中考数学专题复习卷因式分解(含解析)
- 格式:doc
- 大小:103.50 KB
- 文档页数:10
2021中考数学一轮复习整式及因式分解能力检测题1(附答案详解)1.x 2+5 可以写成( )A .x 2.x 5B .x 2.x 5C .2x .x 5D .2x .5x2.下列运算中,结果正确的是( )A .347a a a +=B .24434a a a +=C .32a a a -=D .2244a a -= 3.3x 2y ﹣5yx 2=( )A .﹣2B .﹣2yx 2C .﹣2xyD .不能运算 4.如果多项式6xy 2-7x 3y +Mxy 2-8合并同类项后是四次二项式,那么M 为( ) A .M =7 B .M =8 C .M =6 D .M =-65.图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的12)后,得图③,④,…,记第n (n≥3)块纸板的周长为P n ,则P 2018﹣P 2017的值为( )A .20171()4 B .20181()4 C .20171()2 D .20181()26.如果257+513能被n 整除,则n 的值可能是( )A .20B .30C .35D .407.下列概念表述正确的是( )A .单项式x 3yz 4系数是1,次数是4B .单项式232a b π-的系数是12-,次数是6C .多项式2a 2b -ab -1是五次三项式D .x 2y +1是三次二项式8.下列各式:(1)1-34x 2y ;(2)a•30;(3)20%xy ;(4)a-b+c ;(5)2223a b -;(6)t-2℃,其中符合代数式书写要求的个数有( )A .5个B .4个C .3个D .2个9.计算(x 2-3x +n)(x 2+mx +8)的结果中不含x 2和x 3的项,则m ,n 的值为( ) A .m =3,n =1 B .m =0,n =0 C .m =-3,n =-9 D .m =-3,n =8 10.下列计算正确的是( )A .x 4+x 4=x 16B .(﹣2a )2=﹣4a 2C .x 7÷x 5=x 2D .m 2•m 3=m 611.多项式323π215x y xy --+的次数是______ . 12.已知当x =2时,320ax bx +-=,则当2x =时,37ax bx ++__________. 13.下列式子中:①mn +a ;②ax 2+bx +c ;③-6ab ;④2x y +;⑤a b x -;⑥5+7x .整式有________.(填序号)14.已知有理数a 、b 、c 在数轴上的对应点如图所示,那么代数式a b a c c b +--+-的化简结果是__________.15.计算:()23a a ÷-=________.16.化简:2(23)a a ----的结果是___________.17.(-a 3)2(-a 2)3= ________,10m+1×10n+11=________ .18.若(mx -6y )与(x +3y )的积中不含xy 项,则m 的值是________.19.2a 2-a(2a-5b)-b(2a-b)= ___________;20.已知2139108n n -+=,则代数式(22)n n -的值为__________.21.求代数式()()()x y z y z x z x y ---+-的值,其中1x 4=,1y 2=,3z 4=-. 22.把下列各式因式分解:(1)16x 2-25y 2;(2)x 2-4xy +4y 2;(3)(a +2b)2-(2a -b)2;(4)(m 2+4m)2+8(m 2+4m)+16;(5)81x 4-y 4.23.计算: (1)(-3)0+21()3-+(-2)3; (2)(-2a 3)2·3a 3+6a 12÷(-2a 3) ; (3)(x+1)(x ﹣2)﹣(x ﹣2)2 .24.化简:|2x ﹣3|+|3x ﹣5|﹣|5x+1|25.计算:计算:(1)157(36)2612⎛⎫+-⨯- ⎪⎝⎭. (2)()2411336⎡⎤--⨯--⎣⎦. 化简: ①、()()32322312x x x x-+++- ②、22(331)(568)a a a a ---+-26.填表从填好的表中,你能发现什么规律?若发现了请写在下面的横线上:______________________27.先化简,再求值 ()()221362421x y xy xy x y ⎡⎤----+⎣⎦,其中12x =-,1y =. ()()()22222322x y xy xy x y ---,其中1x =-,2y =.28.指出下列各单项式的系数和次数.(1)3x 3;(2)-65xyz ;(3)23mn ;(4)-4x ;(5)-mx ;(6)237x y π. 29.数学老师在黑板上抄写了一道题目:“当a=2,b=﹣2时,求多项式3a 3b 3﹣12a 2b+b ﹣(4a 3b 3﹣14a 2b ﹣b 2)+(a 3b 3+14a 2b )﹣2b 2+3的值”,甲同学做题时把a=2抄错成a=﹣2,乙同学没抄错题,但他们得出的结果恰好一样,这是怎么回事儿呢? 30.求[4(xy ﹣1)2﹣(xy+2)(2﹣xy )]÷14xy 的值,其中x=(﹣cos60°)﹣1,y=﹣sin30°.参考答案1.A【解析】根据同底数幂的乘法法则可得,x 2.x 5 =x 2+5 ,故选A..2.C【解析】【分析】根据合并同类项法则依次判断即可解答.【详解】选项A ,3a 与4a 不是同类项不能合并,选项A 错误;选项B ,23a 与4a 不是同类项不能合并,选项B 错误;选项C ,根据合并同类项法则可得32a a a -=,选项C 正确;选项D ,根据合并同类项法则可得22243a a a -=,选项D 错误.故选C .【点睛】本题考查了合并同类项,熟知合并同类项法则是解决问题的关键.3.B【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行计算即可.【详解】原式=3x 2y ﹣5yx 2=﹣2yx 2.故答案为B .【点睛】本题考查了合并同类项的知识,解答本题的关键是熟练掌握合并同类项的法则.4.D【解析】【分析】如果多项式6xy 2-7x 3y +Mxy 2-8合并同类项后是四次二项式,那么6+M=0.【详解】6xy 2-7x 3y +Mxy 2-8=(6+M)xy 2-7x 3y -8,因为多项式合并同类项后是四次二项式, 所以,6+M=0所以,M=-6故选:D【点睛】本题考核知识点:合并同类项.解题关键点:熟练合并同类项.5.C【解析】【分析】根据等边三角形的性质(三边相等)求出等边三角形的周长P 1,P 2,P 3,P 4,根据周长相减的结果能找到规律即可求出答案.【详解】P 1=1+1+1=3,P 2=1+1+12=52, P 3=1+1+14×3=114, P 4=1+1+14×2+18×3=238, …∴p 3-p 2=114-52=14=21()2; P 4-P 3=238-114=18=31()2, 则P n -P n-1=11()2n -, 故P 2018﹣P 2017=20171()2故答案为20171()2 【点睛】本题主要考查对等边三角形的性质的理解和掌握,此题是一个规律型的题目,题型较好. 6.B【解析】试题解析:()71314131313122555555156530+=+=⨯+=⨯=⨯, 则n 的值可能是30;故选B.7.D【解析】【分析】根据单项式的系数和次数,多项式的项数和次数的定义来判断.【详解】解:A :x 3yz 4的系数是1,次数是8,故A 错误;B :232a b π-的系数是2π-,次数是5,故B 错误; C :2a 2b -ab -1是三次三项式,故C 错误;D :x 2y +1是三次二项式,故D 正确.故选D.【点睛】本题考查了单项式和多项式的相关概念.8.B【解析】试题解析:(1) 2314x y -,正确; (2)正确的书写格式是30a ;(3)20%xy ,正确;(4)a −b +c ,正确; (5) 2223a b -,正确; (6)正确的书写格式是(t −2)℃.其中符合代数式书写要求的个数有4个.故选B.9.A【解析】试题解析:(x 2-3x+n )(x 2+mx+8)=x 4+mx 3+8x 2-3x 3-3mx 2-24x+nx 2+nmx+8n=x 4+(m-3)x 3+(8-3m+n )x 2-24x+8n ,∵不含x 2和x 3的项,∴m-3=0,∴m=3.∴8-3m+n=0,∴n=1.故选A .10.C【解析】【分析】根据二次根式运算法则即可解答.【详解】x 4+x 4=2x 4 ,故选项A 错;(﹣2a )2=4a 2,故选项B 错;x 7÷x 5=x 2 ,故选项C 正确;m 2•m 3=m 5,故选项D 错.故选:C【点睛】本题考核知识点:二次根式运算. 解题关键点:熟记二次根式运算法则.11.4【解析】分析:根据多项式次数的定义求解.多项式的次数是多项式中最高次项的次数,可得答案. 详解:多项式﹣335x y π﹣2xy 2+1的次数是 4. 故答案为:4.点睛:本题考查了多项式的次数,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.12.9【解析】由题意得:8a+2b-2=0,所以:8a+2b=2,当x=2时,37ax bx ++=8a+2b+7=2+7=9,故答案为:9.13.①②③④⑥【解析】①mn +a 是多项式也是整式;②ax 2+bx +c 是多项式也是整式;;③-6ab 是单项式也是整式;④x y2+是多项式也是整式;;⑤a bx-是多项式也是整式;;⑥5+7x是多项式也是整式;.故答案为:①②③④⑥14.-2b【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据数轴上点的位置得:a<0<b<c,且|b|<|a|,∴a+b<0,a-c<0,c﹣b>0,则原式=-(a+b)+(a-c)+(c-b)=-a-b+a-c+c-b=-2b.故答案为-2b.【点睛】本题考查了整式的加减,熟练掌握运算法则是解答本题的关键.15.a【解析】分析:先化简(﹣a)2,然后再依据同底数幂的除法法则计算即可.详解:原式=a3÷a2=a..故答案为a.点睛:本题主要考查的是同底数幂的除法,熟练掌握相关法则是解题的关键.16.3【解析】()223a a----=223a a-++=3.故答案为:3.17.-a1210m+n+12【解析】分析:第一题先算幂的乘方,再根据同底数幂的乘法计算;第二题直接根据同底数幂的乘法计算.详解:(-a3)2(-a2)3=a6·(-a6) = -a12,10m+1×10n+11=10m+n+12.故答案为:(1) -a12(2) 10m+n+12点睛:本题考查了幂的乘方和同底数幂的乘法运算,熟练掌握同底数幂的运算法则和幂的乘方运算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相乘,底数不变指数相加.18.2【解析】分析:先运用多项式的乘法法则,进行乘法运算,再合并同类项,因积中不含xy 项,所以xy 项的系数为0,得到关于m 的方程,解方程可得m 的值.详解:∵(mx ﹣6y )×(x +3y )=mx 2+(3m ﹣6)xy ﹣18y 2,且积中不含xy 项,∴3m ﹣6=0,解得:m =2.故答案为2.点睛:本题主要考查多项式乘多项式的法则,根据不含某一项就是让这一项的系数等于0列式是解题的关键.19.3ab+b 2【解析】2a 2-a(2a-5b)-b(2a-b)=2a 2-2a 2+5ab-2ab+b 2=3ab+b 2故答案是:3ab+b 2.20.4.【解析】解:∵原式可化为22331083nn += ,∴32n (13+1)=108,∴32n =81,∴32n =34,解得n =2,∴原式=22=4.故答案为:4.点睛:本题考查的是幂的乘方与积的乘方法则,先根据题意得出n 的值是解答此题的关键. 21.原式()2y x z 1=-=【解析】分析:先根据单项式乘多项式的法则计算,合并同类项后提取公因式2y ,然后把14x =,12y =,34z =-代入计算即可., 详解:原式()xy xz yz xy xz yz 2xy 2yz 2y x z =--++-=-=-,当1x 4=,1y 2=,3z 4=-时,原式11321244⎛⎫=⨯⨯+= ⎪⎝⎭. 点睛:本题考查了整式的化简求值,熟练掌握整式的运算法则是解答本题的关键. 22. (1) (4x +5y)(4x -5y);(2)(x -2y)2;(3) (3a +b)(3b -a);(4) (m +2)4.(5)(3x +y)(3x -y)(9x 2+y 2)【解析】试题分析:根据因式分解的方法进行因式分解即可.试题解析:(1)原式()()4545x y x y =+-.(2)原式()22.x y =- (3)原式()()()()()()22?2233a b a b a b a b a b b a ⎡⎤⎡⎤=++-+--=+-⎣⎦⎣⎦.(4)原式()()()222424422.m m m m ⎡⎤⎡⎤=++=+=+⎣⎦⎣⎦ (5)原式()()()()()22222299339x y x y x y x y x y =-+=+-+ 点睛:常用的因式分解的方法:提取公因式法,公式法,十字相乘法,分组分解法. 23.(1)2;(2)9a 9;(3)3x-6【解析】【分析】()1根据有理数的运算顺序进行运算即可;()2根据整式的运算法则进行运算即可;()3根据整式的运算法则进行运算即可.【详解】解:()1原式()2138198 2.=++-=+-= ()2原式()6399994331239.a a a a a a =⋅+-=-=()3原式()22244,x x x x =----+22244,x x x x =---+-3 6.x =-【点睛】考查有理数的混合运算,整式的混合预算,解题的关键是注意运算顺序.24.①9;②﹣10x+7;③﹣6x+1;④﹣9【解析】【分析】根据x的范围分四种情况,利用绝对值的代数意义化简,去括号合并即可得到结果. 【详解】解:①当15x<-时,原式3253519x x x=-+-++=.②当1352x-≤<时,原式325351107x x x x=-+---=-+.③当3523x≤<时,原式23535161x x x x=-+---=-+.④当53x≥时,原式2335519.x x x=-+---=-【点睛】此题考查了整式的加减,以及绝对值,熟练掌握运算法则是解本题的关键.注意分类讨论思想在解题中的应用.25.(1)—27;(2)0;①、21x+;②、2297a a--+;【解析】【分析】(1)先把括号中的每一项分别同-36相乘,再把结果相加减即可;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;①先去括号,再合并同类项即可求解;②先去括号,再合并同类项即可求解.【详解】解:(1)原式=12×(-36)+56×(-36)-712×(-36)=-18-30+21 =-27(2)−14−16×[3−(−3)2]=-1-16×[3-9]=-1-16×[-6] =-1+1=0;①()()32322312x x x x-+++- =323223122x x x x -+++-=21x +②()()22331568a a a a ---+-=2331a a ---2568a a -+=-22a -9a+7【点睛】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:--得+,-+得-,++得+,+-得-.本题还考查了有理数的混合运算,整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.26.x 2-2xy+y 2=(x-y) 2【解析】分析:先根据代数式的求值,把所给的x 、y 的值分别代入x 2-2xy+y 2、(x-y )2,然后根据结果总结规律即可.详解:填表:发现规律:x2-2xy+y2=(x-y)2.点睛:此题主要考查了规律总结题,利用代入法求解即可,解题时注意符号的变化,不要出错.27.(1)-3;(2)22【解析】【分析】(1)先括号,再合并,最后把x、y的值代入计算即可;(2)先括号,再合并,最后把x、y的值代入计算即可.【详解】解:(1)原式=3x2y+2xy﹣4+x2y+1=4x2y+2xy﹣3当x=﹣12,y=1时,原式=4×(﹣12)2×1+2×(﹣12)×1﹣3=﹣3;(2)原式=3x2y﹣2xy2﹣xy2+2x2y=5x2y﹣3xy2当x=﹣1,y=2时,原式=5×(﹣1)2×2﹣3×(﹣1)×22=22.【点睛】本题考查了整式的化简求值,解题的关键是去括号、合并同类项.28.见解析.【解析】【分析】根据单项式的系数和次数的意义进行分析.【详解】解:(1)3x3的系数为3,次数为3.(2)-xyz的系数为-,次数为3.(3)的系数为,次数为2.(4)-的系数为-,次数为1.(5)-mx的系数为-1,次数为2.(6)的系数为,次数为3.【点睛】本题考核知识点:单项式的系数和次数.解题关键点:理解单项式的系数和次数的意义.29.结果一样【解析】试题分析:根据整式的化简,先去括号,合并同类项,化简后,通过结果中没有a可知结果与a的值无关,即可求解.试题解析:原式=3a3b3﹣a2b+b﹣4a3b3+a2b+b2+a3b3+a2b﹣2b2+3=b﹣b2+3,结果与a的值无关,故做题时把a=2抄错成a=﹣2,乙同学没抄错题,但他们得出的结果恰好一样.30.-12【解析】分析:根据三角函数值及负指数幂化简x、y的值,根据完全平方公式及平方差公式化简整式,再将x、y的值代入可得.详解:原式=[4(x2y2﹣2xy+1)﹣(22﹣x2y2)]•4 xy=(4x2y2﹣8xy+4﹣4+x2y2)4 xy ⋅=(5x2y2﹣8xy)4 xy ⋅=20xy﹣32当x=(﹣cos60°)﹣1=(﹣12)﹣1=﹣2,y=﹣sin30°=﹣12时,原式=20×(﹣2)×(﹣12)﹣32=﹣12.点睛:本题主要考查整式的化简求值能力,根据三角函数值及负整数指数幂化简x、y的值是基本,准确化简整式是关键.。
3整式的乘除与因式分解中考题要点一:幕的运算性质 、选择题 1、 (2010义乌中考)28 cm 接近于( A .珠穆朗玛峰的高度 B .三层楼的高度 C .明的身高 D .一纸的厚度2、(2009新疆中考)下列运算正确的是( 3、4、 5、 6、 7、 9、A . aa ?g 4 aa 6B . (x 2)5 x 7C . (2009东营中考)计算 3a 2b 3 4的结果是 (A) 81a 8b 12 ( B ) 12a 6b 7(2010 中考)1.计算(T)2 + ( T)3 = A. -2 B. -11 2 3(2009中考)化简(x ) x 的结果是 A . x 5 B . x 4(2009中考)下列运算正确的是( A . 3a 2— a 2= 3 B . (a 2) 3= a 5 (2009崇左中考)下列运算正确的是( 2 2 4 A . 2x 2 • 3x 2 6x 4 B . 2x 2C 2x 2 3x 2 - x 2D 2x 23'(2009中考) (2009中考) A . a 2• a 3F 列运算中,正确的是(B. a a 23ab 2 3a 2b 0). 12a 6b 7C. 0 ).3x 2 3x 2a 2F 列计算中,结果正确的是 a 6B . 2a • 3a6a10. (2009襄樊中考)下列计算正确的是(A . a 2-a 3a 6 B . a 8 a 4 a 2 a 3. a 6= a 95x 4C . C .C . a 3 11、 (2009 中考)若 2x 3,4y 5,则2x-2y 的值为((2a)2 a 2 (D)81a 8b 12D. 2(2a ) 2= 2a 24a 2 D . (a 3)2 a 6 D .a 6 a 2 a 52a 2a 5a 3368a 63、填空题要点二、整式的运算、选择题3 A.-5B. -2C.3、56 D.-5(2007 中考)计算: (103) (2007 中考) 计算 [( x) 3]解答题(2010 中考) 计算:(3)(2009 中考) 计算:2(2008中考) 2 16、 2 17、18 19、2x 2 32I 111. (2010眉山中考)下列运算中正确的是2、 2A . 3a 2a 5a C . 2a 2 a 3 2a 6(2009中考)下列计算正确的是( A.2x+x=x 3 B.(3x) 2=6x 232(2009中考)计算2xX 的结果是(2 a (2 a b)(2a b) 4a 2 b 2 b)2 4a 2 b 2C.(x — 2)2=x 2- 4D.x 3^x=x 212、 (2009威海中考)计算(2 3) 1(、21)0的结果是13、 (2009中考) 已知 10m 2,0n 3,则 103m 2n 14、 (2008中考) 计算(a 3)215、20、 (2009 中考) 计算: .1621、 (2010 •中考)计算:22、 (2009中考)计算:1)2 31.45 6A . XB . 2xC . 2xD . 2x4、 ( 2009眉山中考)下列运算正确的是().2 X 35224A . (x )xB . 3x 4x 7xC . ( x)9 ( x)3 x 6D . x(x 2 x 1) x 3 x 2 x5、 ( 2009中考)下列运算正确的是 ( ). A . 3a 2a a 5 B . a 2 a 36aC . (a 2 2D . (a.、22 . 2b)(a b) a bb)a b【解析】选C.根据平方差公式得结论(2008中考)下列计算结果正确的是( )A . 2x2 33 4y 2xy 2x yB .3x 2y 5xy 2= 2x 2 y4 C . 28x 2 - 3,y 7x y 4xyD . (3a 2)( 3a 2) 9a 2 4答案:选C7、( 2008中考)下列各式计算正确的是()A . 2a 2 a 3 3a 5B . 3xy 2 xy 3xyC . 2b 2 3 8b 5D . 2x?3x 5 6x 6答案:选D 二、填空题8、( 2010中考)计算:a 3为2 = ___________【解析】a 3为2 =a 3 2=a 答案:a31 29、 (2009黄冈中考)计算: 3x ( -x )=9答案:一-x 5.