形”.(1)如图①,正方形网格中,已知格点A,B,在格点C,D,E,F中,与A,B能构成“半正切三角形”的是点;(2)如图②,△ABC(BC<AC)为“半正切三角形”,点M在斜边AB上,点D在边AC上,将射线MD绕点M逆时针旋转90°,所得射线交边BC于点E,连接DE.小彤发现:若M为斜边AB的中点,则△DEM一定为“半正切三角形”.请判断“小彤发现”是否正确?并说明理由;【巩固练习】1.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为.2.如图,A、B、C三点在正方形网格线的交点处,若将△ACB绕着点A逆时针旋转得到△AC′B′,使点B′落在射线AC上,则cos∠B′CB的值为.3.如图所示的网格是正方形网格,点A,B,C,D均落在格点上,则∠BAC+∠ACD=°.4.如图在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1) 填空:∠ABC=,BC=.(2)若点A在网格所在的坐标平面里的坐标为(1,﹣2),请你在图中找出一点D,并作出以A、B、C、D四个点为顶点的平行四边形,求出满足条件的D点的坐标.5.已知△ABC中,AB=,AC=,BC=6(1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN 的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明)②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).6.在如图9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,无需画图,直接写出P、Q两点的坐标.7.如图是由边长相等的小正方形组成的网格,点A、B均在格点上.(1)在网格中,用无刻度的直尺画等腰直角三角形ACB.使∠ACB=90;(2)在(1)的条件下,点D在AC上(点D可以不在格点上).在网格中,用无刻度的直尺画出∠CBD,使tan∠CBD=.8.按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.9.如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B 作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A或点B 重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm1 1.52 2.53 3.54y/cm0 3.7 3.8 3.3 2.5(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为cm.10.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是________(4)△ABC在整个平移过程中线段AB 扫过的面积为________(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有______个。
考点28 矩形真题回顾1.(2020·怀化)在矩形中,、相交于点O,若的面积为2,则矩形的面积为()A. 4B. 6C. 8D. 10【答案】C【考点】矩形的性质【解析】【解答】∵四边形ABCD是矩形,对角线、相交于点O,∴AC=BD,且OA=OB=OC=OD,∴,∴矩形的面积为,故答案为:C.【分析】根据矩形的性质得到OA=OB=OC=OD,推出,即可求出矩形ABCD的面积.2.(2020·十堰)已知中,下列条件:①;②;③;④平分,其中能说明是矩形的是()A. ①B. ②C. ③D. ④【答案】B【考点】矩形的判定【解析】【解答】解:A. ,邻边相等的平行四边形是菱形,故A错误;B. ,对角线相等的平行四边形是矩形,故B正确;C. ,对角线互相垂直的平行四边形是菱形,故C错误;D. 平分,对角线平分其每一组对角的平行四边形是菱形,故D错误.故答案为:B.【分析】根据矩形的判定进行分析即可.3.(2017·大连)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A. 2aB. 2 aC. 3aD.【答案】B【考点】直角三角形斜边上的中线【解析】【解答】解:∵CD⊥AB,CD=DE=a,∴CE= a,∵在△ABC中,∠ACB=90°,点E是AB的中点,∴AB=2CE=2 a,故选B.【分析】根据勾股定理得到CE= a,根据直角三角形的性质即可得到结论.4.(2019·临沂)如图,在平行四边形中,、是上两点,,连接、、、,添加一个条件,使四边形是矩形,这个条件是( )A. B. C. D.【答案】A【考点】矩形的判定与性质【解析】【解答】∵四边形是平行四边形,∴,,∵对角线上的两点、满足,∴,即,∴四边形是平行四边形,∵,∴,∴四边形是矩形.故答案为:A.【分析】根据矩形的判定定理,两对角线相等的平行四边形为矩形,可判定。
考点22 等腰三角形与等边三角形真题回顾1.(2020·呼伦贝尔)如图,的垂直平分线交于点D,若,则的度数是()A. 25°B. 20°C. 30°D. 15°【答案】D【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°-65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC-∠ABD=15°,故答案为:D.【分析】根据等要三角形的性质得到∠ABC,再根据垂直平分线的性质求出∠ABD,从而可得结果.2.(2019·南充)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A. 8B. 11C. 16D. 17【答案】B【考点】线段垂直平分线的性质【解析】【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故答案为:B.【分析】根据线段垂直平分线的性质可得AE=BE,则△ACE的周长=EC+AE+AC=BC+AC,因而得解。
