2020届中考数学总复习(5)因式分解-精练精析(2)及答案解析
- 格式:doc
- 大小:113.01 KB
- 文档页数:10
2020-2021初中数学因式分解知识点总复习含答案(2)一、选择题1.下列因式分解正确的是( )A .x 3﹣x =x (x 2﹣1)B .x 2+y 2=(x+y )(x ﹣y )C .(a+4)(a ﹣4)=a 2﹣16D .m 2+4m+4=(m+2)2 【答案】D【解析】【分析】逐项分解因式,即可作出判断.【详解】A 、原式=x (x 2﹣1)=x (x+1)(x ﹣1),不符合题意;B 、原式不能分解,不符合题意;C 、原式不是分解因式,不符合题意;D 、原式=(m+2)2,符合题意,故选:D .【点睛】此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.2.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.3.计算201200(2)(2)-+-的结果是( )A .2002-B .2002C .1D .2-【答案】A【解析】【分析】直接提取公因式进而计算得出答案.【详解】(-2)201+(-2)200=(-2)200×(-2+1)=-2200.故选:A.【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.4.下列各式从左到右的变形中,属于因式分解的是()A.m(a+b)=ma+mb B.a2+4a﹣21=a(a+4)﹣21C.x2﹣1=(x+1)(x﹣1) D.x2+16﹣y2=(x+y)(x﹣y)+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、把一个多项式转化成几个整式积的形式,故C符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选C.【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.5.下列等式从左到右的变形是因式分解的是()A.2x(x+3)=2x2+6x B.24xy2=3x•8y2C.x2+2xy+y2+1=(x+y)2+1 D.x2﹣y2=(x+y)(x﹣y)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6.若a b +=1ab =,则33a b ab -的值为( )A .±B .C .±D .【答案】C【解析】【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解. 【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+-∴33)a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-故选:C .【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.7.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0B .3C .6D .9【答案】D【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c ab=222+++++c a b=()6+++c a b=6+3=9故选D .【点睛】 此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.8.下面式子从左边到右边的变形中是因式分解的是( )A .()2212x x x x --=--B .()()22a b a b a b +-=-C .()()2422x x x -=+-D .()2222a b a b ab +=++ 【答案】C【解析】【分析】根据把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解进行分析即可.【详解】A 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.B 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.C 选项:等式右边是乘积的形式,故是因式分解,符合题意.D 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.故选:C.【点睛】考查了因式分解的意义,关键是掌握因式分解的定义(把一个多项式化为几个整式的积的形式).9.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.10.下面的多项式中,能因式分解的是( )A .2m n +B .221m m -+C .2m n -D .21m m -+ 【答案】B【解析】【分析】完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+11.若a b c 、、为ABC ∆三边,且满足222244a c b c a b -=-,则ABC ∆的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均有可能 【答案】D【解析】【分析】把已知等式左边分解得到()()()2220a b a b c a b ⎡⎤+--+=⎣⎦,-a b =0或()222c a b -+=0,即a=b 或222c a b =+,然后根据等腰三角形和直角三角形的判定方法判断.【详解】因为a b c 、、为ABC ∆三边,222244a c b c a b -=-所以()()()2220a b a b c a b ⎡⎤+--+=⎣⎦ 所以-a b =0或()222c a b -+=0,即a=b 或222c a b =+所以ABC ∆的形状是等腰三角形、等腰三角形、等腰直角三角形故选:D【点睛】本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.12.下列等式从左到右的变形,属于因式分解的是()A.8x2y3=2x2⋅4 y3B.(x+1)(x﹣1)=x2﹣1C.3x﹣3y﹣1=3(x﹣y)﹣1 D.x2﹣8x+16=(x﹣4)2【答案】D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.13.已知三个实数a,b,c满足a﹣2b+c<0,a+2b+c=0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【答案】C【解析】【分析】根据a﹣2b+c<0,a+2b+c=0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况.【详解】∵a﹣2b+c<0,a+2b+c=0,∴a+c=﹣2b,∴a﹣2b+c=(a+c)﹣2b=﹣4b<0,∴b>0,∴b2﹣ac=222222a c a ac cac+++⎛⎫-=⎪⎝⎭=222242a ac c a c-+-⎛⎫= ⎪⎝⎭…,即b>0,b2﹣ac≥0,故选:C.【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b和b2-ac的正负情况.14.已知x ﹣y =﹣2,xy =3,则x 2y ﹣xy 2的值为( )A .2B .﹣6C .5D .﹣3 【答案】B【解析】【分析】先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.15.若x 2+mxy+y 2是一个完全平方式,则m=( )A .2B .1C .±1D .±2【答案】D【解析】根据完全平方公式:(a +b )2=a 2+2ab +b 2与(a -b )2=a 2-2ab +b 2可知,要使x 2+mxy +y 2符合完全平方公式的形式,该式应为:x 2+2xy +y 2=(x +y )2或x 2-2xy +y 2=(x -y )2. 对照各项系数可知,系数m 的值应为2或-2.故本题应选D.点睛:本题考查完全平方公式的形式,应注意完全平方公式有(a +b )2、(a -b )2两种形式. 考虑本题时要全面,不要漏掉任何一种形式.16.下列等式从左到右的变形,属于因式分解的是( )A .()21x x x x -=- B .()22121x x x x -+=-+ C .()()21323x x x x -+=+- D .()a b c ab ac -=-【答案】A【解析】【分析】根据因式分解的意义:把一个多项式转化成几个整式积的形式叫因式分解,可得答案.【详解】解:A 、把一个多项式转化成几个整式积的形式,符合题意;B 、右边不是整式积的形式,不符合题意;C 、是整式的乘法,不是因式分解,不符合题意;D 、是整式的乘法,不是因式分解,不符合题意;故选:A .本题考查了因式分解的意义,掌握因式分解的意义是解题关键.17.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.18.已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( )A .﹣2B .﹣1C .1D .2【答案】C【解析】【分析】先将前两项提公因式,然后把a ﹣b =1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a 3﹣a 2b +b 2﹣2ab =a 2(a ﹣b )+b 2﹣2ab =a 2+b 2﹣2ab =(a ﹣b )2=1.故选C .【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.19.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【解析】【分析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式. 故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.20.下列因式分解正确的是( )A .()22121x x x x ++=++B .()222x y x y -=-C .()1xy x x y -=-D .()22211x x x +-=- 【答案】C【解析】【分析】根据平方差公式,提公因式法分解因式,完全平方公式,对各选项逐一分析判断即可得答案.【详解】A.x 2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,B.x 2-y 2=(x+y)(x-y),故该选项因式分解错误,不符合题意,C.xy-x=x(y-1),故该选项正确,符合题意,D.x 2+2x-1不能因式分解,故该选项因式分解错误,不符合题意,故选:C .【点睛】本题考查因式分解,因式分解首先看是否有公因式,如果有先提取公因式,然后再利用公式法或十字相乘法进行分解,要分解到不能再分解为止.。
第四讲 因式分解【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是 运算,即:多项式 整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (2013•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= . 思路分析:将(x+5)(x+n )展开,得到,使得x 2+(n+5)x+5n 与x 2+mx+5的系数对应相等即可.解:∵(x+5)(x+n )=x 2+(n+5)x+5n ,∴x 2+mx+5=x 2+(n+5)x+5n∴555n m n +=⎧⎨=⎩,∴16n m =⎧⎨=⎩, 故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可.对应训练1.(2013•河北)下列等式从左到右的变形,属于因式分解的是( )( ) ( )A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)1.D考点二:因式分解例2 (2013•无锡)分解因式:2x2-4x= .思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.解:2x2-4x=2x(x-2).故答案为:2x(x-2).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (2013•南昌)下列因式分解正确的是()A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解:A、x2-xy+x=x(x-y+1),故此选项错误;B、a3-2a2b+ab2=a(a-b)2,故此选项正确;C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;D、ax2-9,无法因式分解,故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.例4 (2013•湖州)因式分解:mx2-my2.思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,=m(x2-y2),=m(x+y)(x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(2013•温州)因式分解:m2-5m= .2.m(m-5)3.(2013•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)23.B4.(2013•北京)分解因式:ab2-4ab+4a= .4.a(b-2)2考点三:因式分解的应用例5 (2013•宝应县一模)已知a+b=2,则a2-b2+4b的值为.思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.故答案为:4.点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b 的形式是求解本题的关键,同时还隐含了整体代入的数学思想.对应训练 5.(2013•鹰潭模拟)已知ab=2,a-b=3,则a 3b-2a 2b 2+ab 3= .5.18【聚焦山东中考】7.2(31)3x --8.(2013•菏泽)分解因式:3a 2-12ab+12b 2= .8.3(a-2b )2【备考真题过关】一、选择题1.(2013•张家界)下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x-1C .x 2-1D .x 2-6x+91.D2.(2013•佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1)2.C3.(2013•恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )23.C二、填空题4.(2013•自贡)多项式ax 2-a 与多项式x 2-2x+1的公因式是 .4.x-15.(2013•太原)分解因式:a 2-2a= .5.a (a-2)6.(2013•广州)分解因式:x 2+xy= .6.x (x+y )7.(2013•盐城)因式分解:a 2-9= .7.(a+3)(a-3)8.(2013•厦门)x2-4x+4=()2.8.x-29.(2013•绍兴)分解因式:x2-y2= .9.(x+y)(x-y)10.(2013•邵阳)因式分解:x2-9y2= .11.(x+3y)(x-3y)12.(2013•南充)分解因式:x2-4(x-1)= .12.(x-2)213.(2013•遵义)分解因式:x3-x= .13.x(x+1)(x-1)14.(2013•舟山)因式分解:ab2-a= .14.a(b+1)(b-1)15.(2013•宜宾)分解因式:am2-4an2= .15.a(m+2n)(m-2n)16.(2013•绵阳)因式分解:x2y4-x4y2= .16.x2y2(y-x)(y+x)17.(2013•内江)若m2-n2=6,且m-n=2,则m+n= .17.318.(2013•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.2419.(2013•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .19.-31。