— 16a 8.310、 ___________________________________________ (2009 中考) 计算(3a )2-a 5 =7答案:9a32, ab 1,化简(a 2)(b 2)的结果是(2a 2)4= ________11、 (2009中考)已知:a b答案:212、 (2008中考)当x 3,y1时,代数式(x y )(x y ) y 的值是 _____________ .答案:913、 (2007中考)利用图形中面积的等量关系可以得到某些数学公式•例如,根据图甲,我们可以得到两数和的平方公式:(a+b ) 2=a 2+2ab+b 2.你根据图乙能得到的数学公式是答案:(a b)2 a 2 2ab b 2 三、解答题14、(2009中考)先化简,再求值:2 21(a b)(a b) (a b)2 2a 2,其中 a 3, b -.2【解析】(a b)(a b) (a b)22a a 2 b 2 a 2 2abb 22a 22ab11 a 3,b 3时,2ab 231 3220082b2008 20092 2 22008 1 2008二 a<b .200715、(2009 中考)若 a, b20082008融,试不用将分数化小数的方法比较a 、b 的大小.【解析】 2007 2009a= 2008 2009(2008 1) (2008 1)2008 20092 22008 1 2008 20091要点三、因式分解、选择题【解析】a 2—ab =a(a —b) 答案:a (a —b )【解析】 选C.选项A 提取公因式不彻底,选项 B 提取公因式后符号处理不正确, D 不是因式分解.【解析】选C.利用完全平方公式因式分解16、(2008中考)先化简,再求值: (a b)(a b) b(b 2),其中 a【解析】原式 a 2 2 2b b 2ba 2 2b当a 1 , b 1时,原式 (1)217、(2008中考)先化简, 再求值:(2 a b)(2a b) b(2ab) 4a 2bb ,其中【解析】原式 4a 2 b 2 2ab b 2 4a 22ab1、 (2010中考)分解因式:a 2 —ab =2、 (2008中考)下列分解因式正确的是(2A . 2x xy x 2x(x y 1)2xy2xy 3y y(xy 2x 3)2C . x(x y) y(x y) (x y)D . X 2x 3 x(x 1)3选项3、 (2010眉山中考)把代数式 mx 2 6mx9m 分解因式,下列结果中正确的是(4、5、2A . m(x 3)B . m(x 3)(x 3)2 2C . m(x 4)D . m(x 3)【解析】:选Dmx 2 6mx 9m =m(x 2— 6x + 9)=m(x — 3)2(2009中考)将整式9 — x 2分解因式的结果是 A . (3 — x)2B . (3 + x)(3 — x)C . (9 — x)2D . (9 + x)(9 — x)【解析】选B.根据平方差公式因式分解(2009中考)把多项式x 2 一 4x+4分解因式,所得结果是(). A . x(x 一 4)+4B.(x 一 2)(x+2) C . (x 一 2)2 D . (z+2)23 2 26、(2009中考)把x 2x y xy分解因式,结果正确的是(2 c 2 2 2A. xxyxyB. xx 2xy y C xxy D xxy【解析】选D.先提取公因式,在利用完全平方公式因式分解7、(2009江中考)在边长为a的正方形中挖去一个边长为b的小正方形(a b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证A. (a b)2 2 a2ab b2B. (a 2 2b) a2ab b2D. (a2b)(a b)a2ab 2 bC.2 a b2(a b)(a b)【解析】选C.图甲中阴影部分的面积为a2—b2,图乙中阴影部分的面积为(a+b)(a—b),所以a2—b2=(a+b)(a 一b),故选C.8、(2008中考)下列多项式中,能用公式法分解因式的是()A.x2—xyB. x2+ xyC. x2—y2D. x2+ y2【解析】选C.选项C可以利用平方差公式因式分解.9、(2008中考)下列式子中是完全平方式的是()A. B .C. D.【解析】选D.完全平方式符合首平方、尾平方、2倍的首尾在中央.二、填空题10、 ______________________________________________ (2010 中考)分解因式:2a2 -4a + 2=【解析】2a2-4a + 2=2 (a2^a +1)=2 (a -1)211、 _____________________________________________ (2009中考)分解因式:x22x=答案:x (x —2)12、(2009中考)因式分解:2a24a ___________答案:2a(a 2)13、 ______________________________________________________ (2009威海中考)分解因式:(x+3)2—(x+3)____________________________________.答案:(x+3)(x+2)14、 ______________________________________ (2009中考)分解因式2x38x= .答案:2x(x+2)(x —2)15、(2009中考)在实数围因式分解x4 4 = ____________ •答案:(x22)( x ,2)(x .、2)三、解答题16、(2009中考)在三个整式x22xy,y22xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解【关键词】整式的运算、因式分解【解析】(x22xy)x22x22xy2x(x y);或(y22xy)x2(x y)2;或(x22xy)(y222xy) x2y(x y)(x y)或(y22xy)(x222xy) y 2 x(y x)(y x)1 2 1 2 1 217、(2009中考)给出三个多项式:一X 2x 1 , - x 4x 1 , - x 2x .请选择你最2 2 2喜欢的两个多项式进行加法运算,并把结果因式分解.【解析】情况一:12 2x2x1 21 x 4x21 =2=x6x =x(x 6)情况二: 1 2 x22x1 12 x22x =x21 =(x1)(x1).情况三: 1 2 x4x1 1 2 x2x = x22x1=(x1)2.2218、(2008中考)分解因式【解析】原式===。
3.代数式与整式(含因式分解)一、选择题1.下列各式中正确的是()A.a3·a2=a6B.3ab-2ab=1C.6a2+13a=2a+1 D.a(a-3)=a2-3a2.下列运算正确的是()A.(-a)³=a³B.(a²)³=a⁵C.a²÷a-²=1D.(-2a³)²=4a⁶3.下列各式计算正确的是()A.4a-a=3B.a⁶÷a²=a³C.(-a³)²=a⁶D.a³·a²=a⁶4.下列运算正确的是()A.a²·a³=a⁶B.a⁸÷a⁴=a²C.a³+a³=2a⁶D.(a³)²=a⁶5.计算(a²)³的结果是()A.a⁵B.a⁶C.a⁸D.a⁹6.下列运算正确的是()A.3a²-a²=3B.(a²)³=a⁵C.a³·a⁶=a⁹D.(2a²)²=4a²7.小明总结了以下结论:①a(b+c)=ab+ac;②a(b-c)=ab-ac;③(b-c)÷a =b÷a-c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0).其中一定成立的个数是()A.1B.2C.3D.48.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a -b)²=a ²-2ab +b ²B.a(a -b)=a ²-abC.(a -b)²=a ²-b ²D.a ²-b ²=(a +b)(a -b)9.下列等式从左到右变形,属于因式分解的是( )A.(a +b)(a -b)=a2-b2B.x2-2x +1=(x -1)2C.2a -1=a ⎝ ⎛⎭⎪⎫2-1a D.x2+6x +8=x(x +6)+810.若(92-1)(112-1)k=8×10×12,则k =( ) A.12 B.10 C.8 D.611.对于任意的有理数a ,b ,如果满足a 2+b 3=a +b2+3,那么我们称这一对数a ,b 为“相随数对”,记为(a ,b ).若(m ,n )是“相随数对”,则3m +2[3m +(2n -1)]=( )A.-2B.-1C.2D.312.从前,古希腊一位庄园主把一块边长为a 米(a >6)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会( )A.没有变化B.变大了C.变小了D.无法确定二、填空题13.分解因式:m ²n -n ³= .14.分解因式:3a ²-6a +3= .15.分解因式:2a ³-8a = .16.已知m+n=12,m-n=2,则m²-n²=.17.分解因式:2a²-8=.18.分解因式:mn²-m=.19.分解因式:x³-xy²=.20.分解因式:x²y-y=.21.分解因式:2a²-4a+2=.22.数学讲究记忆方法.如计算(a⁵)²时若忘记了法则,可以借助(a⁵)²=a⁵×a⁵=a⁵+⁵=a¹º,得到正确答案.你计算(a²)⁵-a³×a⁷的结果是.23.现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片块.24.下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第个图形共有210个小球.三、计算题25.计算:(x-y)²+x(x+2y).26.先因式分解,再计算求值:2x³-8x,其中x=3.27.小红在计算a(1+a)-(a-1)²时,解答过程如下:红的解答从第步开始出错,请写出正确的解答过程.参考答案一、选择题1.D2.D3.C4.D5.B6.C7.C8.D9.B 10.B 11.A 12.C二、填空题13.n(m+n)(m-n)14.3(a-1)²15.2a(a+2)(a-2)16.2417.2(a+2)(a-2)18.m(n+1)(n-1)19.x(x+y)(x-y)20.y(x+1)(x-1)21.2(a-1)²22.(1)a²+b²(2)423.m²-m24.20三、计算题25.解:原式=x²-2xy+y²+x²+2xy=2x²+y².26.解:原式=2x(x²-4)=2x(x+2)(x-2).当x=3时,原式=2×3×(3+2)×(3-2)=30.27.第一步解:(1+a)-(a-1)²=a+a²-(a²-2a+1)=a+a²-a²+2a-1=3a-1.。
专题02 整式与因式分解一.选择题1.(2022·四川广元·中考真题)下列运算正确的是( )A .x 2+x =x 3B .(﹣3x )2=6x 2C .3y •2x 2y =6x 2y 2D .(x ﹣2y )(x +2y )=x 2﹣2y 2【答案】C【解析】【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:A 、x 2与x 不是同类项,不能合并,该选项不符合题意;B 、(﹣3x )2=9x 2原计算错误,该选项不符合题意;C 、3y •2x 2y =6x 2y 2正确,该选项符合题意;D 、(x ﹣2y )(x +2y )=x 2﹣4y 2原计算错误,该选项不符合题意;故选:C .【点睛】本题考查的是合并同类项,积的乘方,同底数幂的除法,平方差公式,掌握以上知识是解题的关键.2.(2022·四川眉山·中考真题)下列运算中,正确的是( )A .3515x x x ×=B .235x y xy +=C .22(2)4x x -=-D .()2242235610x x y x x y ×-=-【答案】D【解析】【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. 3515x x x ×=,根据同底数幂的乘法法则可知:358×=x x x ,故选项计算错误,不符合题意;B. 235x y xy +=,2x 和3y 不是同类项,不能合并,故选项计算错误,不符合题意;C. 22(2)4x x -=-,根据完全平方公式可得:22(2)44-=+-x x x ,故选项计算错误,不符合题意;D. ()2242235610x x y x x y ×-=-,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.3.(2022·四川成都·中考真题)下列计算正确的是( )A .2m m m +=B .()22m n m n -=-C .222(2)4m n m n +=+D .2(3)(3)9m m m +-=-【答案】D【解析】【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.2m m m +=,故该选项错误,不符合题意;B.()222m n m n -=-,故该选项错误,不符合题意;C.2224(2)4m n m n mn ++=+,故该选项错误,不符合题意;D.2(3)(3)9m m m +-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.4.(2022·四川遂宁·中考真题)下列计算中正确的是( )A .339a a a ×=B .()3328a a -=-C .()31024a a a ¸-=D .()()2224a a a -+--=+【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则、幂的乘方法则以及平方差公式逐一判断即可.【详解】A. 33336a a a a +×==,故本选项错误;B. 3333(2)(2)8a a a -=-=-,故本选项符合题意;C. 102310234()a a a a -´¸-=-=-,故本选项错误;D. 222(2)(2)()24a a a a -+--=--=-,故本选项错误;故选:B .【点睛】本题主要考查了同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则、幂的乘方法则以及平方差公式,熟记相关运算法则是解答本题的关键.5.(2022·四川南充·中考真题)下列计算结果正确的是( )A .532a a -=B .623a a a ¸=C .632a a a ¸=D .()3236928a b a b =【答案】D【解析】【分析】根据单项式的减法、除法及同底数幂的除法、积的乘方运算依次计算判断即可.【详解】解:A 、5a -3a =2a ,选项错误;B 、6a ÷2a =3,选项错误;C 、633a a a ¸=,选项错误;D 、()3236928a b a b =,选项正确;故选:D .【点睛】题目主要考查单项式的减法、除法及同底数幂的除法、积的乘方运算,熟练掌握各个运算法则是解题关键.6.(2022·四川泸州·中考真题)下列运算正确的是( )A .236a a a ×=B .321a a -=C .()32628a a -=-D .623a a a ¸=【答案】C【解析】【分析】根据整式的加减乘除运算法则逐个判断即可.【详解】解:选项A :235a a a ×=,故选项A 错误;选项B :32a a a -=,故选项B 错误;选项C :()32628a a -=-,故选项C 正确;选项D :624a a a ¸=,故选项D 错误;故选:C .【点睛】本题考查了整式的加减乘除运算法则,属于基础题,熟练掌握运算法则即可求解.7.(2021·四川内江·中考真题)下列计算正确的是( )A .235a a a +=B .3322ab b a ¸=C .248(2)8a a =D .222()a b a b --=-【答案】B【解析】【分析】根据整式的加减运算法则以及乘除运算法则即可求出答案.【详解】解:A 、2a 与3a 不是同类项,故A 不符合题意.B 、原式32a =,故B 符合题意.C 、原式816a =,故C 不符合题意.D 、原式222a ab b =++,故D 不符合题意.故选:B .【点睛】本题考查整式的混合运算,解题的关键是熟练运用整式的加减运算以及乘除运算法则,本题属于基础题型.8.(2021·四川雅安·中考真题)下列运算正确的是( )A .()326x x =B .232x x x-=C .33(2)6x x -=-D .623x x x ¸=【答案】A【解析】【分析】分别根据合并同类项法则,幂的乘法运算法则,同底数幂的除法法则逐一判断即可.【详解】解:A 、()326x x =正确,该选项符合题意;B 、23x 与2x -不是同类项,不能合并,该选项不符合题意;C 、33(2)8x x -=-原计算错误,该选项不符合题意;D 、624x x x ¸=原计算错误,该选项不符合题意;故选:A .【点睛】本题主要考查了同底数幂的运算及合并同类项,熟练掌握幂的运算及合并同类项是解题的关键.9.(2021·四川广元·中考真题)下列运算正确的是( )A .221124a a æö-=-ç÷èøB .()()2339a a a +-=-C .()23161a a -+=--D .()()2222ab a b a b+-=-【答案】B【解析】【分析】分别根据完全平方公式、平方差公式、单项式乘以多项式法则、多项式乘以多项式法则进行计算即可判断求解.【详解】解:A. 221124a a a æö-=-+ç÷èø,原选项计算错误,不合题意;B. ()()2339a a a +-=-,原选项计算正确,符合题意;C. ()23162a a -+=--,原选项计算错误,不合题意;D. ()()22222222a b a b a ab ab b a ab b +-=-+-=--,原选项计算错误,不合题意.故选:B【点睛】本题考查了整式的乘法运算,乘法公式等知识,熟知乘法公式和整式的乘法法则是解题关键.10.(2021·四川成都·中考真题)下列计算正确的是( )A .321mn mn -=B .()22346m n m n =C .()34m m m -×=D .()222m n m n +=+【答案】B【解析】【分析】利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A . 321mn mn mn -=¹,故选项A 计算不正确;B. ()()()222232346m n m n m n =×=,故选项B 计算正确;C . ()3344m m m m m m -×=-×=-¹,故选项C 计算不正确;D . ()222222m n m mn n m n +=++¹+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.11.(2020·四川巴中·中考真题)下列四个算式中正确的是( )A .235a a a +=B .()326a a -=C .236a a a ×=D .32a a a¸=【答案】D【解析】【分析】根据幂的乘方与积的乘方,合并同类项法则,同底数幂的乘法,同底数幂的除法逐个判断即可.【详解】解:A .2a 和3a 不能合并,故本选项不符合题意;B .()326a a -=-,故本选项不符合题意;C .235a a a ×=,故本选项不符合题意;D .32a a a ¸=,故本选项符合题意;故选:D .【点睛】本题考查了幂的乘方与积的乘方,合并同类项法则,同底数幂的乘法,同底数幂的除法等知识点,能熟记知识点是解此题的关键.12.(2020·四川·中考真题)下列运算正确的是( )A .a 2•a 3=a 6B .(3a )3 =9a 3C .3a ﹣2a =1D .(﹣2a 2)3=﹣8a 6【答案】D【解析】【分析】利用同底数幂的乘法法则、积的乘方运算法则、合并同类项法则分别进行计算即可.【详解】A 、a 2•a 3=a 5,故原计算错误;B 、(3a )3 =27a 3,故原计算错误;C 、3a ﹣2a =a ,故原计算错误;D 、(﹣2a 2)3=﹣8a 6,故原计算正确;故选:D .【点睛】本题主要考查了同底数幂的乘法、积的乘方运算、合并同类项、幂的乘方运算,关键是掌握各计算法则.13.(2020·四川眉山·中考真题)下列计算正确的是( )A .222()x y x y +=+B .2233235x y xy x y +=C .()326328a b a b -=-D .523()x x x -¸=【答案】C【解析】根据完全平方公式、同类项的合并以及幂的四则运算法则依次判断即可.【详解】解:A 选项222()2x y x xy y +=++而不是22x y +,故A 选项错误;B 选项22x y 和23xy 不是同类项,不能进行加减运算,故B 选项错误;C 选项()32363632(2)8a b a b a b -=-=-,故C 选项正确;D 选项22355()x x x x x =--¸¸=-而不是3x ,故D 选项错误.故选:C.【点睛】本题主要考查了整式乘法的综合,涉及了完全平方公式、同类项的合并及幂的四则运算,熟练掌握相应的运算法则并灵活应用是解题的关键.14.(2020·四川南充·中考真题)下列运算正确的是( )A .3a+2b=5abB .3a·2a=6a 2C .a 3+a 4=a 7D .(a-b)2=a 2-b 2【答案】B【解析】【分析】根据同类项、同底数幂乘法、完全平方公式逐一进行判断即可.【详解】A .不是同类项,不能合并,此选项错误;B .3a·2a=6a 2,此选项正确;C .不是同类项,不能合并,此选项错误;D .(a-b)2=a 2-2ab+b 2,此选项错误;故选:B .【点睛】本题考查整式的加法和乘法,熟练掌握同类项、同底数幂乘法、完全平方公式的运算法则是解题的关键.15.(2020·四川遂宁·中考真题)下列计算正确的是( )A .7ab ﹣5a =2bB .(a +1a )2=a 2+21a C .(﹣3a 2b )2=6a 4b 2D .3a 2b ÷b =3a 2【解析】【分析】根据合并同类项、完全平方公式、积的乘方、单项式除单项式分别进行计算,再判断即可.