3.(2020·南充)如图,在等腰三角形ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A. B. C. a-b D. b-a【答案】C【考点】等腰三角形的判定与性质【解析】【解答】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC-AD=a-b,故答案为:C.【分析】根据等腰三角形的性质和判定得出BD=BC=AD,进而解答即可.4.(2019·苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A. 30°B. 40°C. 45°D. 60°【答案】B【考点】等腰三角形的性质【解析】【解答】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C= = =40°.故选:B.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.5.(2018·雅安)如图所示,底边BC为2 ,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A. 2+2B. 2+C. 4D. 3【答案】A【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2 ,∴△ACE的周长=AC+AE+CE=AC+BC=2+2 ,故选:A.【分析】本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.6. (2019·连云港)如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,则AE的值是()A. 6B. 4C. 6D. 4【答案】C【考点】线段垂直平分线的性质【解析】【解答】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=6.故选C.【分析】由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.7.(2017·海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A. 3B. 4C. 5D. 6【答案】B【考点】等腰三角形的判定【解析】【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.8.(2018·镇江)边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D. 【答案】A【考点】等边三角形的判定与性质【解析】【解答】解:连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD= ×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是 a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN= a,∵GF= AF= × a= a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ= GF= a,同理IN= a,∴GI= a+ a+ a= a,即第二个等边三角形的边长是 a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是× a;同理第第三个等边三角形的边长是× a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是×× a;同理第四个等边三角形的边长是×× a,第四个正六边形的边长是××× a;第五个等边三角形的边长是××× a,第五个正六边形的边长是×××× a;第六个等边三角形的边长是×××× a,第六个正六边形的边长是××××× a,即第六个正六边形的边长是×a,故选:A.【分析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN= a,求出GI 的长,求出第一个正六边形的边长是 a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.9.(2018·苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB 绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A. (,)B. (,)C. (,)D. (,4 )【答案】C【考点】等腰三角形的性质【解析】【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC= ,由勾股定理得,OA= = =3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4× = ,BD=4×= ,∴OD=OB+BD=4+ = ,∴点O′的坐标为(,).故选:C.【分析】过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.10.(2018·六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A. B. C. D.【答案】C【考点】等腰三角形的性质【解析】【解答】解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1= =35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3= ×17.5°= ,∴∠A n﹣1A n B n﹣1= .故选:C.【分析】根据三角形外角的性质及等腰三角形的性质分别求出∠B1A2A1,∠B2A3A2及∠B3A4A3的度数,找出规律即可得出∠A n﹣1A n B n﹣1的度数.本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠B1C2A1,∠B2A3A2及∠B3A4A3的度数,找出规律是解答此题的关键.11.(2020·十堰)如图,在中,是的垂直平分线.若,的周长为13,则的周长为________.