考点02整式及因式分解一、代数式代数式的书写要注意规范,如乘号“×”用“·”表示或省略不写;分数不要用带分数;除号用分数线表示等.二、整式1.单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数.2.多项式:由几个单项式相加组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项.3.整式:单项式和多项式统称为整式.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项.5.整式的加减:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.6.幂的运算:a m·a n=a m+n;(a m)n=a mn;(ab)n=a n b n;a m÷a n=m na .7.整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:m(a+b+c)=ma+mb+mc.(3)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb.8.乘法公式:(1)平方差公式:22()()a b a b a b +-=-.(2)完全平方公式:222()2a b a ab b ±=±+.9.整式的除法:(1)单项式除以单项式,把系数、同底数的幂分别相除,作为商的因式:对于只在被除式含有的字母,则连同它的指数作为商的因式.(2)多项式除以单项式:先把这个多项式的每一项除以单项式,再把所得的商相加. 三、因式分解1.把一个多项式化成几个因式积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 2.因式分解的基本方法:(1)提取公因式法:()ma mb mc m a b c ++=++. (2)公式法:运用平方差公式:²²()()a b a b a b -=+-. 运用完全平方公式:22²2()a ab b a b ±+=±. 3.分解因式的一般步骤:(1)如果多项式各项有公因式,应先提取公因式; (2)如果各项没有公因式,可以尝试使用公式法:为两项时,考虑平方差公式; 为三项时,考虑完全平方公式;为四项时,考虑利用分组的方法进行分解;(3)检查分解因式是否彻底,必须分解到每一个多项式都不能再分解为止. 以上步骤可以概括为“一提二套三检查”.考向一代数式及相关问题1.用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.2.用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.典例1某商品进价为每件x 元,销售商先以高出进价50%销售,因库存积压又降价20%出售,则现在的售价为元.A .()()150%120%x ++B .()150%20%x +⋅C .()()150%120%x +-D .()150%20%x +-【答案】C【解析】根据题意:销售商先以高出进价50%销售后的售价为:()150%x +,然后又降价20%出售,此时的售价为:()()150%120%x +-.故选C.【名师点睛】此题考查的是列代数式,解决此题的关键是找到各个量之间的关系,列代数式.1.(2019•海南)当m =–1时,代数式2m +3的值是 A .–1 B .0C .1D .22.下列式子中,符合代数式书写格式的是 A .a c ÷ B .5a ⨯C .2n mD .112x考向二整式及其相关概念单项式与多项式统称整式.观察判断法:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同.多项式的次数是指次数最高的项的次数.同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同.考虑特殊性:单独一个数或字母也是单项式;单项式的次数是指单项式中所有字母指数的和,单独的一个常数的次数是0.典例2下列说法中正确的是A .25xy -的系数是–5 B .单项式x 的系数为1,次数为0C .222xyz -的次数是6D .xy +x –1是二次三项式 【答案】D【解析】A.25xy -的系数是–15,则A 错误;B.单项式x 的系数为1,次数为1,则B 错误;C.222xyz -的次数是1+1+2=4,则C 错误;D.xy +x –1是二次三项式,正确,故选D.3.按某种标准把多项式分类,334x -与2221a b ab +-属于同一类,则下列多项式中也属于这一类的是 A .1abc - B .53x y -+ C .22x x +D .222a ab b -+4.下列说法正确的是 A .2a 2b 与﹣2b 2a 的和为0B .223a πb 的系数是23π,次数是4次 C .2x 2y ﹣3y 2﹣1是三次三项式D 2y 3与﹣3213x y 是同类项 考向三规律探索题解决规律探索型问题的策略是:通过对所给的一组(或一串)式子及结论,进行全面细致地观察、分析、比较,从中发现其变化规律,并由此猜想出一般性的结论,然后再给出合理的证明或加以应用.典例3(2019•十堰)一列数按某规律排列如下:11212312341213214321,,,,,,,,,,…,若第n 个数为57,则n = A .50 B .60 C .62D .71【答案】B【解析】11212312341213214321,,,,,,,,,,…,可写为:1121231234()()()1213214321,,,,,,,,,,…,∴分母为11开头到分母为1的数有11个,分别为1234566789101111109877554321,,,,,,,,,,,,∴第n 个数为57,则n =1+2+3+4+…+10+5=60,故选B .【名师点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.5.(2019•武汉)观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,…,已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a ,用含a 的式子表示这组数的和是 A .2a 2-2a B .2a 2-2a -2 C .2a 2-aD .2a 2+a6.(2019•滨州)观察下列一组数:a 1=13,a 2=35,a 3=69,a 4=1017,a 5=1533,…, 它们是按一定规律排列的,请利用其中规律,写出第n 个数a n =__________.(用含n 的式子表示)典例4如图,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?【答案】(1)18,22;(2)4n+2;(3)102.【解析】(1)∵第一个“上”字需用棋子4×1+2=6枚;第二个“上”字需用棋子4×2+2=10枚;第三个“上”字需用棋子4×3+2=14枚;∴第四个“上”字需用棋子4×4+2=18枚,第五个“上”字需用棋子4×5+2=22枚,故答案为:18,22;(2)由(1)中规律可知,第n个“上”字需用棋子4n+2枚,故答案为:4n+2;(3)根据题意,得:4n+2=102,解得n=25,答:第25个“上”字共有102枚棋子.7.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为A.672 B.673C.674 D.6758.如图,图案均是用长度相等的小木棒,按一定规律拼搭而成,第一个图案需4根小木棒,则第6个图案需小木棒的根数是A.54 B.63C.74 D.84考向四幂的运算幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;在运算的过程中,一定要注意指数、系数和符号的处理.典例5下列运算错误的是 A .(m 2)3=m 6 B .a 10÷a 9=aC .x 3·x 5=x 8D .a 4+a 3=a 7【答案】D【解析】A 、(m 2)3=m 6,故此选项正确,不符合题意; B 、a 10÷a 9=a ,故此选项正确,不符合题意; C 、x 3·x 5=x 8,故此选项正确,不符合题意;D 、a 4和a 3不是同类项不能合并,故此选项错误,符合题意. 故选D .【名师点睛】本题考查了幂的乘方、同底数幂的乘法和除法法则,熟记法则是解决此题的关键,注意此题是选择错误的,不用误选.9.下列计算中,结果是a 7的是 A .a 3–a 4 B .a 3·a 4C .a 3+a 4D .a 3÷a 410.阅读下面的材料,并回答后面的问题材料:由乘方的意义,我们可以得到2351010(1010)(101010)101010101010⨯=⨯⨯⨯⨯=⨯⨯⨯⨯=, 347(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)-⨯-=-⨯-⨯-⨯-⨯-⨯-⨯-=-.于是,就得到同底数幂乘法的运算性质:问题:(1)计算:①4611()()22-⨯-;②233(3)⨯-.(2)将33332222+++写成底数是2的幂的形式;(3)若252018()()()()p x y x y x y x y -•-•-=-,求p 的值.考向五整式的运算整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项.典例6 已知a ﹣b =5,c +d =﹣3,则(b +c )﹣(a ﹣d )的值为 A .2 B .﹣2 C .8D .﹣8【答案】D【解析】根据题意可得:(b +c )﹣(a ﹣d )=(c +d )﹣(a ﹣b )=﹣3﹣5=﹣8,故选D .11.一个长方形的周长为68a b +,相邻的两边中一边长为23a b +,则另一边长为A . 45a b +B .a b +C . 2a b +D .7a b +12.已知213x a b 与15y ab 的和是815x y a b ,则x y -等于 A .–1 B .1 C .–2D .2典例7 若(x +2)(x –1)=x 2+mx –2,则m 的值为 A .3 B .–3C .1D .–1【答案】C【解析】因为(x +2)(x –1)=x 2–x +2x –2=x 2+x –2=x 2+mx –2,所以m =1,故选C .13.已知(x+3)(x2+ax+b)的积中不含有x的二次项和一次项,求a,b的值.考向六因式分解因式分解的概念与方法步骤①看清形式:因式分解与整式乘法是互逆运算.符合因式分解的等式左边是多项式,右边是整式乘积的形式.②方法:(1)提取公因式法;(2)运用公式法.③因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.一“提”(取公因式),二“用”(公式).要熟记公式的特点,两项式时考虑平方差公式,三项式时考虑完全平方公式.典例8下列从左边到右边的变形,属于因式分解的是A.(x+1)(x–1)=x2–1 B.x2–2x+1=x(x–2)+1C.x2–4y2=(x–2y)2D.x2+2x+1=(x+1)2【答案】D【解析】A、右边不是积的形式,故本选项错误;B、右边不是积的形式,故本选项错误;C、x2–4y2=(x+2y)(x–2y),故本项错误;D、是因式分解,故本选项正确.故选D.14.下列因式分解正确的是A .x 2–9=(x +9)(x –9)B .9x 2–4y 2=(9x +4y )(9x –4y )C .x 2–x +14=(x −14)2 D .–x 2–4xy –4y 2=–(x +2y )2典例9把多项式x 2﹣6x +9分解因式,结果正确的是 A .(x ﹣3)2B .(x ﹣9)2C .(x +3)(x ﹣3)D .(x +9)(x ﹣9)【答案】A【解析】x 2﹣6x +9=(x ﹣3)2,故选A .15.分解因式:()2224a a +--=_________________.16.已知a ﹣b =1,则a 3﹣a 2b +b 2﹣2ab 的值为A .﹣2B .﹣1C .1D .21.已知长方形周长为20cm ,设长为x cm ,则宽为 A .20x - B .202x- C .202x -D .10x -2.已知3a ﹣2b =1,则代数式5﹣6a +4b 的值是 A .4 B .3 C .﹣1D .﹣33.在0,﹣1,﹣x ,13a ,3﹣x ,12x -,1x中,是单项式的有A .1个B .2个C .3个D .4个4.若多项式()2215134mx y m y -+-是三次三项式,则m 等于 A .-1 B .0 C .1D .25.如果2x 3m y 4与–3x 9y 2n 是同类项,那么m 、n 的值分别为 A .m =–3,n =2 B .m =3,n =2 C .m =–2,n =3D .m =2,n =36.下列算式的运算结果正确的是 A .m 3•m 2=m 6B .m 5÷m 3=m 2(m ≠0)C .(m −2)3=m −5D .m 4﹣m 2=m 27.计算(﹣ab 2)3的结果是 A .﹣3ab 2 B .a 3b 6 C .﹣a 3b 5D .﹣a 3b 68.已知x +y =–1,则代数式2019–x –y 的值是 A .2018 B .2019C .2020D .20219.三种不同类型的纸板的长宽如图所示,其中A 类和C 类是正方形,B 类是长方形,现A 类有1块,B 类有4块,C 类有5块.如果用这些纸板拼成一个正方形,发现多出其中1块纸板,那么拼成的正方形的边长是A .m +nB .2m +2nC .2m +nD .m +2n10.把多项式ax 3-2ax 2+ax 分解因式,结果正确的是A .ax (x 2-2x )B .ax 2(x -2)C .ax (x +1)(x -1)D .ax (x -1)211.