【详解】7ab 与﹣5a 不是同类项,不能合并,因此选项A 不正确;根据完全平方公式可得(a +1a)2=a 2+21a +2,因此选项B 不正确;(﹣3a 2b )2=9a 4b 2,因此选项C 不正确;3a 2b ÷b =3a 2,因此选项D 正确;故选:D .【点睛】本题考查了合并同类项、完全平方公式、积的乘方、单项式除单项式,掌握运算法则是正确计算的前提.16.(2021·四川绵阳·中考真题)整式23xy -的系数是( )A .-3B .3C .3x -D .3x 【答案】A【解析】【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.17.(2021·四川乐山·中考真题)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( )A .8n m (元)B .8n m (元)C .8m n (元)D .8m n(元)【答案】A【解析】【分析】先求出1千克售价,再计算8千克售价即可;【详解】∵m 千克的售价为n 元,∴1千克商品售价为n m,∴8千克商品的售价为8n m (元);故答案选A .【点睛】本题主要考查了列代数式,准确分析列式是解题的关键.18.(2020·四川达州·中考真题)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m ,下列代数式表示正方体上小球总数,则表达错误的是( )A .12(1)m -B .48(2)m m +-C .12(2)8m -+D .1216m -【答案】A【解析】【分析】先根据规律求出小球的总个数,再将选项逐项化简求值即可解题.【详解】解:由题可知求小球的总数的方法会按照不同的计数方法而规律不同,比如可以按照一共有12条棱,去掉首尾衔接处的小球,则每条棱上剩下12(m-2)个小球,加上衔接处的8个小球,则小球的个数为12(2)81216m m -+=-,选项B 中48(2)m m +-1216m =-,故B,C,D 均正确,故本题选A.【点睛】本题考查了图形的规律,合并同类项,需要学生具有较强的逻辑抽象能力,能够不重不漏的表示出小球的总数是解题关键.19.(2022·四川遂宁·中考真题)已知m 为方程2320220x x +-=的根,那么32220252022m m m +-+的值为( )A .2022-B .0C .2022D .4044【答案】B【解析】【分析】根据题意有2320220m m +-=,即有32320220m m m +-=,据此即可作答.【详解】∵m 为2320220x x +-=的根据,∴2320220m m +-=,且m ≠0,∴32320220m m m +-=,则有原式=322(32022)(32022)000m m m m m +--+-=-=,故选:B .【点睛】本题考查了利用未知数是一元二次方程的根求解代数式的值,由m 为2320220x x +-=得到2320220m m +-=是解答本题的关键.20.(2021·四川自贡·中考真题)已知23120x x --=,则代数式2395x x -++的值是( )A .31B .31-C .41D .41-【答案】B【解析】【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可.【详解】解:∵23120x x --=,∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---´-.故选:B .【点睛】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出23=12x x -,是解题的关键.21.(2020·四川眉山·中考真题)已知221224a b a b +=--,则132a b -的值为( )A .4B .2C .2-D .4-【答案】A【解析】【分析】根据221224a b a b +=--,变形可得:()22221121111042a a b b a b æö-++++=-++=ç÷èø,因此可求出1a =,2b =-,把a 和b 代入132a b -即可求解.【详解】∵221224a b a b +=--∴()22221121111042a a b b a b æö-++++=-++=ç÷èø即2(1)0a -=,21(1)02b +=∴求得:1a =,2b =-∴把a 和b 代入132a b -得:131(2)42´-´-=故选:A【点睛】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.22.(2021·四川泸州·中考真题)已知1020a =,10050b =,则1322a b ++的值是( )A .2B .52C .3D .92【答案】C【解析】【分析】根据同底数幂的乘法31010010a b ×=,可求23a b +=再整体代入即可.解: ∵1020a =,10050b =,∴2310100102050100010a b a b +×==´==,∴23a b +=,∴()()1311233332222a b a b ++=++=+=.故选:C .【点睛】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.23.(2020·四川乐山·中考真题)已知34m =,2432m n -=.若9n x =,则x 的值为( )A .8B .4C .D 【答案】C【解析】【分析】逆用同底数幂的乘除法及幂的乘方法则.由()224=339m n m n -¸即可解答.【详解】∵()()()222-224-233=3=39=m n m n m n m n -¸,依题意得:242x æö=ç÷èø,0x>.∴4x=∴x 故选:C .【点睛】此题主要考查了同底数幂的乘除法,以及幂的乘方运算,关键是会逆用同底数幂的乘除法进行变形.二.填空题24.(2022·四川达州·中考真题)计算:23a a +=______.【答案】5a【解析】直接运用合并同类项法则进行计算即可得到答案.【详解】解: 23a a+(23)a=+5a =.故答案为:5a .【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.25.(2022·四川乐山·中考真题)已知221062m n m n ++=-,则m n -=______.【答案】4【解析】【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得,m n 的值,进而代入代数式即可求解.【详解】解:Q 221062m n m n ++=-,2210620m n m n +-+\+=,即()()22310m n -++=,3,1m n \==-,()314m n \-=--=,故答案为:4.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.26.(2021·四川内江·中考真题)若实数x 满足210x x --=,则3222021x x -+=__.【答案】2020【解析】【分析】由等式性质可得21x x =+,21x x -=,再整体代入计算可求解.【详解】解:210--=Q x x ,21x x \=+,21x x -=,3222021x x -+2(1)22021x x x =+-+2222021x x x =+-+22021x x =-+12021=-+2020=.故答案为:2020.【点睛】本题主要考查因式分解的应用,将等式转化为21x x =+,21x x -=是解题的关键.27.(2021·四川绵阳·中考真题)若x y -=34xy =-,则22x y -=_____.【答案】0【解析】【分析】先求出22x y +,再求22x y -的平方,然后再开方即可求出22x y -.【详解】解:\x y -=2()3x y \-=,2223x xy y \-+=,∵34xy =-,\22332x y ++=,\2232x y +=,22222222()()4x y x y x y \-=+-9940416=-´=,220x y \-=,故答案为:0.【点睛】本题考查了完全平方公式的应用,等式的灵活变形是本题的关键.28.(2021·四川德阳·中考真题)已知a +b =2,a ﹣b =3.则a 2﹣b 2的值为 ___.【答案】6【解析】【分析】根据平方差公式即可求出答案.【详解】解:当a +b =2,a -b =3时,a 2-b 2=(a +b )(a -b )=2×3=6.故选:6.【点睛】29.(2021·四川达州·中考真题)已知a ,b 满足等式2690a a ++=,则20212020a b =___________.【答案】-3【解析】【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解.【详解】解:由2690a a ++=,变形得()230a +=,∴130,03a b +=-=,∴13,3a b =-=,∴()()()()20202020202020212020202120201113=33=33=3333a b æöæöæö=-´-´-´-´-´-ç÷ç÷ç÷èøèøèø.故答案为:-3【点睛】本题考查了完全平方公式,平方、算术平方根的非负性,同底数幂的乘法、积的乘方的逆用等知识,根据题意求出a 、b 的值,熟知同底数幂的乘法、积的乘方是解题关键.30.(2021·四川广安·中考真题)若x 、y 满足2223x y x y -=-ìí+=î,则代数式224x y -的值为______.【答案】-6【解析】【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.【详解】解:∵x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点睛】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.31.(2021·四川阿坝·中考真题)若m 2﹣2m ﹣1=0,则代数式2m 2﹣4m+3的值为___.【答案】5【解析】【详解】试题分析:先求出m 2﹣2m 的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.解:由m 2﹣2m ﹣1=0得m 2﹣2m=1,所以,2m 2﹣4m+3=2(m 2﹣2m )+3=2×1+3=5.故答案为5.考点:代数式求值.32.(2020·四川成都·中考真题)已知73a b =-,则代数式2269a ab b ++的值为_________.【答案】49【解析】【分析】先将条件的式子转换成a +3b =7,再平方即可求出代数式的值.【详解】解:∵73a b =-,∴37a b +=,∴()2222693749a ab b a b ++=+==,故答案为:49.【点睛】本题考查完全平方公式的简单应用,关键在于通过已知条件进行转换.33.(2022·四川广元·中考真题)分解因式:a 3﹣4a =_____.【答案】()()22a a a +-【解析】【分析】根据提公因式及平方差公式进行因式分解即可.【详解】解:原式=()()()2422a a a a a -=+-;故答案为:()()22a a a +-.【点睛】本题主要考查提公因式和公式法进行因式分解,熟练掌握因式分解是解题的关键.34.(2022·四川眉山·中考真题)分解因式:228x x -=________.【答案】2(4)x x -【解析】【分析】直接提取公因式即可得出答案.【详解】228x x -=2(4)x x -故答案为:2(4)x x -【点睛】本题考查提公因式法分解因式,解题的关键是找准公因式.35.(2022·四川德阳·中考真题)分解因式:2ax a -=______.【答案】a (x +1)(x -1)【解析】【分析】先提公因式a ,再运用平方差公式分解即可.【详解】解:ax 2-a=a (x 2-1)=a (x +1)(x -1)故答案为:a (x +1)(x -1).【点睛】本题考查提公因式法与公式法综合运用,熟练掌握分解因式的提公因式法与公式法两种方法是解题的关键.36.(2022·四川自贡·中考真题)分解因式:2m m +=___________.【答案】(1)m m +【解析】【分析】利用提公因式法进行因式分解.【详解】解:2(1)m m m m +=+故答案为:(1)m m +.【点睛】本题考查提公因式法因式分解,掌握提取公因式的技巧正确计算是解题关键.37.(2022·四川凉山·中考真题)分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1)【解析】【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).38.(2020·四川眉山·中考真题)分解因式3244m m m -+=________.【答案】()22m m -【解析】【分析】先提取公因式m ,再对余下的多项式利用完全平方公式继续分解.【详解】解:m 3-4m 2+4m=m (m 2-4m +4)=m (m -2)2.故答案为:m (m -2)2.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.39.(2020·四川攀枝花·中考真题)因式分解:2a ab -=_______.【答案】(1)(1)a b b +-【解析】【分析】先提取公因式a ,再对余下的多项式利用平方差公式继续分解.【详解】()()22(1)11=a b a a a b b b -=+--故答案为:(1)(1)a b b +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,这是解题关键.40.(2020·四川内江·中考真题)分解因式:4212b b --=_____________【答案】()()()2322b b b ++-【解析】【分析】先根据十字相乘法,再利用平方差公式即可因式分解.【详解】4212b b --=()()()()()22234322b b b b b +-=++-故答案为:()()()2322b b b ++-.【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.41.(2020·四川绵阳·中考真题)若多项式||22(2)1m n xy n x y -+-+是关于x ,y 的三次多项式,则mn =_____.【答案】0或8【解析】【分析】直接利用多项式的次数确定方法得出答案.【详解】解:Q 多项式||22(2)1m n xy n x y -+-+是关于x ,y 的三次多项式,20n \-=,1||3m n +-=,2n \=,||2m n -=,2m n \-=或2n m -=,4m \=或0m =,0mn \=或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.42.(2020·四川泸州·中考真题)若13a x y -与4312x y 是同类项,则a 的值是___________.【答案】5【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a 的值.【详解】解:∵13a x y -与4312x y 是同类项,∴a-1=4,∴a=5,故答案为:5.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.43.(2022·四川德阳·中考真题)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是123+=,第三个三角形数是1236++=,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是134+=,第三个正方形数是1359++=,……由此类推,图④中第五个正六边形数是______.【答案】45【解析】【分析】根据题意找到图形规律,即可求解.【详解】根据图形,规律如下表:三角形3正方形4五边形5六边形6L M 边形m11111L121+21+211+2111+2111L1+21(3)1m üï-ýïþM 31+2+31+2+31+21+2+31+21+21+2+31+21+21+2L1+2+312(3)12m +üï-ýï+þM41+2+3+41+2+3+41+2+31+2+3+41+2+31+2+31+2+3+41+2+31+2+31+2+3L1+2+3+4123(3)123m ++üï-ýï++þM M M M M M MMn 12n+++L 12n+++L 12(1)n +++-L 12n+++L 12(1)n +++-L 12(1)n +++-L 12n+++L 12(1)n +++-L 12(1)n +++-L 12(1)n +++-L L12n+++L 12(1)(3)12(1)n m n +++-üï-ýï+++-þL M L 由上表可知第n 个M 边形数为:12)[12(1)]()(3S n n m +++++++-=-L L ,整理得:1)(1)(3)2(2n n n n m S --+=+,则有第5个正六边形中,n=5,m=6,代入可得:((1)(1)(3)15)55(51)(63)452222n n n S n m +--+--+=+==,故答案为:45.【点睛】本题考查了整式--图形类规律探索,理解题意是解答本题的关键.44.(2022·四川乐山·中考真题)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD 的周长为26,则正方形d 的边长为______.【答案】5【解析】【分析】设正方形a、b、c、d的边长分别为a、b、c、d,分别求得b=13c,c=35d,由“优美矩形”ABCD的周长得4d+2c=26,列式计算即可求解.【详解】解:设正方形a、b、c、d的边长分别为a、b、c、d,∵“优美矩形”ABCD的周长为26,∴4d+2c=26,∵a=2b,c=a+b,d=a+c,∴c=3b,则b=13 c,∴d=2b+c=53c,则c=35d,∴4d+65d =26,∴d=5,∴正方形d的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.45.(2022·四川遂宁·中考真题)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【解析】【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.46.(2021·四川凉山·中考真题)如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n个图形需要___________根火柴棍.【答案】2n+1【解析】【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,...拼成第n 个图形共需要3+2×(n -1)=2n +1根火柴棍,故答案为:2n +1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.47.(2021·四川遂宁·中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【解析】【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3+L +n =()12n n +,列一元二次方程求解可得.【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∴第n 个图形中黑色三角形的个数为1+2+3+4+5+L +n =()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去),∴第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .48.(2020·四川·中考真题)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.【答案】65【解析】【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)...,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2´+=990,1+2+3+…+45=45(451)2´+=1035,∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.三.解答题49.(2021·四川南充·中考真题)先化简,再求值:2(21)(21)(23)x x x +---,其中1x =-.【答案】1210x -,-22【解析】【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解.【详解】解:原式=2241(4129)x x x ---+=22414129x x x --+-=1210x -,当x =-1时,原式=()12110´--=-22.【点睛】本题主要考查整式的化简求值,熟练掌握完全平方公式和平方差公式,是解题的关键.50.(2021·四川凉山·中考真题)已知112,1x y x y-=-=,求22x y xy -的值.【答案】-4【解析】【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可.【详解】解:∵2x y -=,∴1121y x x y xy xy ---===,∴2xy =-,∴()()22224xy x x y xy y ==---´=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.51.(2020·四川攀枝花·中考真题)已知3x =,将下面代数式先化简,再求值.2(1)(2)(2)(3)(1)x x x x x -++-+--【答案】236x x -;9【解析】【分析】先利用完全平方公式和平方差公式以及多项式乘法法则展开,再合并同类项,最后将x=3代入即可.【详解】解:2(1)(2)(2)(3)(1)x x x x x -++-+--=22212433x x x x x x +-+-+--+=236x x -将x=3代入,原式=9【点睛】本题考查了整式的混合运算—化简求值,解题时要掌握完全平方公式和平方差公式以及多项式乘法法则.52.(2020·四川内江·中考真题)我们知道,任意一个正整数x 都可以进行这样的分解:x m n =´(m ,n 是正整数,且m n £),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ´是x 的最佳分解.并规定:()mf x n=.例如:18可以分解成118´,29´或36´,因为1819263->->-,所以36´是18的最佳分解,所以()311862f ==.(1)填空:()6________f =;()9_________f =;(2)一个两位正整数t (10t a b =+,19a b £££,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值;(3)填空:①()22357_____________f ´´´=;②()32357_____________f ´´´=;③()42357_____________f ´´´=;④()52357_____________f ´´´=.【答案】(1)23;1;(2)t 为39,28,17;()f t 的最大值47;(3)20142014,,,21152115【解析】【分析】(1)6=1×6=2×3,由已知可求()6f =23;9=1×9=3×3,由已知可求()9f =1;(2)由题意可得:交换后的数减去交换前的数的差为:10b +a−10a−b =9(b−a )=54,得到b−a =6,可求t 的值,故可得到()f t 的最大值;(3)根据()mf x n=的定义即可依次求解.【详解】(1)6=1×6=2×3,∵6−1>3−2,∴()6f =23;9=1×9=3×3,∵9−1>3−3,∴()9f =1,故答案为:23;1;(2)由题意可得:交换后的数减去交换前的数的差为:10b +a−10a−b =9(b−a )=54,∴b−a =6,∵1≤a≤b≤9,∴b =9,a =3或b =8,a =2或b =7,a =1,∴t 为39,28,17;∵39=1×39=3×13,∴()39f =313;28=1×28=2×14=4×7,∴()28f =47;17=1×17,∴()11717f =;∴()f t 的最大值47.(3)①∵22357´´´=20×21∴()220235721f ´´´=;②32357´´´=28×30∴()3281423573015f ´´´==;③∵42357´´´=40×42∴()4402023574221f ´´´==;④∵52357´´´=56×60∴()5561423576015f ´´´==,故答案为:20142014,,, 21152115.【点睛】本题考查因式分解的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.。