【答案】19【考点】线段垂直平分线的性质【解析】【解答】解:是的垂直平分线. ,的周长故答案为:19【分析】由线段的垂直平分线的性质可得,从而可得答案.12.(2013·无锡)如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=________°.【答案】45【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC= (180°﹣∠BAC)= (180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF= BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.13.(2018·株洲)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.【答案】6【考点】等腰三角形的判定与性质【解析】【解答】解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=3 ,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP= AM=6,故答案为:6.【分析】根据平行四边形的性质及BD=CD得出BD=BA,根据等腰三角形两腰上的高相等得出DN=AM=3,根据三角形的外角的定理,及∠ABD=∠MAP+∠PAB得出∠P=∠PAM,从而判断出△APM 是等腰直角三角形,根据等腰直角三角形的边之间的关系得出AP的长。
第二节一次函数姓名:________班级:________ 限时:______分钟1.(2018·曲靖二模)若函数y=kx的图象经过点A(-1,2)和点B(k,m),则m=______. 2.(2018·昭通昭阳区模拟)一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是____________.3.(2018·邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.4.(2018·宜宾)已知点A是直线y=x+1上一点,其横坐标为-错误!未定义书签。
,若点B与点A关于y轴对称,则点B的坐标为________.5.(2018·济宁)在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,若x1<x2,则y1______y2.(填“>"“<"或“=”)6.(2018·长春)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3).若直线y=2x与线段AB有公共点,则n的值可以为_____________.(写出一个即可)7.(2018·深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A.(2,2) ﻩﻩB.(2,3)C.(2,4)ﻩﻩﻩD.(2,5)8.(教材改编)若一次函数y=(k+3)x-k的图象经过第一、二、三象限,则k的取值范围是( )A.k〉-3ﻩB.0<k≤3ﻬC.-3<k<0 D.0<k<39.(2018·曲靖罗平三模)已知一次函数y=kx+b,y随着x的增大而增大,且kb<0,则在直角坐标系内它的大致图象是( )10.(2018·遵义)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是( )A.x>2B.x<2 C.x≥2ﻩﻩD.x≤211.(2018·枣庄)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.-5ﻩﻩB.错误!C.错误!未定义书签。
专业1对1教学专家
第 1 页 共 2 页
1
中考基础训练3
时间:30分钟 你实际使用 分钟
班级 姓名 学号 成绩
1、6的倒数是 。
2、分解因式:122xx 。
3、据泉州统计局网上公布的数据显示,2005年第一季度我市完成工业总产值约为
61 400 000 000元,用科学记数法表示约为 元。
4、函数31xy中,自变量x的取值范围是 。
5、计算:2223 。
6、如图,点A、B、C、D在⊙O上,若∠BDC=30°,
则∠BAC= 度。
7、五边形的内角和等于 度。
8、请你在右图的正方形格纸中,画出线段AB关于点O
成中心对称的图形。
9、在△ABC中,AB=AC,若∠B=50°,则∠C= 度。
10、已知圆柱底面半径为4cm,母线长为10cm,则其侧
面展开图的面积是 cm2
11、写出不等式05x的一个整数解: 。
12、我国宋朝数学家杨辉在他的著作《详解九章算法》
中提出右下表,此表揭示了nba)((n为非负整数)
展开式的各项系数的规律,例如:
1)(0ba
,它只有一项,系数为1;
baba1)(
,它有两项,系数分别为1,1;
222
2)(bababa
,它有三项,系数分别为1,2,1;
32233
33)(babbaaba
,它有四项,系数分别为1,3,3,1;
……
根据以上规律,4)(ba展开式共有五项,系数分别为 。
13、计算102·103的结果是( )
A、104 B、105 C、106 D、108
14、一元二次方程0132xx的根的情况为( )
专业1对1教学专家
第 2 页 共 2 页
2
A、有两个不相等的实数根 B、有两个相等的实数根
C、只有一个实数根 D、没有实数根
15、样本6,7,8,9,10,10,10的中位数和众数分别是( )
A、9,3 B、8,10 C、10,10 D、9,10
16、⊙O1与⊙O2的半径分别为2、3,圆心距O1O2=5,这两圆的位置关系是( )
A、内切 B、相交 C、外切 D、外离
17、下面命题错误..的是( )
A、等腰梯形的两底平行且相等 B、等腰梯形的两条对角线相等
C、等腰梯形在同一底上的两个角相等 D、等腰梯形是轴对称图形
18、一辆客车从泉州出发开往宁德,设客车出发t小时后与宁德的距离为s千米,下列图
象能大致反映s与t之间的函数关系的是( )
A、 B、 C、 D、
19、计算:
52200520
20. 一项工作A独做40天完成,B独做50天完成,先由A独做,再由B独做,共用46天
完成,问A、B各做了几天?