观察下图“”形中各数之间的规律,根据观察到的规律得出n 的值为A .241B .113C .143D .27112.如图,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.若前m 个格子中所填整数之和是1684,则m 的值可以是…A .1015B .1010C .1012D .101813.若229a kab b +-是完全平方式,则常数k 的值为 A .±6 B .12 C .±2D .614.若有理数a ,b 满足225a b +=,2()9a b +=,则4ab -的值为A .2B .–2C .8D .–815.下列说法中,正确的个数为①倒数等于它本身的数有0,±1;②绝对值等于它本身的数是正数;③–32a 2b 3c 是五次单项式;④2πr 的系数是2,次数是2;⑤a 2b 2–2a +3是四次三项式;⑥2ab 2与3ba 2是同类项. A .4 B .3 C .2D .116.按照如图所示的计算机程序计算,若开始输入的x 值为2,第一次得到的结果为1,第二次得到的结果为4,…第2017次得到的结果为A .1B .2C .3D .417.已知单项式1312a x y --与23b xy -是同类项,那么a b -的值是___________. 18.分解因式:3x 3﹣27x =__________.19.某种商品的票价为x 元,如果按标价的六折出售还可以盈利20元,那么这种商品的进价为__________元(用含x 的代数式表示).20.下面是按一定规律排列的代数式:a 2、3a 4、5a 6、7a 8、…,则第10个代数式是__________. 21.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n 幅图中有2019个菱形,那么n =__________.22.观察下列等式:第1个等式:a 1=11111323⎛⎫=⨯- ⎪⨯⎝⎭; 第2个等式:a 2=111135235⎛⎫=⨯- ⎪⨯⎝⎭; 第3个等式:a 3=111157257⎛⎫=⨯- ⎪⨯⎝⎭; …请按以上规律解答下列问题:(1)列出第5个等式:a 5=_____________; (2)求a 1+a 2+a 3+…+a n =4999,那么n 的值为______________.23.已知1a =,求代数式223a a -+的值.24.已知2210x x +-=,求432441x x x ++-的值.25.如图,在一块长为a ,宽为2b 的长方形铁皮中,以2b 为直径分别剪掉两个半圆.(1)求剩下的铁皮的面积(用含a ,b 的式子表示); (2)当a =4,b =1时,求剩下的铁皮的面积是多少(π取3).26.已知:2277A B a ab -=-,且2467B a ab =-++.(1)求A 等于多少;(2)若21(2)0a b ++-=,求A 的值.27.定义新运算:对于任意数a ,b ,都有a ⊕b =(a ﹣b )(a 2+ab +b 2)+b 3,等式右边是通常的加法、减法、乘法及乘方运算,比如5⊕2=(5﹣2)(52+5×2+22)+23=3×39+8= 117+8=125.(1)求3⊕(﹣2)的值;(2)化简(a ﹣b )(a 2+ab +b 2)+b 3.28.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4=__________.(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC的形状,并说明理由.1.(2019•锦州)下列运算正确的是A.x6÷x3=x2B.(-x3)2=x6C.4x3+3x3=7x6D.(x+y)2=x2+y22.(2019•上海)下列运算正确的是A.3x+2x=5x2B.3x-2x=xC.3x·2x=6x D.3x÷2x2 33.(2019•滨州)若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为A.4 B.8C.±4 D.±8 4.(2019•毕节市)如果3ab2m-1与9ab m+1是同类项,那么m等于A.2 B.1C.-1 D.0 5.(2019•海南)当m=-1时,代数式2m+3的值是A.-1 B.0C.1 D.2 6.(2019•台州)计算2a-3a,结果正确的是A.-1 B.1C.-a D.a 7.(2019•怀化)单项式-5ab的系数是A.5 B.-5C.2 D.-28.(2019•黄石)化简13(9x-3)-2(x+1)的结果是A.2x-2 B.x+1C.5x+3 D.x-39.(2019•连云港)计算下列代数式,结果为x5的是A.x2+x3B.x·x5C.x6-x D.2x5-x510.(2019•眉山)下列运算正确的是A.2x2y+3xy=5x3y2B.(-2ab2)3=-6a3b6C.(3a+b)2=9a2+b2D.(3a+b)(3a-b)=9a2-b2 11.(2019•绥化)下列因式分解正确的是A.x2-x=x(x+1)B.a2-3a-4=(a+4)(a-1)C.a2+2ab-b2=(a-b)2D.x2-y2=(x+y)(x-y)12.(2019•湘西州)因式分解:ab-7a=__________.13.(2019•常德)若x2+x=1,则3x4+3x3+3x+1的值为__________.14.(2019•南京)分解因式(a-b)2+4ab的结果是__________.15.(2019•赤峰)因式分解:x3-2x2y+xy2=__________.16.(2019•绥化)计算:(-m3)2÷m4=__________.17.(2019•湘潭)若a+b=5,a-b=3,则a2-b2=__________.18.(2019•乐山)若3m=9n=2.则3m+2n=__________.19.(2019•怀化)合并同类项:4a2+6a2-a2=__________.20.(2019•绵阳)单项式x-|a-1|y与2是同类项,则a b=__________.21.(2019•兰州)化简:a(1-2a)+2(a+1)(a-1).22.(2019•凉山州)先化简,再求值:(a+3)2-(a+1)(a-1)-2(2a+4),其中a12 =-.23.(2019•安徽)观察以下等式:第1个等式:211 111 =+,第2个等式:211 326 =+,第3个等式:211 5315 =+,第4个等式:211 7428 =+,第5个等式:211 9545 =+,……按照以上规律,解决下列问题:(1)写出第6个等式:__________;(2)写出你猜想的第n个等式:__________(用含n的等式表示),并证明.24.(2019•自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①,则2S=2+22+…+22018+22019②,②-①得2S-S=S=22019-1,∴S=1+2+22+…+22017+22018=22019-1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=__________;(2)3+32+…+310=__________;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).1.【答案】C【解析】把m =–1代入代数式2m +3中,得2m +3=2×(–1)+3=1.故选C . 2.【答案】C【解析】A .正确的格式为:ac,即A 项不合题意, B .正确的格式为:5a ,即B 项不合题意, C .符合代数式的书写格式,即C 项符合题意, D .正确的格式为:32x ,即D 项不合题意, 故选C .【名师点睛】本题考查了代数式,正确掌握代数式的书写格式是解题的关键. 3.【答案】A【解析】334x -与2221a b ab +-都是三次多项式,只有A 是三次多项式,故选A . 4.【答案】C【解析】A 、2a 2b 与-2b 2a 不是同类项,不能合并,此选项错误; B 、23πa 2b 的系数是23π,次数是3次,此选项错误; C 、2x 2y -3y 2-1是三次三项式,此选项正确; D 2y 3与﹣3213x y 不是同类项,此选项错误; 故选C . 5.【答案】C【解析】∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;… ∴2+22+23+…+2n =2n +1-2,∴250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249)=(2101-2)-(250-2)=2101-250, ∵250=a ,∴2101=(250)2·2=2a 2,∴原式=2a 2-a .故选C .【名师点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n +1-2. 6.【答案】1(1)22n n n +++ 【解析】观察分母,3,5,9,17,33,…,可知规律为2n +1, 观察分子的,1,3,6,10,15,…,可知规律为(1)2n n +, ∴a n =1(1)(1)22122n n n n n n +++=++,故答案为:1(1)22n n n +++. 【名师点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键. 7.【答案】A【解析】当有1个黑色纸片时,有4个白色纸片; 当有2个黑色纸片时,有437+=个白色纸片; 当有3个黑色纸片时,有43310++=个白色纸片; 以此类推,当有n 个黑色纸片时,有()431n +-个白色纸片. 当()4312017n +-=时,化简得32016n =,解得672n =.故选A. 故选C . 8.【答案】A【解析】拼搭第1个图案需4=1×(1+3)根小木棒, 拼搭第2个图案需10=2×(2+3)根小木棒, 拼搭第3个图案需18=3×(3+3)根小木棒, 拼搭第4个图案需28=4×(4+3)根小木棒, …拼搭第n 个图案需小木棒n (n +3)=n 2+3n 根. 当n =6时,n 2+3n =62+3×6=54. 故选A.【名师点睛】本题考查图形的变化规律,找出图形之间的关系,得出数字之间的运算规律,利用规律解决问题. 9.【答案】B【解析】A 、不是同类项不能合并,故此选项错误; B 、a 3·a 4=a 3+4=a 7,故此选项正确;C 、不是同类项不能合并,故此选项错误;D 、a 3÷a 4=a 3–4=a –1=1a ,故此选项错误. 故选B .【名师点睛】本题考查了同底数幂的乘法和除法法则,熟记法则是解决此题的关键. 10.【解析】(1)①4646101011111()()()()()22222+-⨯-=-=-=; ②23232353(3)3333+⨯-=-⨯=-=-;(2)33333325222224222+++=⨯=⨯=;(3)∵252018()()()()p x y x y x y x y -⋅-⋅-=-,∴2+p +5=2018,解得:p =2011.【名师点睛】本题主要考查的是同底数幂的乘法,正确理解材料中同底数幂乘法的运算性质是解题的关键.11.【答案】B【解析】∵长方形的周长为68a b +,∴相邻的两边的和是34a b +,∵一边长为23a b +,∴另一边长为342334()23a b a b a b a b a b +-+=+--=+,故选B.【名师点睛】由长方形的周长=(长+宽)×2,可求出相邻的两边的和是3a +4b ,再用3a +4b 减去2a +3b ,即可求出另一边的长.12.【答案】A 【解析】∵213x a b 与15y ab 的和是815x y a b ,∴213x a b 与15y ab 是同类项,∴1,2x y ==, ∴121x y -=-=-.故选A.13.【解析】原式=x 3+ax 2+bx +3x 2+3ax +3b =x 3+ax 2+3x 2+3ax +bx +3b=x 3+(a +3)x 2+(3a +b )x +3b ,由题意可知:a +3=0,3a +b =0,解得a =–3,b =9.14.【答案】D15.【答案】(a +4)(a -2)【解析】()2224a a +--=228(4)2()a a a a +-=+-. 16.【答案】C【解析】a 3﹣a 2b +b 2﹣2ab =a 2(a ﹣b )+b 2﹣2ab =a 2+b 2﹣2ab =(a ﹣b )2=1.故选C .1.【答案】D【解析】∵矩形的宽=2矩形周长−长,∴宽为:(10-x )cm .故选D . 2.【答案】B【解析】∵3a ﹣2b =1,∴5﹣6a +4b =5﹣2(3a ﹣2b )=5﹣2×1=3, 故选:B .3.【答案】D 【解析】根据单项式的定义可知,只有代数式0,﹣1,﹣x,13a,是单项式,一共有4个.故选D. 4.【答案】C【解析】由题意可得,()123,104m m +=-+≠,解得1m =±且1m ≠-. 则m 等于1,故选C .5.【答案】B【解析】∵2x 3m y 4与–3x 9y 2n 是同类项,∴3m=9,4=2n,∴m=3,n=2.故选:B.6.【答案】B【解析】A、m3•m2=m5,故此选项错误;B、m5÷m3=m2(m≠0),故此选项正确;C、(m−2)3=m−6,故此选项错误;D、m4-m2,无法计算,故此选项错误;故选:B.7.【答案】D【解析】(﹣ab2)3=﹣a3b6,故选:D.8.【答案】C【解析】∵–x–y=–(x+y),∴2019–x–y=2019–(x+y)=2019–(–1)=2020,故选C.【名师点睛】此题考查代数式求值,难度不大.9.【答案】D【解析】∵所求的正方形的面积等于一张正方形A类卡片、4张正方形B类卡片和4张长方形C 类卡片的和,∴所求正方形的面积=m2+4mn+4n2=(m+2n)2,∴所求正方形的边长为m+2n.故选:D.10.【答案】D【解析】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故选:D.11.【答案】A【解析】∵15=2×8﹣1,∴m=28=256,则n=256﹣15=241,故选A.【名师点睛】本题主要考查数字的变化类,解题的关键是得出第n个图形中最上方的数字为2n ﹣1,左下数字为2n,右下数字为2n﹣(2n﹣1).12.【答案】B【解析】由题意可知:9+a+b=a+b+c,∴c=9.∵9-5+1=5,1684÷5=336…4,且9-5=4,∴m=336×3+2=1010.故选:B.13.【答案】A【解析】由完全平方公式可得:236kab a b k -=±⨯=±,.故选A.【名师点睛】做此类问题的重点在于判断完全平方式的结构特点.14.【答案】D【解析】由()²9a b +=,得²²29a b ab ++=,又²²5a b +=,则2954ab =-=,所以(2)448ab -=⨯-=-.故选D.15.【答案】D【解析】①倒数等于它本身的数有±1,故①错误, ②绝对值等于它本身的数是非负数,故②错误, ③2332a b c -是六次单项式,故③错误, ④2πr 的系数是2π,次数是1,故④错误,⑤2223a b a -+是四次三项式,故⑤正确,⑥22ab 与23ba 不是同类项,故⑥错误.故选D.