2020年中考数学二轮专题——代数式求值及因式分解基础过关1. “比a 的2倍大1的数”用式子可以表示为( ) A. 2(a +1) B. 2(a -1) C. 2a -1D. 2a +12. (2019海南)当m =-1时,代数式2m +3的值是( ) A. -1B. 0C. 1D. 23. 下列各式由左边到右边的变形中,是因式分解的是( ) A. x 2y +xy 2=xy (x +y ) B. x 2-4x +4=x (x -4)+4 C. y +1=y (1+1y)D. (x -1)(x -2)=x 2-3x +24. (2019贺州)把多项式4a 2-1分解因式,结果正确的是( ) A. (4a +1)(4a -1)B. (2a +1)(2a -1)C. (2a -1)2D. (2a +1)25. (2019云南)按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,…,第n 个单项式是( ) A. (-1)n -1x 2n -1 B. (-1)n x 2n -1 C. (-1)n -1x 2n +1D. (-1)n x 2n +16. (2019泰州)若2a -3b =-1,则代数式4a 2-6ab +3b 的值为( ) A. -1B. 1C. 2D. 37. (2019 株洲)下列各选项中因式分解正确的是( ) A. x 2-1=(x -1)2 B. a 3-2a 2+a =a 2(a -2) C. -2y 2+4y =-2y (y +2) D. m 2n -2mn +n =n (m -1)28. (2018河北)用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按如图的方式向外等距扩1(单位:cm ),得到新的正方形,则这根铁丝需增加( )第8题图A. 4 cmB. 8 cmC. (a +4) cmD. (a +8) cm9. (2019荆门)欣欣服装店某天用相同的价格a (a >0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( )A. 盈利B. 亏损C. 不盈不亏D. 与售价a 有关10. (2019南充)原价为a 元的书包,现按8折出售,则售价为________元.11. (2019咸宁)若整式x 2+my 2(m 为常数,且m ≠0)能在有理数范围内分解因式,则m 的值可以是________(写出一个即可).12. (2019锦江区二诊)分解因式:4ax 2-ay 2=______. 13. (2019湘潭)若a +b =5,a -b =3,则a 2-b 2=________.14. 已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为________. 15. (2019潍坊)若2x =3,2y =5,则2x +y =________. 16. (2019 兰州)因式分解:a 3+2a 2+a =________.17. (2019湘西州)下面是一个简单的数值运算程序,当输入x 的值为16时,则输出的数值为____.(用科学计算器计算或笔算)第17题图18. (2019南京)分解因式(a -b )2+4ab 的结果是________.19. (2019高新区二诊)已知m +n =mn ,则(m -1)(n -1)=________. 20. (2019双流区一诊)若a 6=b 5=c4≠0,且a +b -2c =3,则a =________.满分冲关1. (2019武侯区二诊)已知x =13-5,y =13+5,则代数式x 2-2xy +y 2的值是________.2. (2019新都区5月监测)已知(2019-a )2+(a -2017)2=7,则代数式(2019-a )(a -2017)的值是________.3. 当x =a 与x =b (a ≠b )时,代数式x 2-2x +3的值相等,则x =a +b 时,代数式x 2-2x +3的值为________.参考答案基础过关1. D2. C3. A4. B5. C 【解析】单项式的系数符号规律为:处在奇数位置上的单项式的系数符号为正,处在偶数位置上的单项式的系数符号为负,故第n 个数的符号为(-1)n -1;x 的指数规律为:3=2×1+1,5=2×2+1,7=2×3+1,…,∴第n 个单项式的x 的指数为2n +1, ∴第n 个单项式为(-1)n -1x 2n +1.6. B 【解析】∵2a -3b =-1,∴4a 2-6ab +3b =2a (2a -3b )+3b =-2a +3b =1.7. D 【解析】逐项分析如下:8. B 【解析】∵原正方形周长为a ,则边长为a 4,∴新正方形为a 4+2,∴新正方形周长为4(a4+2)=a+8,则这根铁丝需要增加8 cm .9. B 【解析】设第一件衣服的进价为x 元,第二件衣服的进价为y 元,依题意,得x (1+20%)=a ,y (1-20%)=a ,∴x (1+20%)=y (1-20%),化简,得3x =2y ,由x (1+20%)=a 得x =5a6,∴该服装店卖出这两件服装的盈利情况为0.2x -0.2y =0.2x -0.3x =-0.1x =-0.1×5a 6=-a 12,即亏损了a12元.10. 0.8a 【解析】8折出售即为原价的0.8,∴售价为0.8a . 11. -1(答案不唯一)12. a (2x +y )(2x -y ) 【解析】原式=a (4x 2-y 2)=a (2x +y )(2x -y ). 13. 15 【解析】∵a +b =5,a -b =3,∴a 2-b 2=(a +b )(a -b )=5×3=15. 14. 315. 15 【解析】2x +y =2x ·2y =3×5=15.16. a (a +1)2 【解析】原式=a (a 2+2a +1)=a (a +1)2. 17. 3 【解析】根据运算程序可知,若输入的是x ,则输出的是x 2+1,∴当x =16时,输出的数值是162+1=3.18. (a +b )2 【解析】原式=a 2-2ab +b 2+4ab =a 2+2ab +b 2=(a +b )2.19. 1 【解析】原式=mn -m -n +1=mn -(m +n )+1,把m +n =mn 代入原式,得=mn -mn +1=1.20. 6 【解析】∵a 6=b 5=c4≠0,且a +b -2c =3,∴设a =6x ,则b =5x ,c =4x ,则6x +5x -8x =3,解得x =1,∴a =6.满分冲关1. 20 【解析】∵x =13-5,y =13+5,∴x -y =13-5-(13+5)=-25,∴x 2-2xy +y 2=(x -y )2=(-25)2=20.2. -32 【解析】设2019-a =x ,则a -2017=2-x ,有x 2+(x -2)2=7,解得x 1=1+102,x 2=1-102,∴(2019-a )(a -2017)=12×[(2019-a )+(a -2017)]2-[(2019-a )2+(a -2017)2]=-32.3. 3 【解析】根据题意得:a 2-2a +3=b 2-2b +3,∴(a -b )(a +b -2)=0,∵a ≠b ,∴a +b -2=0,则a +b =2,∴当x =a +b =2时,x 2-2x +3=22-2×2+3=3.。
2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)专题02 代数式与整式及因式分解一、选择题1.(2024四川广安) 代数式3x -的意义可以是( ) A. 3-与x 的和B. 3-与x 的差C. 3-与x 的积D. 3-与x 的商2. (2024贵州省)计算23a a +的结果正确的是( ) A. 5aB. 6aC. 25aD. 26a3. (2024云南省)分解因式:39a a -=( ) A. ()()33a a a -+B. ()29a a +C. ()()33a a -+D. ()29a a -4. (2024甘肃临夏)下列各式运算结果为5a 的是( ) A. 23a a +B. 23a aC. ()32aD. 102a a ÷5. (2024河南省)计算3···a a a a ⎛⎫⎪ ⎪⎝⎭个的结果是( )A. 5aB. 6aC. 3a a +D. 3a a6. (2024湖北省)223x x ⋅的值是( ) A. 25xB. 35xC. 26xD. 36x7. (2024深圳)下列运算正确的是( ) A. ()523m m -=- B. 23m n m m n ⋅= C. 33mn m n -=D. ()2211m m -=-8. (2024福建省)下列运算正确的是( ) A. 339a a a ⋅=B. 422a a a ÷=C. ()235a a = D. 2222a a -=9. (2024广西)如果3a b +=,1ab =,那么32232a b a b ab ++的值为( ) A. 0B. 1C. 4D. 910. (2024河北省)若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯个相加个相乘,则a 与b 的关系正确的是( ) A. 38a b +=B. 38a b =C. 83a b +=D. 38a b =+11. (2024河北省)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A. “20”左边的数是16B. “20”右边的“□”表示5C. 运算结果小于6000D. 运算结果可以表示为41001025a +二、填空题1. (2024江苏苏州)若2a b =+,则()2b a -=______.2. (2024四川广安)若2230x x --=,则2241x x -+=______.3. (2024四川乐山)已知3a b -=,10ab =,则22a b +=______.4. (2024四川德阳)若一个多项式加上234y xy +-,结果是2325xy y +-,则这个多项式为______.5. (2024上海市)计算:()324x =___________.6. (2024上海市)计算()()a b b a +-=______.7.(2024福建省)因式分解:x 2+x =_____.8. (2024甘肃临夏)因式分解:214x -=______. 9. (2024甘肃威武)因式分解:228x -=________. 10. (2024内蒙古赤峰)因式分解:233am a -=______. 11. (2024北京市)分解因式:325x x -=___________. 12. (2024黑龙江绥化)分解因式:2228mx my -=______. 13. (2024四川广元)分解因式:2(1)4a a +-=_________. 14. (2024江苏盐城)分解因式:x 2+2x +1=_______ 15. (2024江苏扬州)分解因式:2242a a -+=_____.16.(2024山东威海) 因式分解:()()241x x +++=________. 17. (2024四川达州)分解因式:3x 2﹣18x+27=________.18. (2024四川凉山)已知2212a b -=,且2a b -=-,则a b +=______.19.(2024四川内江) 一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m =________; 三、解答题1. (2024贵州省)(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和.2. (2024吉林省)先化简,再求值:()()2111a a a +-++,其中a =3. (2024陕西省)先化简,再求值:()()22x y x x y ++-,其中1x =,=2y -. 4. (2024四川南充)先化简,再求值:()23(2)3x x x x +-+÷,其中2 x =-. 5.(2024内蒙古赤峰)已知230a a --=,求代数式2(2)(1)(3)a a a -+-+的值. 6. (2024甘肃威武)先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b.7. (2024福建省)已知实数,,,,a b c m n 满足3,b cm n mn a a+==. (1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由. 8. (2024黑龙江齐齐哈尔)分解因式:3228a ab -。
专题02 整式与因式分解一.选择题1.(2022·浙江温州)计算的结果是A.6 B.C.3D.2.(2022·江苏宿迁)下列运算正确的是()A. B. C. D.3.(2022·陕西)计算:()A.B.C.D.4.(2022·浙江嘉兴)计算a2·a()A.a B.3a C.2a2D.a35.(2022·四川眉山)下列运算中,正确的是()A.B.C.D.6.(2022·江西)下列计算正确的是()A. B. C. D.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形的面积 C.的面积 D.的面积8.(2022·浙江温州)化简的结果是()A.B.C.D.9.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.1210.(2022·浙江绍兴)下列计算正确的是()A. B. C. D.11.(2022·云南)按一定规律排列的单项式:x,3x²,5x³,7x,9x,……,第n个单项式是()A.(2n-1)B.(2n+1)C.(n-1)D.(n+1)12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.913.(2022·安徽)下列各式中,计算结果等于的是()A.B.C.D.14.(2022·四川成都)下列计算正确的是()A. B. C. D.15.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.4117.(2022·湖南湘潭)下列整式与为同类项的是()A.B.C.D.18.(2022·江苏苏州)下列运算正确的是()A.B.C.D.19.(2022·重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3二.填空题20.(2022·江苏苏州)已知,,则______.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.22.(2022·四川乐山)已知,则______.23.(2022·湖南邵阳)已知,则_________.24.(2022·天津)计算的结果等于___________.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.28.(2022·山东滨州)若,,则的值为_______.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)30.(2022·四川德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=___.31.(2022·浙江嘉兴)分解因式:m2-1=_____.32.(2022·湖南怀化)因式分解:_____.33.(2022·浙江绍兴)分解因式:= ______.34.(2022·浙江宁波)分解因式:x2-2x+1=__________.35.(2022·江苏连云港)若关于的一元二次方程的一个解是,则的值是___.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,且.(1)若a,b是整数,则的长是___________;(2)若代数式的值为零,则的值是___________.37.(2022·四川德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是,第三个三角形数是,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是,第三个正方形数是,……由此类推,图④中第五个正六边形数是______.38.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,24 68 10 1214 16 18 20……则第27行的第21个数是______.三.解答题39.(2022·江苏苏州)已知,求的值.40.(2022·江苏宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为元;乙超市的购物金额为元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?41.(2022·湖南衡阳)先化简,再求值:,其中,.42.(2022·浙江金华)如图1,将长为,宽为的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形. (1)用关于a的代数式表示图2中小正方形的边长.(2)当时,该小正方形的面积是多少?43.(2022·安徽)观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.44.(2022·浙江丽水)先化简,再求值:,其中.45.(2022·重庆)若一个四位数的个位数字与十位数字的平方和恰好是去掉个位与十位数字后得到的两位数,则这个四位数为“勾股和数”.例如:,∵,∴2543是“勾股和数”;又如:,∵,,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”的千位数字为,百位数字为,十位数字为,个位数字为,记,.当,均是整数时,求出所有满足条件的.46.(2022·重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵,∴247是13的“和倍数”.又如:∵,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且.在a,b,c中任选两个组成两位数,其中最大的两位数记为,最小的两位数记为,若为整数,求出满足条件的所有数A.47.(2022·浙江嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.专题02 整式与因式分解一.选择题1.(2022·浙江温州)计算的结果是A.6 B.C.3D.【答案】A【分析】根据有理数的加法法则计算即可.【详解】解:.故选:A.【点评】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值是解题的关键.2.(2022·江苏宿迁)下列运算正确的是()A. B. C. D.【答案】C【分析】由合并同类项可判断A,由同底数幂的乘法可判断B,由积的乘方运算可判断C,由幂的乘方运算可判断D,从而可得答案.【详解】解:,故A不符合题意;,故B不符合题意;,故C符合题意;,故D不符合题意;故选:C【点睛】本题考查的是合并同类项,同底数幂的乘法,积的乘方运算,幂的乘方运算,掌握以上基础运算是解本题的关键.3.(2022·陕西)计算:()A.B.C.D.