【名师点睛】单项式中的数字因数就是单项式的系数,所有字母的指数的和就是多项式的次数. 16.【答案】A【解析】当x =2时,第一次输出结果=12×2=1;第二次输出结果=1+3=4;第三次输出结果=4×12=2,; 第四次输出结果=12×2=1, …2017÷3=672…1.所以第2017次得到的结果为1.故选A .17.【答案】3 【解析】∵1312a x y --与23b xy -是同类项, ∴1132a b -=⎧⎨=-⎩,解得21 ab=⎧⎨=-⎩,∴a b-=3.故答案为3.18.【答案】3x(x+3)(x﹣3)【解析】3x3﹣27x=3x(x2﹣9)=3x(x+3)(x﹣3).【名师点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.【答案】0.6x–20【解析】根据题意进价为:0.6x–20.故答案为0.6x–20.【名师点睛】此题考查列代数式,难度不大.20.【答案】19a20【解析】∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第10个代数式是:(2×10﹣1)a2×10=19a20.故答案为:19a20.【名师点睛】此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键.21.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个.第3幅图中有2×3﹣1=5个.第4幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n﹣1)个.当图中有2019个菱形时,2n﹣1=2019,解得n=1010,故答案为:1010.【名师点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.22.【答案】11119112911⎛⎫=⨯- ⎪⨯⎝⎭,49 【解析】(1)观察等式,可得以下规律:()()1111212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭, ∴51111.9112911a ⎛⎫==⨯- ⎪⨯⎝⎭ (2)1231111111111112323525722121n a a a a n n ⎛⎫⎛⎫⎛⎫⎛⎫+++⋯+=⨯-+⨯-+⨯-++- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭ 1149122199n ⎛⎫=-= ⎪+⎝⎭, 解得:n =49.故答案为(1)11119112911⎛⎫=⨯- ⎪⨯⎝⎭;(2)49. 23.【解析】223a a -+=221a a -++2=(a −1)2+2当a 时,原式=2+2=2+2=2+2=4.24.【解析】由已知,得221x x +=,则432441x x x ++-=222241x x x x ++-()=2241x x +-=2221x +-()=2–1=1.【名师点睛】本题考查了因式分解的应用:利用因式分解解决证明问题.用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.25.【解析】(1)长方形的面积为:a ×2b =2ab ,两个半圆的面积为:π×b 2=πb 2,∴阴影部分面积为:2ab –πb 2.(2)当a =4,b =1时,∴2ab –πb 2=2×4×1–3×1=5.【名师点睛】本题考查列代数式,涉及代入求值,有理数运算等知识,解题的关键是根据题意正确列出代数式.26.【解析】(1)∵2277A B a ab -=-,2 467B a ab =-++,∴()222246777A B A a ab a ab -=--++=-,∴()()22227724677781214A a ab a ab a ab a ab =-+-++=--++ 2514a ab =-++.(2)依题意得:10a +=,20b -=,∴1a =-,2b =.∴22514(1)5(1)2143A a ab =-++=--+⨯-⨯+=.【名师点睛】考查了整式的化简求值、非负数的性质、绝对值、平方根的知识.整式的加减运算实际上就是去括号、合并同类项.27.【解析】(1)3⊕(﹣2)=(3+2)×[32+3×(﹣2)+(﹣2)2]+(﹣2)3=5×7﹣8=27.(2)(a ﹣b )(a 2+ab +b 2)+b 3=a 3+a 2b +ab 2﹣a 2b ﹣ab 2﹣b 3+b 3=a 3.【名师点睛】此题考查有理数的混合运算,掌握运算法则是解题关键.28.【解析】(1)2244(2)a a a -+=-,故答案为:2(2)a -; (2)2226100a a b b ++-+=,22(1)(3)0a b ∴++-=,1a ∴=-,3b =,2a b ∴+=;(3)ABC△为等边三角形.理由如下:222426240a b c ab b c++---+=,222()(1)3(1)0a b c b∴-+-+-=,a b∴-=,10c-=,10b-=1a b c∴===,ABC∴△为等边三角形.【名师点睛】本题考查配方法的运用,非负数的性质,完全平方公式,等边三角形的判定.解题的关键是构建完全平方式,根据非负数的性质解题.1.【答案】B【解析】∵x6÷x3=x3,∴选项A不符合题意;∵(-x3)2=x6,∴选项B符合题意;∵4x3+3x3=7x3,∴选项C不符合题意;∵(x+y)2=x2+2xy+y2,∴选项D不符合题意.故选B.【名师点睛】此题主要考查了同底数幂的除法的运算方法,幂的乘方与积的乘方的运算方法,合并同类项的方法,以及完全平方公式的应用,要熟练掌握.2.【答案】B【解析】A.原式=5x,故A错误;C.原式=6x2,故C错误;D.原式32=,故D错误,故选B.【名师点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.【答案】D【解析】由8x m y与6x3y n的和是单项式,得m=3,n=1.(m+n)3=(3+1)3=64,64的平方根为±8.故选D.【名师点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.【答案】A【解析】根据题意可得:2m-1=m+1,解得m=2,故选A.【名师点睛】此题考查同类项问题,关键是根据同类项的定义得出m的方程.5.【答案】C【解析】将m=-1代入2m+3=2×(-1)+3=1,故选C.【名师点睛】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.6.【答案】C【解析】2a-3a=-a,故选C.【名师点睛】本题考查了合并同类项法则的应用,能熟记合并同类项法则的内容是解此题的关键.7.【答案】B【解析】单项式-5ab的系数是-5,故选B.【名师点睛】本题考查单项式,注意单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.8.【答案】D【解析】原式=3x-1-2x-2=x-3,故选D.【名师点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.【答案】D【解析】A、x2与x3不是同类项,故不能合并同类项,故选项A不合题意;B、x·x5=x6,故选项B不合题意;C、x6与x不是同类项,故不能合并同类项,故选项C不合题意;D、2x5-x5=x5,故选项D符合题意.故选D.【名师点睛】本题主要考查了合并同类项的法则:系数下降减,字母以及其指数不变.10.【答案】D【解析】A.2x2y和3xy不是同类项,故不能合并,故选项A不合题意;B.(-2ab2)3=-8a3b6,故选项B不合题意;C.(3a+b)2=9a2+6ab+b2,故选项C不合题意;D.(3a+b)(3a-b)=9a2-b2,故选项D符合题意.故选D.【名师点睛】本题主要考查了合并同类项的法则、幂的运算性质以及乘法公式,熟练掌握相关公式是解答本题的关键.11.【答案】D【解析】A、原式=x(x-1),错误;B、原式=(a-4)(a+1),错误;C、a2+2ab-b2,不能分解因式,错误;D、原式=(x+y)(x-y),正确.故选D.【名师点睛】此题考查了提公因式法、十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】a(b-7)【解析】原式=a(b-7),故答案为:a(b-7).【名师点睛】此题主要考查了提公因式法分解因式,关键是正确找出公因式.13.【答案】4【解析】∵x2+x=1,∴3x4+3x3+3x+1=3x2(x2+x)+3x+1=3x2+3x+1=3(x2+x)+1=3+1=4,故答案为:4.【名师点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.14.【答案】(a+b)2【解析】(a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2.故答案为:(a+b)2.【名师点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.15.【答案】x(x-y)2【解析】原式=x(x2-2xy+y2)=x(x-y)2,故答案为:x(x-y)2.【名师点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.【答案】m2【解析】(-m3)2÷m4=m6÷m4=m2.故答案为:m2.【名师点睛】此题主要考查了积的乘方运算以及整式的除法运算,正确掌握相关运算法则是解题关键.17.【答案】15【解析】∵a+b=5,a-b=3,∴a2-b2=(a+b)(a-b)=5×3=15,故答案为:15.【名师点睛】本题考查了平方差公式,能够正确分解因式是解此题的关键.18.【答案】4【解析】∵3m=32n=2,∴3m+2n=3m·32n=2×2=4,故答案为:4.【名师点睛】此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.19.【答案】9a2【解析】原式=a2(4+6-1)=9a2,故答案为:9a2.【名师点睛】本题考查合并同类项,合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.20.【答案】1【解析】由题意知-|a -1|=≥0,∴a =1,b =1,则a b =(1)1=1,故答案为:1.【名师点睛】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.21.【解析】原式=a -2a 2+2(a 2-1)=a -2a 2+2a 2-2=a -2.【名师点睛】本题主要考查平方差公式及单项式的乘法,熟练运用公式及运算规则是解题的关键.22.【解析】原式=a 2+6a +9-(a 2-1)-4a -8=2a +2.将a 12=-代入原式=2×(12-)+2=1. 【名师点睛】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变.23.【解析】(1)第6个等式为:21111666=+,故答案为:21111666=+. (2)21121(21)n n n n =+--, 证明:∵右边=112112(21)(21)21n n n n n n n -++==---=左边. ∴等式成立, 故答案为:21121(21)n n n n =+--. 【名师点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出21121(21)n n n n =+--的规律,并熟练加以运用.24.【解析】(1)设S=1+2+22+…+29①,则2S=2+22+…+210②,②-①得2S-S=S=210-1,∴S=1+2+22+…+29=210-1,故答案为:210-1.(2)设S=3+3+32+33+34+…+310①,则3S=32+33+34+35+…+311②,②-①得2S=311-1,所以S=1131 2-,即3+32+33+34+ (310)1131 2-,故答案为:1131 2-.(3)设S=1+a+a2+a3+a4+…+a n①,则aS=a+a2+a3+a4+…+a n+a n+1②,②-①得:(a-1)S=a n+1-1,a=1时,不能直接除以a-1,此时原式等于n+1,a不等于1时,a-1才能做分母,所以S=111naa+--,即1+a+a2+a3+a4+…+a n=111naa+--.【名师点睛】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.。
2020-2021初中数学因式分解知识点总复习附解析(2)一、选择题1.下列运算结果正确的是( )A .321x x -=B .32x x x ÷=C .326x x x ⋅=D .222()x y x y +=+【答案】B【解析】【分析】根据合并同类项法则、同底数幂乘除法法则、公式法分解因式逐项进行计算即可得.【详解】A 、3x ﹣2x =x ,故A 选项错误;B 、x 3÷x 2=x ,正确;C 、x 3•x 2=x 5,故C 选项错误;D 、x 2+2xy+y 2=(x+y)2,故D 选项错误,故选B.【点睛】本题考查了合并同类项、同底数幂乘除、公式法分解因式,熟练掌握相关的运算法则以及完全平方公式的结构特征是解题的关键.2.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+B .21x x ++C .21x x --D .21x x +-【答案】B【解析】解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .3.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.4.已知4821-可以被在60~70之间的两个整数整除,则这两个数是( )A .61、63B .61、65C .61、67D .63、65 【答案】D【解析】【分析】由()()()()()()24242412686421212121221121=+-=+++--,多次利用平方差公式化简,可解得.【详解】解:原式()()24242121=+-,()()()()()()()()()24121224126624122121212121212163652121=++-=+++-=⨯⨯++ ∴这两个数是63,65.选D.【点睛】本题考查的是因式分解的应用,熟练掌握平方差公式是解题的关键.5.下列等式从左到右的变形是因式分解的是( )A .2x (x +3)=2x 2+6xB .24xy 2=3x •8y 2C .x 2+2xy +y 2+1=(x +y )2+1D .x 2﹣y 2=(x +y )(x ﹣y )【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6.设a ,b ,c 是ABC V 的三条边,且332222a b a b ab ac bc -=-+-,则这个三角形是(A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a3-b3=a2b-ab2+ac2-bc2,∴a3-b3-a2b+ab2-ac2+bc2=0,(a3-a2b)+(ab2-b3)-(ac2-bc2)=0,a2(a-b)+b2(a-b)-c2(a-b)=0,(a-b)(a2+b2-c2)=0,所以a-b=0或a2+b2-c2=0.所以a=b或a2+b2=c2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.7.下列等式从左边到右边的变形,属于因式分解的是( )A.2ab(a-b)=2a2b-2ab2B.x2+1=x(x+1 x )C.x2-4x+3=(x-2)2-1 D.a2-b2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x是取任意实数,而等式右边的x≠0C.不是因式分解,原式=(x-3)(x-1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.8.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.9.下列各式分解因式正确的是( )A .2112(12)(12)22a a a -=+-B .2224(2)x y x y +=+C .2239(3)x x x -+=-D .222()x y x y -=- 【答案】A【解析】【分析】根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解.【详解】 A. 2112(12)(12)22a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误;C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误;D. ()22()x y x y x y -=-+,故本选项错误. 故选A.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.10.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】 解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B11.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.12.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-【答案】C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】()321a a a a -=-=a (a+1)(a-1),故A 错误; 2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.13.下列各式能用平方差公式分解因式的是( )A .21a +B .20.040.09y --C .22x y +D .22x y -【答案】D【解析】【分析】判断各个选项是否满足平方差的形式,即:22a b -的形式【详解】A 、C 都是22a b +的形式,不符;B 中,变形为:-(20.04+0.09y ),括号内也是22a b +的形式,不符;D 中,满足22a b -的形式,符合故选:D【点睛】本题考查平方差公式,注意在利用乘法公式时,一定要先将式子变形成符合乘法公式的形式,我们才可利用乘法公式简化计算.14.下列等式从左到右的变形,属于因式分解的是A .8a 2b=2a ·4abB .-ab 3-2ab 2-ab=-ab (b 2+2b )C .4x 2+8x-4=4x 12-x x ⎛⎫+ ⎪⎝⎭ D .4my-2=2(2my-1) 【答案】D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、把一个多项式转化成几个整式积的形式,故D 符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.15.下列等式从左到右的变形,属于因式分解的是()A.8x2y3=2x2⋅4 y3B.(x+1)(x﹣1)=x2﹣1C.3x﹣3y﹣1=3(x﹣y)﹣1 D.x2﹣8x+16=(x﹣4)2【答案】D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.16.已知x﹣y=﹣2,xy=3,则x2y﹣xy2的值为()A.2 B.﹣6 C.5 D.﹣3【答案】B【解析】【分析】先题提公因式xy,再用公式法因式分解,最后代入计算即可.【详解】解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,故答案为B.【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.17.若三角形的三边长分别为a、b、c,满足22230-+-=,则这个三角形是a b a c b c b()A.直角三角形B.等边三角形C.锐角三角形D.等腰三角形【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.18.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a 、b 、c 的关系,再确定出△ABC 的形状即可得解.【详解】移项得,a 2c 2−b 2c 2−a 4+b 4=0,c 2(a 2−b 2)−(a 2+b 2)(a 2−b 2)=0,(a 2−b 2)(c 2−a 2−b 2)=0,所以,a 2−b 2=0或c 2−a 2−b 2=0,即a =b 或a 2+b 2=c 2,因此,△ABC 等腰三角形或直角三角形.故选B .【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a 、b 、c 的关系式是解题的关键.19.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.20.把x 2-y 2-2y -1分解因式结果正确的是( ).A .(x +y +1)(x -y -1)B .(x +y -1)(x -y -1)C .(x +y -1)(x +y +1)D .(x -y +1)(x +y +1)【答案】A【解析】【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x 2-(y 2+2y+1),=x 2-(y+1)2,=(x+y+1)(x-y-1).故选A .。
2020-2021初中数学因式分解专项训练及解析答案一、选择题1.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+ 【答案】D【解析】【分析】根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.2.将多项式4x 2+1再加上一项,使它能分解因式成(a+b )2的形式,以下是四位学生所加的项,其中错误的是( )A .2xB .﹣4xC .4x 4D .4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4x 2+1结合,然后判断是否为完全平方式即可得答案.【详解】A 、4x 2+1+2x ,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B 、4x 2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意;C 、4x 2+1+4x 4=(2x 2+1)2,能利用完全平方公式进行因式分解,故不符合题意;D 、4x 2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.3.下列多项式不能使用平方差公式的分解因式是( )A .22m n --B .2216x y -+C .22b a -D .22449a n -【答案】A【解析】【分析】 原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.4.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.5.下列各式中,由等式的左边到右边的变形是因式分解的是( )A .(x +3)(x -3)=x 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab(a +b)D .x 2+1=x 1()x x+ 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没有把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成了几个整式积的形式,故C 正确;D 、没有把一个多项式转化成几个整式积的形式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.6.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.7.已知2021201920102010201020092011x -=⨯⨯,那么x 的值为( )A .2018B .2019C .2020D .2021.【答案】B【解析】【分析】将2021201920102010-进行因式分解为2019201020092011⨯⨯,因为左右两边相等,故可以求出x 得值.【详解】解:2021201920102010- ()()()2019220192019220192019=201020102010=20102010120102010120101201020092011⨯-⨯-=⨯-⨯+=⨯⨯∴2019201020092011201020092011x ⨯⨯=⨯⨯∴x=2019故选:B .【点睛】本题主要考查的是因式分解中提取公因式和平方差公式,正确的掌握因式分解的方法是解题的关键.8.下列等式从左边到右边的变形,属于因式分解的是( )A .2ab(a-b)=2a 2b-2ab 2B .x 2+1=x(x+1x )C .x 2-4x+3=(x-2)2-1D .a 2-b 2=(a+b)(a-b)【答案】D【解析】【分析】 把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x 是取任意实数,而等式右边的x ≠0C.不是因式分解,原式=(x -3)(x -1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.9.下列各式能用平方差公式分解因式的是( )A .21a +B .20.040.09y --C .22x y +D .22x y -【答案】D【解析】【分析】判断各个选项是否满足平方差的形式,即:22a b -的形式【详解】A 、C 都是22a b +的形式,不符;B 中,变形为:-(20.04+0.09y ),括号内也是22a b +的形式,不符;D 中,满足22a b -的形式,符合故选:D【点睛】本题考查平方差公式,注意在利用乘法公式时,一定要先将式子变形成符合乘法公式的形式,我们才可利用乘法公式简化计算.10.不论x ,y 为任何实数,22428x y x y +--+ 的值总是( )A .正数B .负数C .非负数D .非正数【答案】A【解析】x²+y²-4x-2y+8=(x²-4x+4)+(y²-2y+1)+3=(x-2)2+(y-1)2+3≥3,不论x,y 为任何实数,x²+y²-4x-2y+8的值总是大于等于3,故选A.【点睛】本题考查了因式分解的应用,解题的关键是要明确要判断一个算式是正数时总是将其整理成一个完全平方公式加正数的形式.11.下面式子从左边到右边的变形中是因式分解的是( )A .()2212x x x x --=--B .()()22a b a b a b +-=-C .()()2422x x x -=+-D .()2222a b a b ab +=++ 【答案】C【解析】【分析】根据把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解进行分析即可.【详解】A 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.B 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.C 选项:等式右边是乘积的形式,故是因式分解,符合题意.D 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.故选:C.【点睛】考查了因式分解的意义,关键是掌握因式分解的定义(把一个多项式化为几个整式的积的形式).12.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.13.某天数学课上,老师讲了提取公因式分解因式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-12xy 2+6x 2y+3xy=-3xy•(4y-______)横线空格的地方被钢笔水弄污了,你认为横线上应填写( )A .2xB .-2xC .2x-1D .-2x-l【答案】C【解析】【分析】根据题意,提取公因式-3xy ,进行因式分解即可.【详解】解:原式=-3xy×(4y-2x-1),空格中填2x-1.故选:C .【点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,同时要注意提取公因式后各项符号的变化.14.下面的多项式中,能因式分解的是( )A .2m n +B .221m m -+C .2m n -D .21m m -+ 【答案】B【解析】【分析】完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+15.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( )A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.【详解】已知等式变形得:(a+b)(a-b)-c(a-b)=0,即(a-b)(a+b-c)=0,∵a+b-c≠0,∴a-b=0,即a=b,则△ABC为等腰三角形.故选C.【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.16.若x2+mxy+y2是一个完全平方式,则m=()A.2 B.1 C.±1 D.±2【答案】D【解析】根据完全平方公式:(a+b)2=a2+2ab+b2与(a-b)2=a2-2ab+b2可知,要使x2+mxy+y2符合完全平方公式的形式,该式应为:x2+2xy+y2=(x+y)2或x2-2xy+y2=(x-y)2. 对照各项系数可知,系数m的值应为2或-2.故本题应选D.点睛:本题考查完全平方公式的形式,应注意完全平方公式有(a+b)2、(a-b)2两种形式. 考虑本题时要全面,不要漏掉任何一种形式.17.把x2-y2-2y-1分解因式结果正确的是().A.(x+y+1)(x-y-1) B.(x+y-1)(x-y-1)C.(x+y-1)(x+y+1) D.(x-y+1)(x+y+1)【答案】A【解析】【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x2-(y2+2y+1),=x2-(y+1)2,=(x+y+1)(x-y-1).故选A.18.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.19.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【答案】A【解析】【分析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式. 故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.20.下列因式分解正确的是( )A .()22121x x x x ++=++B .()222x y x y -=-C .()1xy x x y -=-D .()22211x x x +-=- 【答案】C【解析】【分析】根据平方差公式,提公因式法分解因式,完全平方公式,对各选项逐一分析判断即可得答案.【详解】A.x 2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,B.x 2-y 2=(x+y)(x-y),故该选项因式分解错误,不符合题意,C.xy-x=x(y-1),故该选项正确,符合题意,D.x 2+2x-1不能因式分解,故该选项因式分解错误,不符合题意,故选:C .【点睛】本题考查因式分解,因式分解首先看是否有公因式,如果有先提取公因式,然后再利用公式法或十字相乘法进行分解,要分解到不能再分解为止.。