【答案】C【分析】利用单项式乘单项式的法则进行计算即可.【详解】解:.故选:C.【点睛】本题考查了单项式乘单项式的运算,正确地计算能力是解决问题的关键.4.(2022·浙江嘉兴)计算a2·a()A.a B.3a C.2a2D.a3【答案】D【分析】根据同底数幂的乘法法则进行运算即可.【详解】解:故选D【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法,底数不变,指数相加”是解本题的关键.5.(2022·四川眉山)下列运算中,正确的是()A.B.C.D.【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. ,根据同底数幂的乘法法则可知:,故选项计算错误,不符合题意;B. ,和不是同类项,不能合并,故选项计算错误,不符合题意;C. ,根据完全平方公式可得:,故选项计算错误,不符合题意;D. ,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.6.(2022·江西)下列计算正确的是()A. B. C. D.【答案】B【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意.故选:B.【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和的应用是解题的关键.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积 B.四边形的面积 C.的面积 D.的面积【答案】C【分析】设正方形纸片边长为x,小正方形EFGH边长为y,得到长方形的宽为x-y,用x、y表达出阴影部分的面积并化简,即得到关于x、y的已知条件,分别用x、y列出各选项中面积的表达式,判断根据已知条件能否求出,找到正确选项.【详解】根据题意可知,四边形EFGH是正方形,设正方形纸片边长为x,正方形EFGH边长为y,则长方形的宽为x-y,所以图中阴影部分的面积=S正方形EFGH+2S△AEH+2S△DHG==2xy,所以根据题意,已知条件为xy的值,A.正方形纸片的面积=x2,根据条件无法求出,不符合题意;B.四边形EFGH的面积=y2,根据条件无法求出,不符合题意;C.的面积=,根据条件可以求出,符合题意;D.的面积=,根据条件无法求出,不符合题意;故选 C.【点睛】本题考查整式与图形的结合,熟练掌握正方形、长方形、三角形等各种形状的面积公式,能正确用字母列出各种图形的面积表达式是解题的关键.8.(2022·浙江温州)化简的结果是()A.B.C.D.【答案】D【分析】先化简乘方,再利用单项式乘单项式的法则进行计算即可.【详解】解:,故选:D.【点睛】本题考查单项式乘单项式,掌握单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式是解题的关键.9.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H的个数,找到规律:每个图形比上一个图形多2个H是解题的关键.10.(2022·浙江绍兴)下列计算正确的是()A. B. C. D.【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A、,原式计算正确;B、,原式计算错误;C、,原式计算错误;D、,原式计算错误;故选:A.【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.11.(2022·云南)按一定规律排列的单项式:x,3x²,5x³,7x,9x,……,第n个单项式是()A.(2n-1)B.(2n+1)C.(n-1)D.(n+1)【答案】A【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示.【详解】解:依题意,得第n项为(2n-1)xn,故选:A.【点睛】本题考查的是单项式,根据题意找出规律是解答此题的关键.12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C【分析】根据第①个图案中菱形的个数:;第②个图案中菱形的个数:;第③个图案中菱形的个数:;…第n个图案中菱形的个数:,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:;第②个图案中菱形的个数:;第③个图案中菱形的个数:;…第n个图案中菱形的个数:,∴则第⑥个图案中菱形的个数为:,故C正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.13.(2022·安徽)下列各式中,计算结果等于的是()A.B.C.D.【答案】B【分析】利用整式加减运算和幂的运算对每个选项计算即可.【详解】A.,不是同类项,不能合并在一起,故选项A不合题意;B.,符合题意;C.,不是同类项,不能合并在一起,故选项C不合题意;D.,不符合题意,故选B【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键.14.(2022·四川成都)下列计算正确的是()A. B. C. D.【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.,故该选项错误,不符合题意;B.,故该选项错误,不符合题意;C.,故该选项错误,不符合题意;D.,故该选项正确,符合题意;故选:D.【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.15.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.【答案】C【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、,该选项错误;B、,该选项错误;C、,该选项正确;D、,该选项错误;故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.17.(2022·湖南湘潭)下列整式与为同类项的是()A.B.C.D.【答案】B【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.【详解】解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与不是同类项,故选项不符合题意.故选:B.【点睛】此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.18.(2022·江苏苏州)下列运算正确的是()A.B.C.D.【分析】通过,判断A选项不正确;C选项中、不是同类项,不能合并;D 选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B选项正确.【详解】A. ,故A不正确;B. ,故B正确;C. ,故C不正确;D. ,故D不正确;故选B.【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.19.(2022·重庆)对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【答案】D【分析】给添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵∴①说法正确∵又∵无论如何添加括号,无法使得的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是、、、;当括号中有三个字母,共有3种情况,分别是、、;当括号中有四个字母,共有1种情况,∴共有8种情况∴③说法正确∴正确的个数为3故选D.【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.20.(2022·江苏苏州)已知,,则______.【答案】24【分析】根据平方差公式计算即可.【详解】解:∵,,∴,故答案为:24.【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为______.【答案】5【分析】设正方形a、b、c、d的边长分别为a、b、c、d,分别求得b=c,c=d,由“优美矩形”ABCD的周长得4d+2c=26,列式计算即可求解.【详解】解:设正方形a、b、c、d的边长分别为a、b、c、d,∵“优美矩形”ABCD的周长为26,∴4d+2c=26,∵a=2b,c=a+b,d=a+c,∴c=3b,则b=c,∴d=2b+c=c,则c=d,∴4d+d =26,∴d=5,∴正方形d的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.22.(2022·四川乐山)已知,则______.【答案】【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得的值,进而代入代数式即可求解.【详解】解:,,即,,,故答案为:.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.23.(2022·湖南邵阳)已知,则_________.【答案】2【分析】将变形为即可计算出答案.【详解】∵∴故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.24.(2022·天津)计算的结果等于___________.【答案】【分析】根据同底数幂的乘法即可求得答案.【详解】解:,故答案为:.【点睛】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量与震级的关系为(其中为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.【答案】1000【分析】分别求出震级为8级和震级为6级所释放的能量,然后根据同底数幂的除法即可得到答案.【详解】解:根据能量与震级的关系为(其中为大于0的常数)可得到,当震级为8级的地震所释放的能量为:,当震级为6级的地震所释放的能量为:,,震级为8级的地震所释放的能量是震级为6级的地震所释放能量的1000倍.故答案为:1000.【点睛】本题考查了利用同底数幂的除法底数不变指数相减的知识,充分理解题意并转化为所学数学知识是解题的关键.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=;n=2时,“○”的个数是,n=3时,“○”的个数是,n=4时,“○”的个数是,……∴第n个“○”的个数是,由图形中的“○”的个数和“.”个数差为2022①,②解①得:无解解②得:故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.28.(2022·山东滨州)若,,则的值为_______.【答案】90【分析】将变形得到,再把,代入进行计算求解.【详解】解:∵,,∴.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)【答案】7.1×10-7【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【详解】∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10-7.故答案是:7.1×10-7.【点睛】本题主要考查了用科学记数法表示数的除法与有效数字,正确掌握运算法则是解题关键.30.(2022·四川德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=___.【答案】4【分析】根据完全平方公式的运算即可.【详解】∵,∵+=4=16,∴=4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用. 31.(2022·浙江嘉兴)分解因式:m2-1=_____.【答案】【分析】利用平方差公式进行因式分解即可.【详解】解:m2-1=故答案为:【点睛】本题考查的是利用平方差公式分解因式,掌握“平方差公式的特点”是解本题的关键.32.(2022·湖南怀化)因式分解:_____.【答案】【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:,故答案为:【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.33.(2022·浙江绍兴)分解因式:= ______.【答案】【分析】利用提公因式法即可分解.【详解】,故答案为:.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.34.(2022·浙江宁波)分解因式:x2-2x+1=__________.【答案】(x-1)2【详解】由完全平方公式可得:故答案为.【点睛】错因分析容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.35.(2022·江苏连云港)若关于的一元二次方程的一个解是,则的值是___.【答案】1【分析】根据一元二次方程解的定义把代入到进行求解即可.【详解】∵关于x的一元二次方程的一个解是,∴,∴,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,且.(1)若a,b是整数,则的长是___________;(2)若代数式的值为零,则的值是___________.【答案】【分析】(1)根据图象表示出PQ即可;(2)根据分解因式可得,继而求得。
专题3因式分解(共41题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( )A .()221x x -B .()221x x +C .()221x x -D .()221x x +【答案】A【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A .【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.2.(2021·浙江杭州市·中考真题)因式分解:214y -=( )A .()()1212y y -+B .()()22y y -+C .()()122y y -+D .()()212y y -+【答案】A【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【点睛】本题考查利用平方差公式进行因式分解,是重要考点,难度较易,掌握相关知识是解题关键. 3.(2021·贵州铜仁市·中考真题)下列等式正确的是( )A .3tan452-+︒=-B .()5510x xy x y ⎛⎫÷= ⎪⎝⎭C .()2222a b a ab b -=++D .()()33x y xy xy x y x y -=+- 【答案】D【分析】依据绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,逐项计算即可.【详解】 A. 3tan45314-+︒=+=,不符合题意B. ()55555105y y y x xy x y x ⎛⎫÷=⨯⎪= ⎝⎭,不符合题意 C. ()2222a b a ab b -=-+,不符合题意D. ()()3322()x y xy xy x y xy x y x y -=-=+-,符合题意 故选D .【点睛】本题考查了绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,解决本题的关键是牢记公式与定义.4.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21n n Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B .【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题5.(2021·四川成都市·中考真题)因式分解:24x -=__________.【答案】(x+2)(x-2)【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-6.(2021·云南中考真题)分解因式:34x x -=______.【答案】x (x +2)(x ﹣2).【详解】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用;因式分解.7.(2021·山东临沂市·中考真题)分解因式:2a 3﹣8a=________.【答案】2a (a+2)(a ﹣2)【详解】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,()()()222a 8a 2a a 4=2a a+2a 2-=--.8.(2021·广西柳州市·中考真题)因式分21x -= .【答案】(1)(1)x x +-.【详解】原式=(1)(1)x x +-.故答案为(1)(1)x x +-.考点:1.因式分解-运用公式法;2.因式分解.9.(2021·浙江宁波市·中考真题)分解因式:23x x -=_____________.【答案】x(x -3)【详解】直接提公因式x 即可,即原式=x (x -3).10.(2021·江苏宿迁市·中考真题)分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1).【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).11.(2021·浙江丽水市·中考真题)分解因式:24m -=_____.【答案】(2)(2)m m +-【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.12.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____.【答案】(a +1)2【分析】直接利用完全平方公式分解.【详解】a 2+2a +1=(a +1)2.故答案为()21+a .【点睛】此题考查了因式分解—运用公式法,熟练掌握完全平方公式是解本题的关键.13.(2021·吉林长春市·中考真题)分解因式:22a a +=_____.【答案】22(2)a a a a +=+【分析】直接提公因式法:观察原式22a a +,找到公因式a ,提出即可得出答案.【详解】 22(2)a a a a +=+.【点睛】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.14.(2021·江苏连云港市·中考真题)分解因式:2961x x ++=____.【答案】(3x +1)2【分析】原式利用完全平方公式分解即可.【详解】解:原式=(3x +1)2,故答案为:(3x +1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.15.(2021·江苏苏州市·中考真题)因式分解221x x -+=______.【答案】()21x -【分析】直接利用乘法公式分解因式得出答案.【详解】解:221x x -+=(x ﹣1)2.故答案为:(x ﹣1)2.【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.16.(2021·浙江台州市·中考真题)因式分解:xy -y 2=_____.【答案】y (x -y )【分析】根据提取公因式法,即可分解因式.【详解】解:原式= y (x -y ),故答案是:y (x -y ).【点睛】本题主要考查分解因式,掌握提取公因式法分解因式,是解题的关键.17.(2021·江西中考真题)因式分解:224x y -=______.【答案】(2)(2)x y x y +-【分析】直接利用平方差公式分解即可.【详解】解:224(2)(2)x y x y x y -=+-.故答案为:(2)(2)x y x y +-.【点睛】本题考查了分解因式-公式法,熟练掌握平方差公式的结构特征是解题的关键.18.(2021·甘肃武威市·中考真题)因式分解:242m m -=___________.【答案】()22m m -【分析】先确定242m m -的公因式为2m ,再利用提公因式分解因式即可得到答案.【详解】解:()24222.m m m m -=- 故答案为:()22m m -【点睛】本题考查的是提公因式分解因式,掌握公因式的确定是解题的关键.19.(2021·湖北黄石市·中考真题)分解因式:322a a a -+=______.【答案】()21a a -.【分析】观察所给多项式有公因式a ,先提出公因式,剩余的三项可利用完全平方公式继续分解.【详解】解:原式()221a a a =-+, ()21a a =-,故答案为:()21a a -.【点睛】本题考查了用提公因式法和公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,有公因式要先提公因式,再考虑运用公式法分解,注意一定要分解到无法分解为止.20.(2021·四川泸州市·)分解因式:244m -=___________.【答案】()()411m m +-.【分析】先提取公因式4,再利用平方差公式分解即可.【详解】解:()()()224441411m m m m -=-=+-. 故答案为:()()411m m +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.(2021·四川乐山市·中考真题)因式分解:249a -=________.【答案】(23)(23)a a -+【分析】此多项式可直接采用平方差公式进行分解.【详解】解:22249(2)3a a -=-=(23)(23)a a -+.故答案为:(23)(23)a a -+.【点睛】本题考查了公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.22.(2021·江苏无锡市·中考真题)分解因式:328x x -=_________.【答案】2x (x +2)(x -2)【分析】先提取公因式2x ,再利用平方差公式分解即可得.【详解】解:原式=2x (x 2-4)=2x (x +2)(x -2);故答案为:2x (x +2)(x -2).【点睛】本题主要考查了因式分解,解题的关键是掌握提公因式法和平方差公式.23.(2021·广西来宾市·中考真题)分解因式:224a b -=______.【答案】()()22a b a b +-【分析】利用平方差公式进行因式分解即可.【详解】解:224a b -=()222a b -=()()22a b a b +-.故答案为()()22a b a b +-.【点睛】本题考查了因式分解.熟练掌握平方差公式是解题的关键.24.(2021·浙江绍兴市·中考真题)分解因式:221x x ++= ___________ .【答案】2(1)x +【分析】根据完全平方公式因式分解即可.【详解】解:221x x ++=2(1)x +故答案为:2(1)x +.【点睛】此题考查的是因式分解,掌握利用完全平方公式因式分解是解决此题的关键. 25.(2021·湖北恩施土家族苗族自治州·中考真题)分解因式:2a ax -=__________.【答案】()()11a x x +-【分析】利用提公因式及平方差公式进行因式分解即可.【详解】解:()()()22111a ax a x a x x -=-=+-;故答案为()()11a x x +-.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.26.(2021·山东菏泽市·中考真题)因式分解:322a a a -+-=______.【答案】2(1)a a --【分析】先提取公因式,后采用公式法分解即可【详解】∴322a a a -+-=-a 22)1(a a -+=2(1)a a --故答案为: 2(1)a a --.【点睛】本题考查了因式分解,熟记先提取公因式,后套用公式法分解因式是解题的关键. 27.(2021·湖北十堰市·中考真题)已知2,33xy x y =-=,则322321218x y x y xy -+=_________.【答案】36【分析】先把多项式因式分解,再代入求值,即可.【详解】∴2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键. 28.(2021·湖南长沙市·中考真题)分解因式:22021x x -=______.【答案】(2021)x x -【分析】利用提公因式法进行因式分解即可得. 【详解】解:22021(2021)x x x x -=-, 故答案为:(2021)x x -. 【点睛】本题考查了利用提公因式法进行因式分解,熟练掌握提公因式法是解题关键. 29.(2021·湖南株洲市·中考真题)因式分解:264x xy -=__________. 【答案】()232x x y - 【分析】直接提出公因式2x 即可完成因式分解. 【详解】解:()264232x xy x x y -=-;故答案为:()232x x y -. 【点睛】本题考查了提公因式法进行因式分解,解决本题的关键是找到它们的公因式,提出公因式后再检查分解是否彻底即可,本题为基础题,考查了学生对基础知识的掌握与运用. 30.(2021·陕西中考真题)分解因式:3269x x x ++=______. 【答案】()23x x + 【分析】题目中每项都含有x ,提取公因式x ;先提取公因式,再用完全平方公式即可得出答案. 【详解】()322269(69)3x x x x x x x x ++=+++=故答案为()23x x +. 【点睛】本题考查了整式的因式分解,提公因式法和公式法,熟练掌握提公因式法分解因式、完全平方公式法分解因式是解题关键.31.(2021·湖南岳阳市·中考真题)因式分解:221x x ++=______. 【答案】()21x +. 【详解】解:()22211x x x ++=+.故答案为:()21x +. 【点睛】此题考查了运用公式法因式分解,熟练掌握完全平方公式是解答此题的关键. 32.(2021·湖南邵阳市·中考真题)因式分解:23xy x -=______. 【答案】()()x y x y x -+ 【分析】提公因式与平方差公式相结合解题. 【详解】解:2322()()()xy x x y x x y x y x -=-=-+, 故答案为:()()x y x y x -+. 【点睛】本题考查因式分解,涉及提公因式与平方差公式,是重要考点,难度较易,掌握相关是解题关键. 33.(2021·四川眉山市·中考真题)分解因式:3x y xy -=______. 【答案】()()11xy x x +- 【分析】先利用提公因式法提出公因式xy ,再利用平方差公式法进行变形即可. 【详解】解:()()()32111x y xy xy x xy x x -=-=+-;故答案为:()()11xy x x +-. 【点睛】本题考查了提公因式法和公式法(平方差公式)进行的因式分解的知识,解决本题的关键是牢记因式分解的特点和基本步骤,分解的结果是几个整式的积的形式,结果应分解到不能再分解为止,即分解要彻底,本题易错点是很多学生提公因式后以为分解就结束了,因此要对结果进行检查. 34.(2021·湖南衡阳市·中考真题)因式分解:239a ab -=__________. 【答案】()33a a b - 【分析】利用提取公因式法因式分解即可 【详解】解:()23933a ab a a b -=-故答案为: ()33a a b - 【点睛】本题考查提取公因式法因式分解,熟练掌握因式分解的方法是关键 35.(2021·北京中考真题)分解因式:2255x y -=______________. 【答案】()()5x y x y +- 【分析】根据提公因式法及平方差公式可直接进行求解. 【详解】解:()()()22225555x y x y x y x y -=-=+-;故答案为()()5x y x y +-. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键. 36.(2021·浙江温州市·中考真题)分解因式:2218m -=______. 【答案】()()233m m +- 【分析】原式提取2,再利用平方差公式分解即可. 【详解】 解:2218m -=2(m 2-9) =2(m +3)(m -3).故答案为:2(m +3)(m -3). 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 37.(2021·黑龙江绥化市·中考真题)在实数范围内分解因式:22ab a -=_________.【答案】(a b b .【分析】利用平方差公式22()()a b a b a b -=+-分解因式得出即可. 【详解】 解:22ab a - =2(2)a b -=(a b b故答案为:(a b b .【点睛】此题主要考查了利用平方差公式22()()a b a b a b -=+-分解因式,熟练应用平方差公式是解题关键.三、解答题38.(2021·黑龙江大庆市·中考真题)先因式分解,再计算求值:328x x -,其中3x =. 【答案】()()222+-x x x ,30 【分析】先利用提公因式法和平方差公式进行因式分解,再代入x 的值即可. 【详解】解:()()()322824222x x x x x x x -=-=+-,当3x =时,原式235130=⨯⨯⨯=. 【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.39.(2021·黑龙江齐齐哈尔市·中考真题)(1)计算:()201 3.144cos4512π-⎛⎫-+-+︒- ⎪⎝⎭.(2)因式分解:3312xy xy -+.【答案】(1)6(2)3(2)(2)xy y y -+- 【分析】(1)先计算乘方、特殊三角函数值、绝对值的运算,再利用四则运算法则计算即可; (2)先提取公因式,再利用平方差公式分解因式即可. 【详解】(1)解:原式4141)2=++⨯-411=++6=+(2)解:原式23(4)xy y =--3(2)(2)xy y y =-+-【点睛】本题考查的是实数的运算、因式分解,熟练运用乘方公式、特殊三角函数值、绝对值、正确提取公因式等是解题的关键.40.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4 【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∴2x y -=,∴1121y x x y xy xy---===,∴2xy =-,∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.41.(2021·重庆中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”. 例如6092129=⨯,21和29的十位数字相同,个位数字之和为10,609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10,234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .【答案】(1)168不是“合和数”,621是“合和数,理由见解析;(2)M 有1224,1221,5624,5616. 【分析】(1)首先根据题目内容,理解“合和数”的定义:如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,再判断168,621是否是“合和数”;(2)首先根据题目内容,理解“合分解”的定义.引进未知数来表示A 个位及十位上的数,同时也可以用来表示B .然后整理出:()()()P M G M Q M =,根据能被4整除时,通过分类讨论,求出所有满足条件的M .【详解】 解:(1)168不是“合和数”,621是“合和数”. 1681214=⨯,2410+≠,168∴不是“合和数”,6212327=⨯,十位数字相同,且个位数字3710+=, 621∴是“合和数”.(2)设A 的十位数字为m ,个位数字为n (m ,n 为自然数,且39m ≤≤,19n ≤≤), 则10,1010A m n B m n =+=+-.∴()10210,()()(10)210P M m n m n m Q M m n m n n =+++-=+=+-+-=-. ∴()()21054()2105P M m m G M k Q M n n ++====--(k 是整数).39m ≤≤,8514m ∴≤+≤,k 是整数,58m ∴+=或512m +=,∴当58m +=时,5851m n +=⎧⎨-=⎩或5852m n +=⎧⎨-=⎩, 36341224M ∴=⨯=或3733=1221M =⨯.∴当512m +=时,51251m n +=⎧⎨-=⎩或51253m n +=⎧⎨-=⎩, 76745623M ∴=⨯=或78725616M =⨯=.综上,满足条件的M 有1224,1221,5624,5616. 【点睛】本题考查了新定义问题,解题的关键是:首先要理解题中给出的新定义和会操作题目中所涉及的过程,结合所学知识去解决问题,充分考察同学们自主学习和运用新知识的能力.。
第一章数与式第3课时整式及因式分解江苏~中考真题精选命题点1 代数式及其求值(近3年39套卷,考查6次,考查11次,年考查7次)命题解读代数式及其求值近3年共考查24次,题型以填空题为主,主要考查的形式有:①结合提公因式,完全平方公式求代数式的值;②与方程、函数图象结合求代数式的值;③列代数式和求代数式的最值.1. (苏州9题3分)已知x-1x=3,则4-12x2+32的值为 ( )A .1 B. 32C.52D.722. (盐城9题3分)“x的2倍与5的和”用代数式表示为 .3. (泰州11题3分)若m=2n+1,则m2-4mn+4n2的值是 .4. (连云港11题3分)已知m+n=mn,则(m-1)(n-1)= .5. (淮安14题3分)若m2-2m-1=0,则代数式2m2-4m+3值为 .6. (宿迁16题3分)当x=m或x=n(m≠n)时,代数式x2-2x+3的值相等,则x=m+n时,代数式x2-2x+3的值为 .7. (盐城16题3分)已知x(x+3)=1,则代数式2x2+6x-5的值为 .8. (泰州14题3分)已知a2+3ab+b2=0(a≠0,b≠0),则代数式b aa b的值等于 .9. (淮安18题3分)观察一列单项式:x,3x2,5x3,7x,9x2,11x3,…,则第个单项式是_________.10. (南通18题3分)已知实数m,n满足m-n2=1,则代数式m2+2n2+4m-1的最小值等于_________.11. (南通18题3分)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m-n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于 .命题点2 整式的运算(近3年39套卷,考查12次,考查14次,考查17次)命题解读整式及其运算近3年共考查43次,选择题、填空题主要考查整式的运算,解答题主要考查整式化简及求值.考查的内容有:①下列运算正确的是;②计算XX的结果;化简XX或化简后再求值.1. (淮安2题3分)计算a×3a的结果是()A. a 2B. 3a2C. 3aD. 4a2. (南京2题2分)计算(-xy3)2的结果是()A. x2y6B. -x2y6C. x2y9D.-x2y93. (徐州2题3分)下列各式的运算结果为x6的是()A. x9÷x3B. (x3)3C. x2·x3D. x3+x34. (扬州2题3分)若□×3xy=3x2y,则□内应填的单项式是( )A. xyB. 3xyC. xD. 3x5. (镇江15题3分)计算-3(x-2y)+4(x-2y)的结果是()A. x-2yB. x+2yC. -x-2yD. -x+2y6. (连云港2题3分)下列运算正确的是()A. 2a+3b=5abB. 5a-2a=3aC. a2·a3=a6D. (a+b)2=a2+b27. (苏州11题3分)计算:a4÷a2= .8. (连云港10题3分)计算:(2x+1)(x-3)= .9. (南通13题3分)计算:(x-y)2-x(x-2y)= .10. (镇江11题3分)地震中里氏震级增加1级,释放的能量增大到原来的32倍,那么里氏级地震释放的能量是3级地震释放能量的324倍.11. (无锡19(2)题4分)计算:(x+1)(x-1)-(x-2)2.12. (南通19(2)题5分)化简:[x(x2y2-xy)-y(x2-x3y)]÷x2y.13. (盐城20题8分)先化简,再求值:(a+2b)2+(b+a)(b-a),其中a=-1,b=2.命题点3 因式分解(近3年39套卷,考查7次,考查5次,考查5次)1. (盐城11题3分)分解因式:a2-2a= .2. (苏州12题3分)因式分解:a2+2a+1=.3. (南通12题3分)因式分解:a3b-ab= .4. (南京10题3分)分解因式(a-b)(a-4b)+ab的结果是 .【答案】命题点1 代数式及其求值1. D【解析】∵x-1x=3,∴x2-1=3x,∴x2-3x=1,∴原式=4-12(x2-3x)=4-12=72.2. 2x+5【解析】根据题中表述可得该式应为2x+5.3. 1【解析】∵m=2n+1,∴m-2n=1,∴原式=(m-2n)2=1.4. 1【解析】∵(m-1)(n-1)=mn-m-n+1=mn-(m+n)+1,由已知mn=m+n,得原式=1.5. 5【解析】由m2-2m-1=0得m2-2m=1,所以2m2-4m+3=2(m2-2m)+3=2×1+3=5.6. 3【解析】由题意可知,二次函数y=x2-2x+3的对称轴是直线x=1,则m+n=2,把x=2代入x2-2x+3,得22-2×2+3=3.7. -3【解析】∵x(x+3)=1,∴2x2+6x-5=2x(x+3)-5=2×1-5=2-5=-3.8. -3【解析】∵a2+3ab+b2=0,∴a2+b2=-3ab,∴原式=2233.b a abab ab+-==-9. 4025x3【解析】系数依次为1,3,5,7,9,11,…,2n-1;x的指数依次是1,2,3,1,2,3,可见三个单项式一个循环,故可得第个单项式的系数为4025;∵20133=671,∴第个单项式指数为3,故可得第个单项式是4025x3.10. 4【解析】∵m-n2=1,即n2=m-1≥0,得m≥1,∴原式=m2+2m-2+4m-1=m2+6m+9-12=(m+3)2-12,则代数式m2+2n2+4m-1的最小值等于(1+3)2-12=4.11. 3【解析】∵x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,∴二次函数y=x2+4x+6的对称轴为直线x=2223+3222m n m n m n+++++=;又∵二次函数y=x2+4x+6的对称轴为直线x=-2,∴3322m n++=-2,∴3m+3n+2=-4,即m+n=-2.∴当x=3(m+n+1)=3(-2+1)=-3时,x2+4x+6=(-3)2+4×(-3)+6=3.命题点2整式的运算1. B【解析】本题主要考查单项式的乘法.单项式乘单项式:把系数和相同字母分别相乘,对于只在一个单项式出现的字母,则连同它的指数一起作为积的一个因式.a×3a=3a2.2. A【解析】根据积的乘方运算法则计算可得:(-xy3)2=(-x)2·(y3)2=x2y6.3. A【解析】A. x9÷x3=x9-3=x6,故本选项正确;B. (x3)3=33x⨯=x9,故本选项错误;C.x2·x3=x2+3=x5,故本选项错误;D. x3+x3=2x3,故本选项错误.4. C【解析】根据题意得:3x2y÷3xy=x.5. A【解析】-3(x-2y)+4(x-2y)=x-2y.6. B【解析】本题考查合并同类项、同底数幂的乘法和完全平方公式,通过上述考查点所涉及的运算法则和公式进行逐项分析.选项逐项分析正误A 2a和3b不是同类项,不能合并×B 5a-2a=(5-2)a=3a√C a2·a3=a2+3=a5≠a6×D (a+b)2=a2+2ab+b2≠a2+b2×7. a2【解析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.原式=a4 -2=a2.8. 2x2-5x-3【解析】(2x+1)(x-3)=2x2-6x+x-3=2x2-5x-3.9. y2【解析】(x-y)2-x(x-2y)=x2-2xy+y2-x2+2xy=y2.10. 7【解析】设里氏n级地震释放的能量是3级地震释放能量的324倍,则32n-1=323-1×324=326,得n-1=6,n=7.11. 解:原式=x2-1-x2+4x-4=4x-5…………………………………………………………(4分)12. 解:原式=[x2y(xy-1)-x2y(1-xy)]÷x2y…………………………………………(3分)=x2y(2xy-2)÷x2y=2xy-2.…………………………………………………………………………(5分)13. 解:原式=a2+4ab+4b2+b2-a2……………………………………………………………(3分)=4ab+5b2,………………………………………………………………………(5分)当a=-1,b=2时,原式=4×(-1)×2+5×22=12.……………………………………………(8分)命题点3因式分解1. a(a-2)【解析】提取公因式a,即求得a2-2a=a(a-2).2. (a+1)2【解析】a2+2a+1=(a+1)2.3. ab(a+1)(a-1)【解析】a3b-ab=ab(a2-1)=ab(a+1)(a-1).4. (a-2b)2【解析】化简(a-b)(a-4b)+ab=a2-5ab+4b2+ab=a2-4ab+4b2,再利用完全平方公式因式分解得:a2-4ab+4b2=(a-2b)2.。