2020年广州中考数学整式的乘除和因式分解专题复习(后附答案)一、本章知识结构:幂的运算性质: 同底数幂的乘法幂的乘方积的乘方1. 整式的乘法单项式乘以单项式单项式乘以多项式多项式乘以多项式乘法公式幂的运算性质:同底数幂的除法2.整式的除法单项式除以单项式多项式除以单项式3. 因式分解提公因式法公式法十字相乘法分组分解法二、专题演练:㈠ 幂的运算1、计算下列各式:⑴ 53()x x x ⋅⋅- ⑵ 112(2)(2)(2)n n n x x x -++⋅+-+ ⑶ 41()n n a -⑷ 4223()()y y -⋅ ⑸ 5[()()]x y x y +- ⑹ 2212()m n x y +-⋅2、计算下列各式:⑴ 3244224()4()x x x x x ⋅⋅+-+- ⑵ 825(0.125)2-⨯ ⑶ 12(1990)()3980n n +⋅㈡ 整式的乘法3、计算:⑴ 2(325)(23)x x x ---+ ; ⑵ 22(2)(42)x y x xy y -++;(3)322[2()][3()][()]3a b a b a b ----- ; (4)113(245)n n n n x x x x -++-+㈢ 乘法公式4、计算:⑴ (3)(3)a ab ab a ---+ ⑵98102⨯⑶ 24(12)(12)(14)(116)x x x x -+++ ⑷()()a b c a b c +--+(5)1082 (6)2(1)(1)(1)y y y --+-- (7) 2(23)x y z +-㈣ 整式的除法5、先化简,再求值:42622322[5(4)(3)()](2)a a a a a a ---÷÷-,其中5a =-㈤ 因式分解6、分解因式:⑴ 324(1)2(1)q p p -+- ⑵ 221()()()m m m ab x y a b x y ab x y +-+--- ⑶2a ab ac bc -+- ⑷ 22412925x xy y -+-三、达标检测:1.选择题:(1)下列式子中,正确的是( )A.3x+5y=8xyB.3y 2-y 2=3C.15ab-15ab=0D.29x 3-28x 3=x(2)当a=-1时,代数式(a+1)2+ a(a+3)的值等于( )A.-4B.4C.-2D.2 (3)若-4x 2y 和-2x m y n 是同类项,则m ,n 的值分别是( )A.m=2,n=1B.m=2,n=0C.m=4,n=1D.m=4,n=0(4)化简(-x)3·(-x)2的结果正确的是( )A.-x 6B.x 6C.x 5D.-x 5(5)若x 2+2(m-3)x+16是完全平方式,则m 的值等于( )A.3B.-5C.7.D.7或-12.填空题:(1)化简:a 3·a 2b= ;(2)计算:-4x 2+4x 2= ;(3)按图15-4所示的程序计算,若开始输入的x 值为3,则最后输出的结果是 .3.计算与化简:(1)(-2a 2)(3ab 2-5ab 3); (2)(5x+2y)(3x-2y);(3)(3y+2)(y-4)-3(y-2)(y-3); (4)(-3)2008·(31)2009 ;(5)335264383)()2()(a a a a a a a ÷--++⋅⋅ ; (6)(2m-n+3p )(2m+3p+n)4.解答题:(1)已知212448x x ++=,求x 的值.(2)已知4,6x y x y +=-=,求代数式22()(2)3xy y y y xy x xy +-+-的值.(3)已知一个多项式除以多项式243a a +-,所得商式是2a+1,余式为2a+8,求这个多项式.(4)已知2(8)a pa ++与2(3)a a q -+的乘积中不含有3a 和2a 项,求p 、q 的值.5.因式分解:(1))(2)(82a b b a ---; (2)2222216)4(y x y x -+ ; (3)223363xy y x x +-;(4)4222-+-y xy xy ; (5))(3)(2y x y x +-+ ; (6)x x 4412+--;(7)22221m n +- ; (8)1)3)(1(+--x x ; (9)226416a ax x +-;6.计算:(1)[])4()2)(3()2(2y y x y x y x -÷+--- ; (2)200820052008200620042⨯-⨯⨯ ;(3)[]x x y x y x y x y x 2)2(2)2)(2()2(2÷--+-+- ; (4)[]222)2)(2()2(y y x y x y x -÷-+-+7.已知:51=+a a ,求221aa +的值。
2020年中考数学总复习因式分解专题训练一、单选题1.下列变形是因式分解的是( ) A .22(2)x x x x +=+B .222(1)1x x x +=+-C .22221x x x x ⎛⎫+=+⎪⎝⎭D .22(1)x x x x x +=++2.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形 B .钝角三角形 C .等腰三角形D .等边三角形3.把(a 2+1)2-4a 2分解因式得( ) A .(a 2+1-4a )2 B .(a 2+1+2a )(a 2+1-2a ) C .(a +1)2(a -1)2D .(a 2-1)2 4.把多项式a 2﹣4a 分解因式,结果正确的是( ) A .a (a ﹣4)B .(a+2)(a ﹣2)C .(a ﹣2)2D .a (a+2(a ﹣2)5.下列等式中,从左到右的变形是因式分解的是( ). A .2323623x y x y =⋅B .ax - ay -1 = a (x - y ) -1C .22111x x x x x x ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭D .29x - = (x + 3)(x - 3)6.下列各式中,能用完全平方公式分解因式的多项式的个数为( ). ①x 2-10x + 25;①4x 2+ 4x -1;①9x 2y 2- 6xy +1;①214x x -+;①42144x x -+. A .1个B .2个C .3个D .4个7.下列因式分解:①()()()()22224a b a b a b a b a +++-+-=;①()()()22412a b a b a b +-+-=+-;①()4222211x x x -+=-;①()422244 41x y x y x y x -=-.正确的式子有( )A .1个B .2个C .3个D .4个8.下列各选项中因式分解正确的是( ) A .()2211x x -=-B .()32222a a a aa -+=-C .()22422y y y y -+=-+D .()2221m n mn n n m -+=-9.将下列多项式分解因式,结果中不含因式(x +1)的是( ) A .x 2-1 B .x (x -3)-(3-x ) C .x 2-2x +1D .x 2+2x +110.下列从左到右的变形属于因式分解的是( ) A .(x +1)(x -1)=x 2-1 B .m 2-2m -3=m(m -2)-3 C .2x 2+1=x(2x +1x) D .x 2-5x +6=(x -2)(x -3)11.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( )A .1B .-1C .-8D .18-12.下列等式从左到右的变形属于因式分解的是( ) A .()()2224x x x +-=-B .623xy x y =gC .()()23441x x x x --=-+D .222111144x x x x x ⎛⎫-+=-+ ⎪⎝⎭二、填空题13.分解因式:222x -= _________.14.分解因式:32a ab -=_________.15.已知3221-可以被10到20之间某两个整数整除,则这两个数是___________. 16.若x +y =1,xy =-7,则x 2y +xy 2=_____________. 17.分解因式:(2a+b )2﹣(a+2b )2= .18.已知a 、b 、c 是①ABC 的三条边,且2281252a b a b +=+-,其中c 是①ABC 中最短的边长,则c 的取值范围是________.19.已知a ,b ,c 为三角形的三边,且满足a 2c 2-b 2c 2=a 4-b 4,那么它的形状是_______. 20.分解因式:a 2b+4ab+4b=______.三、解答题21.(知识情境)通常情况下,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.(1)如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >.把余下的部分剪拼成一个长方形(如图2).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是______________;(拓展探究)类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个恒等式.如图3是边长为+a b 的正方体,被如图所示的分割线分成8块.图3(2)用不同的方法计算这个正方体的体积,就可以得到一个恒等式,这个恒等式可以为:_________________________________________________________________; (3)已知4a b +=,2ab =,利用上面的恒等式求33+a b 的值. 22.仔细阅读下面例题,解答问题:例题:已知二次三项式24x x m -+有一个因式是()3x +,求另一个因数及m 的值. 解:设另一个因式为()x n +,由题意,得()()243x x m x x n -+=++,化简、整理,得()2433x x m x n x n -+=+++,于是有343n m n +=-⎧⎨=⎩解得217m n =-⎧⎨=-⎩,∴另一个因式为()7x -,m 的值为21-.问题:仿照上述方法解答下面的问题:已知二次三项式223x x k +-有一个因式是()4x +,求另一个因式及k 的值.23.观察:22213-=;2222432110-+-=;22222265432121-+-+-=.探究:(1)2222222287654321-+-+-+-= .(直接写出答案)(2)222222(2)(21)(22)(23)21n n n n --+---+-= .(直接写出答案)应用:(3)如图,20个圆由小到大套在一起,从外向里相间画阴影,最外面一层画阴影,最外面的圆的半径为20cm ,向里依次为19cm 、18cm 、……1cm ,那么在这个图形中,所有阴影部分的面积和是多少?(结果保留π)24.材料1:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.例如:()am bm cm m a b c ++=++,2221(1)x x x ++=+都是因式分解.因式分解也可称为分解因式.材料2:只含有一个未知数,且未知数的最高次数是2的整式方程称作一元二次方程.一元二次方程的般形式是:20ax bx c ++=(其中a ,b ,c 为常数且0a ≠).“转化”是一种重要的数学思想方法,我们可以利用因式分解把部分一元二次方程转化为一元一次方程求解.例如解方程;240x -=24(2)(2)x x x -=+-Q()()220x x ∴+-=20x ∴+=或20x -=∴原方程的解是12x =-,22x =①原方程的解是12x =-,22x =又如解方程:2210x x -+=2221(1)x x x -+=-Q()210x ∴-=10x ∴-=∴原方程的解是121x x ==请阅读以上材料回答以下问题:(1)若22(2)(2)x x m x n x -+=+-,则m =_______;n =_______;(2)请将下列多项式因式分解:22a a -=_______,2244x xy y -+=________;(3)在平面直角坐标系中,已知点()2,1P m m -,)Qn ,其中m 是一元二次方程()22(3)134m m m ---=的解,n 为任意实数,求PQ 长度的最小值.参考答案1.A2.C3.C4.A5.D6.C7.B8.D9.C10.D11.A12.C 13.2(x+1)(x -1) 14.()()a a b a b +- 15.15和17; 16.﹣717.3(a+b )(a ﹣b ). 18.24c <<19.直角三角形或等腰三角形或等腰直角三角形. 20.b (a+2)221.(1)a 2-b 2=(a+b)(a -b)(2)(a +b )3=a 3+3a 2b +3ab 2+b 3(3)40 22.另一个因式为()25x -,k 的值为20. 23.(1)36;(2)83n -;(3)210π24.(1)6m =-,3n =;(2)(2)a a -,2(2)x y -;(3)3.。