深圳市中考数学整式乘法与因式分解易错压轴解答题专题练习(及答案)一、整式乘法与因式分解易错压轴解答题1.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.2.某同学利用若干张正方形纸片进行以下操作:(1)从边长为a的正方形纸片中减去一个边长为b的小正方形,如图1,再沿线段AB把纸片剪开,最后把剪成的两张纸片拼成如图2的等腰梯形,这一过程所揭示的公式是________.(2)先剪出一个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出两张边长分别为a和b的长方形纸片,如图3,最后把剪成的四张纸片拼成如图4的正方形.这一过程你能发现什么代数公式?(3)先剪出两个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出三张边长分别为a和占的长方形纸片,如图5,你能否把图5中所有纸片拼成一个长方形?如果可以,请画出草图,并写出相应的等式.如果不能,请说明理由.3.好学小东同学,在学习多项式乘以多项式时发现:( x+4)(2x+5)(3x-6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是: ×5×(-6)+2×(-6)×4+3×4×5=-3,即一次项为-3x.请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x+2)(3x+1)(5x-3)所得多项式的一次项系数为________.(2)( x+6)(2x+3)(5x-4)所得多项式的二次项系数为________.(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式不含一次项,求a的值;(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,则a2020=________.4.[数学实验探索活动]实验材料现有若干块如图①所示的正方形和长方形硬纸片.实验目的:用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,得到相应的等式,从而探求出多项式乘法或分解因式的新途径.例如,选取正方形、长方形硬纸片共6块,拼出一个如图②的长方形,计算它的面积,写出相应的等式有a2+3ab+2b2=(a+2b)(a+b)或(a+2b)(a+b)=a2+3ab+2b2.问题探索:(1)小明想用拼图的方法解释多项式乘法(2a+b)(a+b)=2a2+3ab+b2,那么需要两种正方形纸片________张,长方形纸片________张;(2)选取正方形、长方形硬纸片共8块,可以拼出一个如图③的长方形,计算图③的面积,并写出相应的等式;(3)试借助拼图的方法,把二次三项式2a2+5ab+2b2分解因式,并把所拼的图形画在虚线方框3内.5.阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么形如a+bi(a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3-4i)=5-3i.(1)填空:i3=________,i4="________";(2)计算:① ;② ;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+y)+3i=(1-x)-yi,(x,y为实数),求x,y的值.(4)试一试:请利用以前学习的有关知识将化简成a+bi的形式6.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a²+5ab+2b²可以因式分解为________.(2)若图中阴影部分的面积为242平方厘米,大长方形纸板的周长为78厘米,求图中空白部分的面积.7.如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为 ________ .(只要写出一个即可)(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值②若三个实数x,y,z满足2x×4y÷8z= ,x2+4y2+9z2=44,求2xy-3xz-6yz的值8.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次_一项式ax2+bx+c进行因式分解呢?我们已经知道,(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a1a2x2+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1, a2, c1,c2,如图①所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1, c1位于图的上一行,a2, c2位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子x2-x-6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项-6也分解为两个因数的积,即-6=2×(-3);然后把1,1,2,-3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(-3)+1×2=-1,恰好等于一次项的系数-1,于是x2-x-6就可以分解为(x+2)(x-3).(1)请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x-6=________.(2)【理解与应用】请你仔细体会上述方法,并尝试对下面两个二次三项式进行分解因式:Ⅰ.2x2+5x-7=________;Ⅱ.6x2-7xy+2y2=________ .(3)【探究与拓展】对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解.如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题:Ⅰ.分解因式3x2+5xy-2y2+x+9y-4=________ .Ⅱ.若关于x,y的二元二次式x2+7xy-18y2-5x+my-24 可以分解成两个一次因式的积,求m的值.________Ⅲ.己知x,y为整数,且满足x2+3xy+2y2+2x+3y=-1,请写出一组符合题意的x,y的值.________9.上数学课时,王老师在讲完乘法公式(a±b)2=a2±2ab+b2的多种运用后,要求同学们运用所学知识解答:求代数式x2+4x+5的最小值?同学们经过交流、讨论,最后总结出如下解答方法:解:x2+4x+5=x2+4x+4+1=(x+2)2+1∵(x+2)2≥0∴当x=-2时,(x+2)2的值最小,最小值是0,∴(x+2)2+1≥1∴当(x+2)2=0时,(x+2)2+1的值最小,最小值是1,∴x2+4x+5的最小值是1.请你根据上述方法,解答下列各题(1)知识再现:当x=________时,代数式x2-6x+12的最小值是________;(2)知识运用:若y=-x2+2x-3,当x=________时,y有最________值(填“大”或“小”)(3)知识拓展:若-x2+3x+y+5=0,求y+x的最小值10.一天,小明和小红玩纸片拼图游戏.发现利用图①中的三种材料各若干可以拼出一些图形来解释某些等式,比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)图③可以解释为等式:________.(2)图④中阴影部分的面积为________.观察图④请你写出(a+b)2、(a﹣b)2、ab 之间的等量关系是________.(3)如图⑤,小明利用7个长为b,宽为a的长方形拼成如图所示的大长方形;①若AB=4,若长方形AGMB的面积与长方形EDHN的面积的差为S,试计算S的值(用含a,b的代数式表示)②若AB为任意值,且①中的S的值为定值,求a与b的关系.11.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一大重要研究成果.如图所示的三角形数表,称“杨辉三角”.具体法则:两侧的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律:(1)根据上面的规律,写出(a+b)5的展开式;(2)利用上面的规律计算:(﹣3)4+4×(﹣3)3×2+6×(﹣3)2×22+4×(﹣3)×23+24.12.著名的瑞士数学家欧拉曾指出:可以表示为四个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为四个整数平方之和,即,这就是著名的欧拉恒等式,有人称这样的数为“不变心的数”.实际上,上述结论可概括为:可以表示为两个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为两个整数平方之和.【阅读思考】在数学思想中,有种解题技巧称之为“无中生有”.例如问题:将代数式改成两个平方之差的形式.解:原式﹒(1)【动手一试】试将改成两个整数平方之和的形式.(12+52)(22+72)=________;(2)【解决问题】请你灵活运用利用上述思想来解决“不变心的数”问题:将代数式改成两个整数平方之和的形式(其中a、b、c、d均为整数),并给出详细的推导过程﹒【参考答案】***试卷处理标记,请不要删除一、整式乘法与因式分解易错压轴解答题1.(1)解:由图可得,S1=a2﹣b2 ,S2=a2﹣a(a﹣b)﹣2b(a﹣b)=2b2﹣ab(2)解:S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,∵a+b=10,解析:(1)解:由图可得,S1=a2﹣b2,S2=a2﹣a(a﹣b)﹣2b(a﹣b)=2b2﹣ab(2)解:S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,∵a+b=10,ab=20,∴S1+S2=a2+b2﹣ab=(a+b)2﹣3ab=100﹣3×20=40(3)解:由图可得,S3=a2+b2﹣ b(a+b)﹣ a2=(a2+b2﹣ab),∵S1+S2=a2+b2﹣ab=30,∴S3= ×30=15.【解析】【分析】(1)用边长为a的正方形的面积减去边长为b的正方形的面积即为S1,用边长为a的正方形的面积减去一个边长分别为a、(a-b)的长方形的面积再减去两个边长分别为b、(a-b)的长方形的面积即为S2,据此解答即可;(2)先计算S1+S2=a2+b2﹣ab=(a+b)2﹣3ab,再将a+b=10,ab=20整体代入计算即可;(3)先计算S3=(a2+b2﹣ab),然后由S1+S2=a2+b2﹣ab=30,即可得到阴影部分的面积.2.(1)(2)a2+b2+2ab=(a+b)2(3)解:能拼成长方形.如图.(不止一种)画图正确得分.等式: 2a2+3ab+b2=(a+b)(2a+b) .(等式左右两边交换不扣分)解析:(1)(2)(3)解:能拼成长方形.如图.(不止一种)画图正确得分.等式: .(等式左右两边交换不扣分)【解析】【分析】(1)图1阴影部分面积为S1=a2-b2,图1阴影部分面积为S2=,根据展开前后图形的面积相等得到S1=S2,所以;(2)图3四个图形面积和为S3=a2+b2+2ab,图4的面积S4=(a+b)2,因为图4为图3的四个图形拼成,所以S3=S4,即;(3)图5六个图形面积和为S5=2a2+b2+3ab,画出的长方形的面积S=(a+b)(2a+b),因为画出的长方形为图5的六个图形拼成,所以S5=S,即. 3.(1)-11(2)63.5(3)由题意可得(x2+x+1)(x2-3x+a)(2x-1)一次项系数是:1×a×(-1)+(-3)×1×(-1)+2×1×a = a+3=0∴a=-3.解析:(1)-11(2)63.5(3)由题意可得(x2+x+1)(x2-3x+a)(2x-1)一次项系数是:1×a×(-1)+(-3)×1×(-1)+2×1×a = a+3=0∴a=-3.(4)2021.【解析】【解答】解:(1)由题意可得(x+2)(3x+1)(5x-3)一次项系数是:1×1×(-3)+3×2×(-3)+5×2×1=-11.(2)由题意可得( x+6)(2x+3)(5x-4) 二次项系数是:.(4)通过题干以及前三问可知:一次项系数是每个多项式的一次项分别乘以其他多项式常数项然后结果相加可得.所以(x+1)2021一次项系数是:a2020=2021×1=2021.【分析】(1)求一次项系数,用每个括号中一次项的系数分别与另外两个括号中的常数项相乘,最后积相加即可得出结论.(2)求二次项系数,还有未知数的项有x、2x、5x,选出其中两个与另一个括号内的常数项相乘,最后积相加即可得出结论.(3)先根据(1)(2)所求方法求出一次项系数,然后列出等式求出a的值.(4)根据前三问的规律即可计算出第四问的值.4.(1)3;3(2)解:∵大长方形长为a+3b,宽为a+b∴面积S=(a+3b)(a+b)又∵大长方形由三个大正方形,一个小正方形和四个小长方形组成∴面积S=a2+4ab+3b2∴a2解析:(1)3;3(2)解:∵大长方形长为a+3b,宽为a+b∴面积S=(a+3b)(a+b)又∵大长方形由三个大正方形,一个小正方形和四个小长方形组成∴面积S=a2+4ab+3b2∴a2+4ab+3b2=(a+3b)(a+b)(3)解:∵由2b2+5ab+2a2可知大长方形由两个小正方形和两个大正方形以及五个长方形组成,如图∴2b2+5ab+2a2=(2b+a)(b+2a).【解析】【解答】(1)∵(2a+b)(a+b)=2a2+3ab+b2;∴拼图需要两个小正方形,一个大正方形和三个小长方形∴需要3个正方形纸片,3个长方形纸片.【分析】(1)根据多项式(2a+b)(a+b)=2a2+3ab+b2可发现矩形有两个小正方形,一个大正方形和三个小长方形.(2)正方形、长方形硬纸片一共八块,面积等于长为a+3b,宽为a+b的矩形面积.所以a2+4ab+3b2=(a+3b)(a+b)(3)正方形、长方形硬纸片共9块,画出图形,面积等于长为a+2b,宽为2a+b的矩形面积,则2a2+5ab+2b2=(2a+b)(a+2b)5.(1)-i;1(2)解:①(2+i)(2-i)=4-i2=5②(2+i)2=i2+4i+4=-1+4i+4=3+4i;∵(x+y)+3i=(1-x)-yi,∴x+y=1-x,3=-y,解析:(1)-i;1(2)解:①(2+i)(2-i)=4-i2=5②(2+i)2=i2+4i+4=-1+4i+4=3+4i;∵(x+y)+3i=(1-x)-yi,∴x+y=1-x,3=-y,∴x=2,y=-3;原式=i.(3)∵(x+y)+3i=(1-x)-yi,∴x+y=1-x,3=-y,∴x=2,y=-3;(4)【解析】【解答】解:(1)∵i2=-1,∴i3=i2•i=-1•i=-i,i4=i2•i2=-1•(-1)=1【分析】(1)由于i3=i2•i,i4=i2•i2,将i2=-1代入计算即可;(2)①利用平方差公式计算可得(2+i)(2-i)=4-i2,然后代入计算即可;②利用完全平方公式计算可得(2+i)2=i2+4i+4,然后代入计算即可;(3)由(x+y)+3i=(1-x)-yi,可得x+y=1-x,3=-y,据此解出x、y的值即可;(4)利用平方差公式及分式的基本性质进形解答即得.6.(1)(a+2b)(2a+b)(2)解:由已知得: {2(a2+b2)=2426a+6b=78化简得②平方的:化简得:将①代入③得到:ab=24∴空白部分的面积为解析:(1)(a+2b)(2a+b)(2)解:由已知得:化简得②平方的:化简得:将①代入③得到:ab=24∴空白部分的面积为 5ab=120()【解析】【解答】(1)2a²+5ab+2b² = (a+2b)(2a+b)解:由已知得:化简得∴∴ab=24∴空白部分的面积为 5ab=120(平分厘米)【分析】(1)利用等面积法即可得到答案。
专题02 整式与因式分解一.选择题1.(2022·福建)化简()223a 的结果是( ) A .29aB .26aC .49aD .43a【答案】C 【分析】根据幂的乘方和积的乘方进行计算即可.【详解】()()222224339a a a ==,故选:C . 【点睛】本题考查幂的乘方和积的乘方,熟记幂的运算法则是解题的关键.2.(2022·湖南永州)下列因式分解正确的是( )A .()1ax ay a x y +=++B .()333a b a b +=+C .()22444a a a ++=+D .()2a b a a b +=+【答案】B【分析】根据因式分解的方法,提公因式法及公式法依次进行计算判断即可.【详解】解:A 、ax +ay =a (x +y ),故选项计算错误;B 、3a +3b =3(a +b ),选项计算正确;C 、()22442a a a ++=+,选项计算错误;D 、2a b +不能进行因式分解,选项计算错误;故选:B .【点睛】题目主要考查因式分解的判断及应用提公因式法与公式法进行因式分解,熟练掌握因式分解的方法是解题关键.3.(2022·四川内江)下列运算正确的是( )A .a 2+a 3=a 5B .(a 3)2=a 6C .(a ﹣b )2=a 2﹣b 2D .x 6÷x 3=x 2【答案】B【分析】根据合并同类项法则,幂的乘方和同底数幂的除法法则,完全平方公式,进行判断即可.【详解】A.a 2和a 3不是同类项,不能合并,故A 不符合题意;B.(a 3)2=a 6,故B 符合题意;C.(a ﹣b )2=a 2﹣2ab +b 2,故C 不符合题意;D.63633x x x x ÷==﹣,故D 不符合题意.故选:B .【点睛】本题主要考查了整式的运算,熟练掌握合并同类项法则,幂的乘方和同底数幂的除法法则,完全平方公式,是解题的关键.4.(2022·山东临沂)计算()1a a a +-的结果是( )A .1B .2aC .22a a +D .21a a -+【答案】B【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()1a a a +- 22a a a a .故选B【点睛】本题考查的是整式的混合运算,单项式乘以多项式,掌握“单项式乘以多项式的运算”是解本题的关键.5.(2022·内蒙古赤峰)已知()()2221x x x +--=,则2243x x -+的值为( )A .13B .8C .-3D .5【答案】A【分析】先化简已知的式子,再整体代入求值即可.【详解】∵()()2221x x x +--=∴225x x -=∴222432(2)313x x x x -+=-+=故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键.6.(2022·江苏泰州)下列计算正确的是( )A .325ab ab ab +=B .22523y y -=C .277a a a +=D .2222m n mn mn -=-【答案】A【分析】运用合并同类项的法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.【详解】解:A 、325ab ab ab +=,故选项正确,符合题意;B 、222523y y y -=,故选项错误,不符合题意;C 、78a a a +=,故选项错误,不符合题意;D 、222m n mn 和不是同类项,不能合并,故选项错误,不符合题意;故选:A .【点睛】本题考查合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则.7.(2022·湖北鄂州)下列计算正确的是( )A .b +b 2=b 3B .b 6÷b 3=b 2C .(2b )3=6b 3D .3b ﹣2b =b 【答案】D【分析】根据积的乘方“把积的每一个因式分别乘方,再把所得的幂相乘”,合并同类项“把同类项的系数相减,所得的结果作为系数,字母和字母的指数不变”,同底数幂的除法“底数不变,指数相减”进行计算即可得.【详解】解:A 、22b b b b +=+,选项说法错误,不符合题意;B 、63633b b b b -÷==,选项说法错误,不符合题意;C 、33(2)8b b =,选项说法错误,不符合题意;D 、32b b b -=,选项说法正确,符合题意;故选D .【点睛】本题考查了积的乘方,合并同类项,同底数幂的除法,解题的关键是掌握这些知识点. 8.(2022·辽宁锦州)下列运算正确的是( )A .236a a a ⋅=B .22(2)4x x -=C .22m mn n -= D .2ab ab b -=【答案】B【分析】由同底数幂乘法、积的乘方、负整数指数幂的乘法、合并同类项,分别进行判断,即可得到答案.【详解】解:235a a a ⋅=,故A 错误;22(2)4x x -=,故B 正确;22m mn n -=,故C 错误; 2ab ab -不能合并,不D 错误;故选:B .【点睛】本题考查了同底数幂乘法、积的乘方、负整数指数幂的乘法、合并同类项,解题的关键是掌握运算法则,正确的进行判断.9.(2022·广西贵港)下例计算正确的是( )A .22a a -=B .2222a b a b +=C .33(2)8a a -=D .()236a a -= 【答案】D【分析】分别根据合并同类项、单项式除以单项式、同底数幂的乘法、幂的乘方法则进行计算即可求解.【详解】解:A. 2a −a =a ,故原选项计算错误,不符合题意;B. 2222a b a b +≠,不是同类项不能合并,故原选项计算错误,不符合题意;C. 33(2)-8a a -=,故原选项计算错误,不符合题意;D. (-a 3)2=a 6,故原选项计算正确,符合题意.故选:D .【点睛】本题考查了合并同类项、单项式除以单项式、同底数幂的乘法、幂的乘方等运算,熟知运算法则是解题关键.10.(2022·湖北恩施)下列运算正确的是( )A .236a a a ⋅=B .321a a ÷=C .32a a a -=D .()236a a = 【答案】D【分析】根据同底数幂的乘除法、合并同类项法则、幂的乘方法则逐项判断即可得.【详解】解:A 、235a a a ⋅=,则此项错误,不符题意;B 、32a a a ÷=,则此项错误,不符题意;C 、3a 与2a 不是同类项,不可合并,则此项错误,不符题意;D 、()236a a =,则此项正确,符合题意;故选:D . 【点睛】本题考查了同底数幂的乘除法、合并同类项、幂的乘方,熟练掌握各运算法则是解题关键. 11.(2022·黑龙江哈尔滨)下列运算一定正确的是( )A .()22346a b a b =B .22434b b b +=C .()246a a =D .339a a a ⋅=【答案】A【分析】根据积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算逐项验证即可得到结论.【详解】解:A 、根据积的乘方运算、幂的乘方运算法则可知()22346a b a b =,该选项符合题意; B 、根据合并同类项运算可知2224344b b b b +=≠,该选项不符合题意;C 、根据幂的乘方运算可知()244286⨯==≠a a a a ,该选项不符合题意; D 、根据同底数幂的乘法运算可知333369a a a a a +⋅==≠,该选项不符合题意;故选:A .【点睛】本题考查整式的运算,涉及到积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算等知识点,熟练掌握相关运算法则是解决问题的关键.12.(2022·内蒙古包头)若42222m ⨯=,则m 的值为( )A .8B .6C .5D .2【答案】B【分析】根据同底数幂的乘法运算计算4242622222m +⨯===,即可求解.【详解】4242622222m +⨯===,6m ∴=,故选:B .【点睛】本题考查了同底数幂的乘法运算,即m n m n a a a +⋅=(m 、n 为正整数),熟练掌握运算法则是解题的关键.13.(2022·湖南长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100)x -元C .8(100)x -元D .(1008)x -元 【答案】C【分析】根据题意列求得购买乙种读本()100x -本,根据单价乘以数量即可求解.【详解】解:设购买甲种读本x 本,则购买乙种读本()100x -本,乙种读本的单价为8元/本,则则购买乙种读本的费用为8(100)x -元故选C【点睛】本题考查了列代数式,理解题意是解题的关键.14.