因式分解一、选择题1.(2020•丽水)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b2{答案}C {解析}能运用平方差公式因式分解的两项都是平方的形式或能化成平方的形式且两项必须是符号相反,只有a2﹣b2同时满足这两个条件,所以本题选C.2.(2020·河北)对于①x-3xy=x(1-3y),②(x+3)(x-1)=x2+2x-3,从左到右的变形,表述正确的是A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解{答案}C{解析}对于x-3xy=x(1-3y),左边是一个多项式,右边是两个整式的乘积,故①是因式分解;对于(x+3)(x-1)=x2+2x-3,左边是两个整式的乘积,右边是一个多项式,故②是整式乘法.3.(2020·河北)若22(91)(111)k--=8×10×12,则k=A.12B.10C.8D.6{答案}B{解析}解析:k=()()229111181012--⨯⨯=919111111181012+-+-⨯⨯()()()()=10812111280⨯⨯⨯⨯⨯=10,故答案为B.4.(2020·凉山州)一元二次方程x2=2x的根为()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=-2{答案}C{解析}原方程可化为x(x-2)=0,解得x=0或x=2,故选C.二、填空题5.(2020·宿迁)因式分解:a2+a=.{答案}a(a+1){解析}因为a2+a=a×a+a×1=a(a+1),所以a2+a=a(a+1).故答案为a(a+1).6.(2020·宁波)分解因式:2a2-18=.{答案}2(a+3)(a-3){解析}本题考查了因式分解,因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,若能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍就不能分解,因式分解必须进行到不能再分解为止.2a2-18=2(a2-9)=2(a+3)(a -3).7.(2020·绍兴)分解因式:1﹣x2=________.{答案}(1-x)(1+x){解析}本题考查了利用平方差公式进行因式分解.原式=(1-x)(1+x).因此本题答案为(1-x)(1+x).8.(2020·嘉兴)分解因式:x2-9=.{答案}(x+3)(x–3){解析}本题考查了因式分解.利用平方差公式22()()a b a b a b-=+-因式分解,因此本题答案为(x+3)(x–3).9.(2020·嘉兴)比较21x+与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,21x+2x;②当x=0时,21x+2x;③当x=–2时,21x+2x;(2)归纳:若x任意实数,21x+与2x有怎样的大小关系?试说明理由。
2020-2021初中数学因式分解知识点总复习有答案一、选择题1.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( )A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】将各项分解得到结果,即可作出判断.【详解】①322(2+1)x xy x x x y ++=+,故①错误;②2244(2)x x x ++=+,故②正确;③2222()()x y y x x y y x -+=-=+-,故③正确;④39(+3)(3)x x x x x -=-故④错误.则正确的有2个.故选:B.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2.下列各式从左到右的变形中,是因式分解的为( ).A .()x a b ax bx -=-B .()()222111x y x x y -+=-++C .()()2111x x x -=+-D .()ax bx c x a b c ++=+【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A 、是整式的乘法运算,故选项错误;B 、右边不是积的形式,故选项错误;C 、x 2-1=(x+1)(x-1),正确;D 、等式不成立,故选项错误.故选:C .【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.3.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1 【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误; D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.4.设a ,b ,c 是ABC V 的三条边,且332222a b a b ab ac bc -=-+-,则这个三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a 3-b 3=a 2b-ab 2+ac 2-bc 2,∴a 3-b 3-a 2b+ab 2-ac 2+bc 2=0,(a 3-a 2b )+(ab 2-b 3)-(ac 2-bc 2)=0,a 2(a-b )+b 2(a-b )-c 2(a-b )=0,(a-b )(a 2+b 2-c 2)=0,所以a-b=0或a 2+b 2-c 2=0.所以a=b 或a 2+b 2=c 2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.5.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.6.如图,矩形的长、宽分别为a 、b ,周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .30C .15D .16【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b ,ab ,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a 、b 的长方形的周长为10,面积6,∴2(a+b )=10,ab=6,则a+b=5,故ab 2+a 2b=ab (b+a )=6×5=30.故选:B .【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.7.若a 2-b 2=14,a-b=12,则a+b 的值为( ) A .-12 B .1 C .12 D .2【答案】C【解析】【分析】已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.【详解】∵a 2-b 2=(a+b )(a-b)=12(a+b)=14∴a+b=12故选C. 点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.8.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0B .3C .6D .9【答案】D【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c a b=222+++++c a b=()6+++c a b=6+3=9故选D .【点睛】此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.9.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.10.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.11.不论x ,y 为任何实数,22428x y x y +--+ 的值总是( )A .正数B .负数C .非负数D .非正数【答案】A【解析】x²+y²-4x-2y+8=(x²-4x+4)+(y²-2y+1)+3=(x-2)2+(y-1)2+3≥3,不论x,y 为任何实数,x²+y²-4x-2y+8的值总是大于等于3,故选A.【点睛】本题考查了因式分解的应用,解题的关键是要明确要判断一个算式是正数时总是将其整理成一个完全平方公式加正数的形式.12.下列各式中从左到右的变形,是因式分解的是( )A .(a +3)(a -3)=a 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab (a +b )D .x 2+1=x (x +1x) 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没把一个多项式转化成几个整式积的形式,故B 错误;C 、因式分解是把一个多项式转化成几个整式积的形式,故C 正确;D 、因式中含有分式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.13.下面的多项式中,能因式分解的是( )A .2m n +B .221m m -+C .2m n -D .21m m -+【答案】B【解析】【分析】完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+14.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-Q ,()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-,∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.15.下列式子从左到右变形是因式分解的是( )A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.16.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2﹣b2【答案】A【解析】【分析】直接利用平方差公式和完全平方公式进行分解因式,进而判断得出答案.【详解】A.4a2+4a+1=(2a+1)2,正确;B.a2﹣4b2=(a﹣2b)(a+2b),故此选项错误;C.a2﹣2a﹣1在有理数范围内无法运用公式分解因式,故此选项错误;D.(a﹣b)(a+b)=a2﹣b2,是多项式乘法,故此选项错误.故选:A.【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.17.下列各式由左到右的变形中,属于分解因式的是()A.x2﹣16+6x=(x+4)(x﹣4)+6xB.10x2﹣5x=5x(2x﹣1)C.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2D.a(m+n)=am+an【答案】B【解析】【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A、变形的结果不是几个整式的积,不是因式分解;B、把多项式10x2﹣5x变形为5x与2x﹣1的积,是因式分解;C、变形的结果不是几个整式的积,不是因式分解;D、变形的结果不是几个整式的积,不是因式分解;故选:B.【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.18.把代数式2x2﹣18分解因式,结果正确的是()A.2(x2﹣9)B.2(x﹣3)2C.2(x+3)(x﹣3)D.2(x+9)(x﹣9)【答案】C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).故选C.考点:提公因式法与公式法的综合运用.19.若x2+mxy+y2是一个完全平方式,则m=()A.2 B.1 C.±1 D.±2【答案】D【解析】根据完全平方公式:(a+b)2=a2+2ab+b2与(a-b)2=a2-2ab+b2可知,要使x2+mxy+y2符合完全平方公式的形式,该式应为:x2+2xy+y2=(x+y)2或x2-2xy+y2=(x-y)2. 对照各项系数可知,系数m的值应为2或-2.故本题应选D.点睛:本题考查完全平方公式的形式,应注意完全平方公式有(a+b)2、(a-b)2两种形式. 考虑本题时要全面,不要漏掉任何一种形式.20.将下列多项式因式分解,结果中不含因式x-1的是( )A.x2-1 B.x2+2x+1 C.x2-2x+1 D.x(x-2)+(2-x)【答案】B【解析】【分析】将各选项进行因式分解即可得以选择出正确答案.【详解】A. x2﹣1=(x+1)(x-1);B. x2+2x+1=(x+1)2 ;C. x2﹣2x+1 =(x-1)2;D. x(x﹣2)﹣(x﹣2)=(x-2)(x-1);结果中不含因式x-1的是B;故选B.。
2020全国各中考数学试题分考点解析汇编因式分解一、选择题1.(2020浙江金华、丽水3分)下列各式能用完全平方公式进行分解因式的是A、x2+1B、x2+2x﹣1C、x2+x+1D、x2+4x+4【答案】D。
【考点】运用公式法因式分解。
【分析】完全平方公式是:(a±b)2=a2±2a b+b2,由此可见选项A、B、C都不能用完全平方公式进行分解因式,只有D选项可以。
故选D。
2.(2020辽宁丹东3分)将多项式32x xy-分解因式.结果正确的是A.22()x x y- B.2()x x y- C.2()x x y+D.()()x x y x y+-【答案】D。
【考点】提公因式法与公式法因式分解。
【分析】先提取公因式x,再根据平方差公式进行二次分解:()()()3222x xy x x y x x y x y-=-=+-。
故选D。
3.(2020广西南宁3分)把多项式x3-4x分解因式所得结果是A.x(x2-4) B.x(x+4)(x-4) C.x(x+2)(x-2) D.(x+2)(x-2) 【答案】C。
【考点】提取公因式法和应用公式法因式分解。
【分析】根据提取公因式法和应用公式法因式分解,将多项式分解到不能再分解:()()()324422x x x x x x x-=-=+-,故选C。
4.(2020广西梧州3分)因式分解x2y-4y的正确结果是(A)y(x+2)(x-2)(B)y(x+4)(x-4)(C)y(x2-4)(D)y(x-2)2【答案】A。
【考点】提取公因式和应用公式法因式分解。
【分析】根据提取公因式和应用平方差公式因式分解:x2y-4y=y(x2-4)=y(x+2)(x -2)。
故选A。
6.(江苏无锡3分) 分解因式2x2—4x+2的最终结果是A.2x(x-2) B.2(x2-2x+1) C.2(x-1)2 D.(2x-2)2【答案】C。
【考点】提取公因式法和应用公式法因式分解。
数与式——因式分解2一.选择题(共9小题)1.若把多项式x2+px+q分解因式可以分解成(x﹣3)(x+5),则p的值是()A.2 B.﹣2 C.15 D.﹣152.下列各式中,能用完全平方公式分解因式的是()A.16x2+1 B.x2+2x﹣1 C.a2+2ab+4b2D.,3.把代数式ab2﹣6ab+9a分解因式,下列结果中正确的是()A.a(b+3)2B.a(b+3)(b﹣3)C.a(b﹣4)2D.a(b﹣3)24.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)25.把a3﹣9a分解因式,结果正确的是()A.a(a+3)(a﹣3)B.a(a2﹣9)C.a(a﹣3)2D.a(a+3)26.已知a、b是实数,x=a2+b2+20,y=4(2b﹣a).则x、y的大小关系是()A.x≤y B.x≥y C.x<y D.x>y7.化简:,结果是()A.B.C.D.8.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形 C.等腰三角形或直角三角形D.等腰直角三角形9.分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2)B.x2C.(x+1)2D.(x﹣2)2二.填空题(共7小题)10.因式分解:x2﹣1= _________ .11.分解因式:(2a+1)2﹣a2= _________ .12.当a=9时,代数式a2+2a+1的值为_________ .13.分解因式:9a2﹣30a+25= _________ .14.若x2﹣9=(x﹣3)(x+a),则a= _________ .15.分解因式:a3﹣4a2+4a= _________ .16.分解因式:a2b﹣b3= _________ .三.解答题(共7小题)17.分解因式:﹣x3+2x2﹣x.18.已知a、b、c是△ABC的三边且满足a2﹣b2+ac﹣bc=0,请判断△ABC的形状.19.分解因式:2x3y﹣2xy3.20.给出三个单项式:a2,b2,2ab.(1)在上面三个单项式中任选两个相减,并进行因式分解;(2)当a=2010,b=2009时,求代数式a2+b2﹣2ab的值.21.求多项式的和,并把结果因式分解.22.已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2(2)a2+b223.给定一列代数式:a3b2,ab4,a4b3,a2b5,a5b4,a3b6,….(1)分解因式:ab4﹣a3b2;(2)根据你发现的规律,试写出给定的那列代数式中的第100个代数式.数与式——因式分解2参考答案与试题解析一.选择题(共9小题)1.若把多项式x2+px+q分解因式可以分解成(x﹣3)(x+5),则p的值是()A. 2 B.﹣2 C.15 D.﹣15考点:因式分解的意义.专题:计算题.分析:根据多项式乘多项式法则计算(x﹣3)(x+5),根据多项式相等的条件即可求出p的值.解答:解:∵x2+px+q=(x﹣3)(x+5)=x2+2x﹣15,∴p=2,q=﹣15.故选A点评:此题考查了因式分解的意义,熟练掌握多项式乘多项式法则是解本题的关键.2.下列各式中,能用完全平方公式分解因式的是()A.16x2+1 B.x2+2x﹣1 C.a2+2ab+4b2D.,考点:因式分解-运用公式法.分析:根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍,对各选项分析判断后利用排除法求解.解答:解:A、16x2+1只有两项,不符合完全平方公式;B、x2+2x﹣1其中有两项x2、﹣1不能写成平方和的形式,不符合完全平方公式;C、a2+2ab+4b2另一项不是a、2b的积的2倍,不符合完全平方公式;D、符合完全平方公式.故选D.点评:本题主要考查了完全平方公式,熟记公式结构是解题的关键.完全平方公式:a2±2ab+b2=(a±b)2;3.把代数式ab2﹣6ab+9a分解因式,下列结果中正确的是()A.a(b+3)2B.a(b+3)(b﹣3)C.a(b﹣4)2 D.a(b﹣3)2考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.解答:解:ab2﹣6ab+9a,=a(b2﹣6b+9),=a(b﹣3)2.故选D.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.4.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D. 4x2﹣2xy+y2=(2x﹣y)2考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用平方差公式分解因式法对各选项分析判断后利用排除法求解.解答:解:A、3x2﹣6x=3x(x﹣2),故本选项错误;B、﹣a2+b2=(b+a)(b﹣a),故本选项正确;C、4x2﹣y2=(2x+y)(2x﹣y),故本选项错误;D、4x2﹣2xy+y2不能分解因式,故本选项错误.故选B.点评:本题主要考查了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的方法是解题的关键.5.把a3﹣9a分解因式,结果正确的是()A.a(a+3)(a﹣3)B.a(a2﹣9) C.a(a﹣3)2D.a(a+3)2考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3﹣9a=a(a2﹣9)=a(a+3)(a﹣3).故选A.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6.已知a、b是实数,x=a2+b2+20,y=4(2b﹣a).则x、y的大小关系是()A.x≤y B.x≥y C.x<y D.x>y考点:因式分解的应用.专题:因式分解.分析:判断x、y的大小关系,把x﹣y进行整理,判断结果的符号可得x、y的大小关系.解答:解:x﹣y=a2+b2+20﹣8b+4a=(a+2)2+(b﹣4)2,∵(a+2)2≥0,(b﹣4)2≥0,∴x﹣y≥0,∴x≥y,故选B.点评:考查比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.7.化简:,结果是( )A .B .C .D .考点: 因式分解的应用.专题: 计算题.分析: 将所求式子的分子分母前两项提取20122,整理后分子提取2010,分母提取2013,约分后即可得到结果.解答: 解:原式= = = =.故选A .点评: 此题考查了因式分解的应用,是一道技巧性较强的题,熟练掌握因式分解的方法是解本题的关键.8.已知a 、b 、c 是△ABC 的三边长,且满足a 3+ab 2+bc 2=b 3+a 2b+ac 2,则△ABC 的形状是( )A . 等腰三角形B . 直角三角形C . 等腰三角形或直角三角形D . 等腰直角三角形考点: 因式分解的应用.专题: 压轴题;因式分解.分析: 把所给的等式a 3+ab 2+bc 2=b 3+a 2b+ac 2能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.解答: 解:∵a 3+ab 2+bc 2=b 3+a 2b+ac 2,∴a 3﹣b 3﹣a 2b+ab 2﹣ac 2+bc 2=0,(a 3﹣a 2b )+(ab 2﹣b 3)﹣(ac 2﹣bc 2)=0,a 2(a ﹣b )+b 2(a ﹣b )﹣c 2(a ﹣b )=0,(a ﹣b )(a 2+b 2﹣c 2)=0,所以a ﹣b=0或a 2+b 2﹣c 2=0.所以a=b 或a 2+b 2=c 2.故△ABC 的形状是等腰三角形或直角三角形或等腰直角三角形.故选C.点评:本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.9.分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2)B.x2C.(x+1)2D.(x﹣2)2考点:因式分解-运用公式法.分析:首先把x﹣1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可.解答:解:(x﹣1)2﹣2(x﹣1)+1=(x﹣1﹣1)2=(x﹣2)2.故选:D.点评:此题主要考查了因式分解﹣运用公式法,关键是熟练掌握完全平方公式:a2±2ab+b2=(a±b)2.二.填空题(共7小题)10.因式分解:x2﹣1= (x+1)(x﹣1).考点:因式分解-运用公式法.专题:因式分解.分析:方程利用平方差公式分解即可.解答:解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).点评:此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.11.分解因式:(2a+1)2﹣a2= (3a+1)(a+1).考点:因式分解-运用公式法.专题:因式分解.分析:直接利用平方差公式进行分解即可.解答:解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).12.当a=9时,代数式a2+2a+1的值为100 .考点:因式分解-运用公式法;代数式求值.专题:计算题.分析:直接利用完全平方公式分解因式进而将已知代入求出即可.解答:解:∵a2+2a+1=(a+1)2,∴当a=9时,原式=(9+1)2=100.故答案为:100.点评:此题主要考查了因式分解法以及代数式求值,正确分解因式是解题关键.13.分解因式:9a2﹣30a+25= (3a﹣5)2.考点:因式分解-运用公式法.专题:计算题.分析:原式利用完全平方公式分解即可.解答:解:原式=(3a)2﹣2×3a×5+52=(3a﹣5)2.故答案为:(3a﹣5)2点评:此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.14.若x2﹣9=(x﹣3)(x+a),则a= 3 .考点:因式分解-运用公式法.专题:计算题.分析:直接利用平方差公式进行分解得出即可.解答:解:∵x2﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3.故答案为:3.点评:此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.15.分解因式:a3﹣4a2+4a= a(a﹣2)2.考点:提公因式法与公式法的综合运用.专题:因式分解.分析:观察原式a3﹣4a2+4a,找到公因式a,提出公因式后发现a2﹣4a+4是完全平方公式,利用完全平方公式继续分解可得.解答:解:a3﹣4a2+4a,=a(a2﹣4a+4),=a(a﹣2)2.故答案为:a(a﹣2)2.点评:本题考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法(完全平方公式).要求灵活运用各种方法进行因式分解.16.分解因式:a2b﹣b3= b(a+b)(a﹣b).考点:提公因式法与公式法的综合运用.分析:先提取公因式,再利用平方差公式进行二次因式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).解答:解:a2b﹣b3,=b(a2﹣b2),(提取公因式)=b(a+b)(a﹣b).(平方差公式)故答案为:b(a+b)(a﹣b).点评:本题考查提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解因式要彻底.三.解答题(共7小题)17.分解因式:﹣x3+2x2﹣x.考点:提公因式法与公式法的综合运用.分析:先提取公因式﹣x,再根据完全平方公式进行二次分解即可.完全平方公式:a2﹣2ab+b2=(a﹣b)2.解答:解:﹣x3+2x2﹣x,=﹣x(x2﹣2x+1),=﹣x(x﹣1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.18.已知a、b、c是△ABC的三边且满足a2﹣b2+ac﹣bc=0,请判断△ABC的形状.考点:因式分解的应用.分析:由a、b、c是△ABC的三边可知,三边都大于0,解其方程得到a=b,从而知道三角形一定是等腰三角形.解答:解:a2﹣b2+ac﹣bc=0,由平方差公式得:(a+b)(a﹣b)+c(a﹣b)=0,(a﹣b)(a+b+c)=0,∵a、b、c三边是三角形的边,∴a、b、c都大于0,∴本方程解为a=b,∴△ABC一定是等腰三角形.点评:本题考查了因式分解的应用,利用三角形三边都大于0这一条件,解其方程而判定为等腰三角形.19.分解因式:2x3y﹣2xy3.考点:提公因式法与公式法的综合运用.分析:先提取公因式2xy,再对余下的多项式利用平方差公式继续分解.解答:解:2x3y﹣2xy3,=2xy(x2﹣y2),=2xy(x+y)(x﹣y).点评:此题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.给出三个单项式:a2,b2,2ab.(1)在上面三个单项式中任选两个相减,并进行因式分解;(2)当a=2010,b=2009时,求代数式a2+b2﹣2ab的值.考点:因式分解-提公因式法;整式的加减—化简求值.专题:开放型.分析:本题要灵活运用整式的加减运算、平方差公式和完全平方公式.解答:解:(1)a2﹣b2=(a+b)(a﹣b),b2﹣a2=(b+a)(b﹣a),a2﹣2ab=a(a﹣2b),2ab﹣a2=a(2b﹣a),b2﹣2ab+b(b﹣2a),2ab﹣b2=b(2a﹣b);(写对任何一个式子给五分)(2)a2+b2﹣2ab=(a﹣b)2,当a=2010,b=2009时,原式=(a﹣b)2=(2010﹣2009)2=1.点评:本题考查了提公因式法,平方差公式,完全平方公式分解因式,关键是熟记并会灵活运用,注意结果能进行因式分解.21.求多项式的和,并把结果因式分解.考点:因式分解-运用公式法;整式的加减.分析:可以先相加,然后合并同类项,再利用平方差公式进行因式分解.解答:解: x2+2x﹣2+x2﹣2x+1=(+)x2+(2﹣2)x+(﹣2+1)=x2﹣1=(x+1)(x﹣1).点评:本题考查整式的加减,公式法分解因式,对于因式分解有公因式的一定先提公因式,没有公因式的再考虑用平方差公式或完全平方公式等.22.已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2(2)a2+b2考点:因式分解-提公因式法;完全平方公式.专题:计算题.分析:(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.解答:解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.点评:本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.23.给定一列代数式:a3b2,ab4,a4b3,a2b5,a5b4,a3b6,….(1)分解因式:ab4﹣a3b2;(2)根据你发现的规律,试写出给定的那列代数式中的第100个代数式.考点:提公因式法与公式法的综合运用.专题:规律型.分析:(1)先提取公因式ab2,再根据平方差公式进行二次分解;(2)观察归纳,即可求得:那列代数式中的第100个代数式为a50b53.解答:解:(1)ab4﹣a3b2=ab2(b+a)(b﹣a);(3分)(未分解彻底扣1分)(2)a50b53(3分)(若a或b的指数只写对一个,可得1分).点评:此题考查了提公因式法,公式法分解因式与规律的知识.解题的关键时注意仔细观察,找到规律.还要注意分解要彻底.。