(2022·山东聊城)下列运算正确的是( )A .()22233xy x y -=B .2243474x x x +=+C .()2323131t t t t t -+=-+ D .()()43341a a -÷-=- 【答案】D【分析】A 选项根据积的乘方等于乘方的积即可判断;B 选项合并同类型:字母和字母的指数比不变,系数相加;C 选项利用乘方的分配律;D 选项先用幂的乘方化简,在运用整式的除法法则.【详解】解:A 、原式229x y =,不合题意;B 、原式27x =,不合题意;C 、原式323t t t =-+,不合题意;D 、原式=-1,符合题意;故选:D .【点睛】本题考查积的乘方、幂的乘方、合并同类型、乘法分配律、整式的除法,掌握相应的运算法则是解题的关键,其中每一项的符号是易错点.15.(2022·湖南岳阳)下列运算结果正确的是( )A .23a a a +=B .55a a a ÷=C .236a a a ⋅=D .437()a a =【答案】A【分析】根据合并同类项判断A 选项;根据同底数幂的除法判断B 选项;根据同底数幂的乘法判断C 选项;根据幂的乘方判断D 选项.【详解】解:A 选项,原式3=a ,故该选项符合题意;B 选项,原式4a =,故该选项不符合题意;C 选项,原式5a =,故该选项不符合题意;D 选项,原式12a =,故该选项不符合题意;故选A .【点睛】本题考查了合并同类项,同底数幂的乘除法,幂的乘方与积的乘方,掌握()m n mn a a =是解题的关键. 16.(2022·内蒙古包头)若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A .8-B .5-C .1-D .16 【答案】C【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c =,代入即可求解. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c 的倒数是4,∴14c =, ∴334a b c +-()34a b c =+-130414=⨯-⨯=-,故选:C 【点睛】本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 17.(2022·贵州遵义)下列运算结果正确的是( )A .3412a a a ⋅=B .321ab ab -=C .()232624ab a b -=D .()222a b a b -=- 【答案】C 【分析】分别利用同底数幂的乘法法则,合并同类项的法则,积的乘方法则及完全平方公式分别判断即可.【详解】A .347a a a ⋅=,故此选项计算错误,不符合题意;B .32ab ab ab -=,故此选项计算错误,不符合题意;C .()232624ab a b -=,此选项计算正确,符合题意;D .()2222a b a ab b -=-+,故此选项计算错误,不符合题意;故选:C .【点睛】本题考查同底数幂的乘法法则,合并同类项的法则,积的乘方法则及完全平方公式,熟练掌握相关计算法则是解答本题的关键.同底数幂相乘,底数不变,指数相加;合并同类项时,只把系数相加,所得结果作为合并后的系数,字母和字母的指数不变;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.18.(2022·广西)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是( )A .222()2a b a ab b +=++B .222()2a b a ab b -=-+C .22()()a b a b a b +-=-D .222()ab a b = 【答案】A【分析】根据大正方形的面积=边长为a 的正方形的面积+两个长为a ,宽为b 的长方形的面积+边长为b 的正方形的面积,即可解答.【详解】根据题意得:(a +b )2=a 2+2ab +b 2,故选:A .【点睛】本题考查了完全平方公式的几何背景,用整体和部分两种方法表示面积是解题的关键. 19.(2022·广东深圳)下列运算正确的是( )A .268a a a ⋅=B .()3326a a -=C .()22a b a b +=+D .235a b ab +=【答案】A【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,单项式乘多项式及合并同类项的法则逐一判断即可.【详解】解:268a a a ⋅=,计算正确,故此选项符合题意;B 、33(2)8a a -=-,原计算错误,故此选项不符合题意;C 、2()22a b a b +=+,原计算错误,故此选项不符合题意;D 、23a b +,不是同类项不能合并,原计算错误,故此选项不符合题意.故选:A .【点睛】本题考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.20.(2022·上海)下列运算正确的是……( )A .a ²+a ³=a 6B .(ab )2 =ab 2C .(a +b )²=a ²+b ²D .(a +b )(a -b )=a ² -b 2 【答案】D【分析】根据整式加法判定A ;运用积的乘方计算关判定B ;运用完全平方公式计算并判定C ;运用平方差公式计算并判定D .【详解】解:A.a ²+a ³没有同类项不能合并,故此选项不符合题意;B.(ab )2 =a2b 2,故此选项不符合题意;C.(a +b )²=a ²+2ab +b ²,故此选项不符合题意D.(a +b )(a -b )=a ² -b 2,故此选项符合题意故选:D .【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键.二.填空题21.(2022·湖南长沙)当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它己被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”己经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2002个不同的数据二维码,现有四名网友对2002的理解如下:YYDS (永远的神):2002就是200个2相乘,它是一个非常非常大的数;DDDD (懂的都懂):2002等于2200;JXND (觉醒年代):2002的个位数字是6;QGYW (强国有我):我知道10321024,101000==,所以我估计2002比6010大.其中对2002的理解错误的网友是___________(填写网名字母代号).【答案】DDDD【分析】根据乘方的含义即可判断YYDS (永远的神)的理解是正确的;根据积的乘方的逆用,将2002化为1002(2),再与2200比较,即可判断DDDD (懂的都懂)的理解是错误的;根据2的乘方的个位数字的规律即可判断JXND (觉醒年代)的理解是正确的;根据积的乘方的逆用可得2001020603202(2),10(10)==,即可判断QGYW (强国有我)的理解是正确的.【详解】2002是200个2相乘,YYDS (永远的神)的理解是正确的;200100222(2)200=≠,DDDD (懂的都懂)的理解是错误的;1234522,24,28,216,232=====,∴2的乘方的个位数字4个一循环,200450÷=,∴2002的个位数字是6,JXND (觉醒年代)的理解是正确的;2001020603202(2),10(10)==,10321024,101000==,且103210>20060210∴>,故QGYW (强国有我)的理解是正确的;故答案为:DDDD .【点睛】本题考查了乘方的含义,幂的乘方的逆用等,熟练掌握乘方的含义以及乘方的运算法则是解题的关键.22.(2022·内蒙古包头)若一个多项式加上2328xy y +-,结果得2235xy y +-,则这个多项式为___________.【答案】23y xy -+【分析】设这个多项式为A ,由题意得:22(328)235A xy y xy y ++-=+-,求解即可.【详解】设这个多项式为A ,由题意得:22(328)235A xy y xy y ++-=+-,22222(235)(328)2353283A xy y xy y xy y xy y y xy ∴=+--+-=+---+=-+,故答案为:23y xy -+.【点睛】本题考查了整式的加减,准确理解题意,列出方程是解题的关键.23.(2022·黑龙江大庆)已知代数式22(21)4a t ab b +-+是一个完全平方式,则实数t 的值为____________.【答案】52或32- 【分析】直接利用完全平方公式求解.【详解】解:∵代数式22(21)4a t ab b +-+是一个完全平方式,∴()()()222222(21)4222a t ab b a b a b a b +-+++±=±±⋅⋅=,∴214t -=±, 解得52t =或32t =-, 故答案为:52或32- 【点睛】本题考查了完全平方公式的运用,熟记完全平方公式的特点是解题的关键.24.(2022·四川广安)已知a +b =1,则代数式a 2﹣b 2 +2b +9的值为________.【答案】10【分析】根据平方差公式,把原式化为()()29a b a b b +-++,可得9a b ++,即可求解.【详解】解:a 2﹣b 2 +2b +9()()29a b a b b =+-++29a b b =-++9a b =++19=+10=故答案为:10【点睛】本题主要考查了平方差公式的应用,利用整体代入思想解答是解题的关键. 25.(2022·吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要__________元.(用含m 的代数式表示)【答案】10m【分析】根据“总费用=购买篮球的数量⨯每个篮球的价格”即可得.【详解】解:由题意得:一共需要的费用为10m 元,故答案为:10m .【点睛】本题考查了列代数式,正确找出等量关系是解题关键.26.(2022·湖北恩施)观察下列一组数:2,12,27,…,它们按一定规律排列,第n 个数记为n a ,且满足21112n n n a a a +++=.则4a =________,2022a =________. 【答案】15 13032【分析】由已知推出1211111n n n n a a a a +++-=-,得到202220211132a a -=,202120201132a a -=,431132a a -=,211132a a -=,上述式子相加求解即可. 【详解】解:∵21112n n n a a a +++=;∴1211111n n n n a a a a +++-=-, ∵21111113212222a a -=-=-=, ∵43411113227a a a -=-=, ∴a 4=15, ∴202220211132a a -=,202120201132a a -=,211132a a -=,把上述2022-1个式子相加得2022111320212a a ⨯-=, ∴a 2022=13032, 故答案为:15,13032.【点睛】此题主要考查数字的变化规律,关键是得出1211111n n n n a a a a +++-=-,利用裂项相加法求解. 27.(2022·江苏常州)计算:42÷=m m _______. 【答案】2m【分析】根据同底数幂的除法运算法则即可求出. 【详解】解:422m m m ÷=.故答案为:2m .【点睛】本题主要考查同底数幂的除法,掌握同底数幂的除法法则是解题的关键. 28.(2022·辽宁锦州)分解因式:2232x y xy y -+=____________. 【答案】2()y x y -【分析】先提取公因数y ,再利用完全平方公式进行二次分解.完全平方公式:(a ±b )2=a 2±2ab +b 2. 【详解】解:222223(2)(2)=-++=--x y xy y x xy y y x y y ;故答案为:2()y x y -【点睛】本题考查了提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式. 29.(2022·江苏常州)分解因式:22x y xy +=______. 【答案】xy (x +y )【分析】利用提公因式法即可求解.【详解】22()x y y y xy x x =++,故答案为:()xy x y +.【点睛】本题考查了用提公因式法分解因式的知识,掌握提公因式法是解答本题的关键. 30.(2022·四川内江)分解因式:a 4﹣3a 2﹣4=_____. 【答案】(a 2+1)(a +2)(a ﹣2)【分析】首先利用十字相乘法分解为()()2214a a +- ,然后利用平方差公式进一步因式分解即可.【详解】解:a 4﹣3a 2﹣4=(a 2+1)(a 2﹣4)=(a 2+1)(a +2)(a ﹣2), 故答案为:(a 2+1)(a +2)(a ﹣2).【点睛】本题考查利用因式分解,解决问题的关键是掌握解题步骤:一提二套三检查. 31.(2022·贵州遵义)已知4a b +=,2a b -=,则22a b -的值为__________.【答案】8【分析】根据平方差公式直接计算即可求解.【详解】解:∵4a b +=,2a b -=,∴22a b -()()428a b a b =+-=⨯= 故答案为:8 【点睛】本题考查了因式分解的应用,掌握平方差公式是解题的关键. 32.(2022·北京)分解因式:2xy x -=______. 【答案】()()11x y y +-【分析】首先提取公因式,再根据平方差公式计算,即可得到答案.【详解】2xy x -()21x y =-()()11x y y =+-故答案为:()()11x y y +-.【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解. 33.(2022·湖北恩施)因式分解:3269x x x -+=_______. 【答案】2(3)x x -【分析】先提公因式,再利用完全平方公式解题. 【详解】解:322269(69)(3)x x x x x x x x -+=-+=- 故答案为:2(3)x x -.【点睛】本题考查因式分解,涉及提公因式、完全平方公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.34.(2022·山东临沂)因式分解2242x x -+=______. 【答案】22(1)x -. 【详解】解:2242x x -+ =22(21)x x -+ =22(1)x -, 故答案为22(1)x -.35.(2022·浙江台州)分解因式:21a -=____. 【答案】()()11a a +-.【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a -=+-.故答案为:()()11a a +-【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键. 36.(2022·江苏苏州)计算:3a a ⋅= _______. 【答案】a 4【分析】本题须根据同底数幂乘法,底数不变指数相加,即可求出答案. 【详解】解:a 3•a , =a 3+1, =a 4.故答案为:a 4.【点睛】本题主要考查了同底数幂的乘法,在解题时要能灵活应用同底数幂的乘法法则,熟练掌握运算性质是解题的关键.37.(2022·黑龙江牡丹江)如图所示,以O 为端点画六条射线后OA ,OB ,OC ,OD ,OE ,O 后F ,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线___上.【答案】OC【详解】解∶∵1在射线OA 上,2在射线OB 上,3在射线OC 上,4在射线OD 上,5在射线OE 上,6在射线OF 上,7在射线OA 上,… ∴每六个一循环. ∵2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样. ∴所描的第2013个点在射线OC 上. 故答案为:OC38.(2022·吉林)计算:2a a ⋅=____.【答案】3a【详解】试题分析:根据同底数幂的乘法性质,底数不变,指数相加,可直接结算,2123a a a a +⋅==. 考点:同底数幂的乘法39.(2022·黑龙江牡丹江)下列图形是将等边三角形按一定规律排列,则第5个图形中所以等边三角形的个数是__________.【答案】485【详解】解: 由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形, 第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形, 第五个图形中161×3+2=485个正三角形. 故答案为:48540.(2022·湖北十堰)如图,某链条每节长为2.8cm ,每两节链条相连接部分重叠的圆的直径为1cm ,按这种连接方式,50节链条总长度为_________cm .【答案】91【分析】通过观察图形可知,1节链条的长度是2.8cm ,2节链条的长度是(2.8×2-1)cm ,3节链条的长度是(2.8×3-1×2)cm ,n 节链条的长度是2.8n -1×(n -1)cm ,据此解答即可求解. 【详解】解:2节链条的长度是(2.8×2-1)cm , 3节链条的长度是(2.8×3-1×2)cm , n 节链条的长度是2.8n -1×(n -1)cm , 所以50节链条的长度是:2.8×50-1×(50-1) =140-1×49=91(cm) 故答案为:91【点睛】此题考查的图形类规律,关键是找出规律,得出n 节链条长度为2.5×n -0.8×(n -1). 41.(2022·广西贺州)因式分解:2312m -=__________. 【答案】3(2)(2)m m +-【分析】首先提取公因数3,进而利用平方差公式进行分解即可. 【详解】解:原式=3(x 2−4)=3(x +2)(x −2); 故答案为:3(x +2)(x −2).【点睛】此题主要考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题关键. 42.(2022·广西玉林)计算:3a a -=_____________. 【答案】2a【分析】按照合并同类项法则合并即可. 【详解】3a -a =2a , 故答案为:2a .【点睛】本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算. 43.(2022·广东)单项式3xy 的系数为___________. 【答案】3【分析】单项式中数字因数叫做单项式的系数,从而可得出答案. 【详解】3xy 的系数是3, 故答案为:3.【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义. 44.(2022·黑龙江大庆)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是____________.【答案】49【分析】根据题意可知:第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个,……由规侓即可得答案.【详解】解:∵第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个, 第3个图案中有六边形图形:3+4+3=10个, 第4个图案中有六边形图形:4+5+4=13个, ……∴第16个图案中有六边形图形:16+17+16=49个, 故答案为:49.【点睛】此题考查图形的变化规律,解题的关键是找出图形之间的运算规律,利用规律解决问题. 45.(2022·江苏泰州)已知22222,2,()a m mn b mn n c m n m n =-=-=-≠ 用“<”表示a b c 、、的大小关系为________. 【答案】b c a <<【分析】利用作差法及配方法配成完全平方式再与0比较大小即可求解. 【详解】解:由题意可知:222222222)(2))(()(22m n mn m n a b m mn mn n m n m n ,∵m n ≠, ∴222()0m n m n ,∴b a <;22222223)()2)(4(2n m mn a c m mn n mm n n ,当且仅当002nm n 且时取等号,此时0m n ==与题意m n ≠矛盾,∴223()024n mn ∴c a <;22222223)()()24(2n m c b m n m n n mn n m n ,同理b c <, 故答案为:b c a <<.【点睛】本题考查了两代数式通过作差比较大小,将作差后的结果配成完全平方式,利用完全平方式总是大于等于0的即可与0比较大小.46.(2022·黑龙江绥化)因式分解:()()269m n m n +-++=________. 【答案】()23m n +-【分析】将m n 看做一个整体,则9等于3得的平方,逆用完全平方公式因式分解即可. 【详解】解:()()269m n m n +-++()()22233m n m n =+-⨯⨯++()23m n =+-.【点睛】本题考查应用完全平方公式进行因式分解,整体思想,能够熟练逆用完全平方公式是解决本题的关键.47.(2022·广西梧州)若1x =,则32x -=________. 【答案】1【分析】将1x =代入代数式求解即可.【详解】解:∵1x =, ∴323121x -=⨯-=, 故答案为:1.【点睛】本题考查了代数式求值.解题的关键在于正确的计算. 48.(2022·贵州黔东南)分解因式:2202240442022x x -+=_______. 【答案】()220221x -【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式=()()2220222120221x x x -+=-;故答案为()220221x -.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.49.(2022·黑龙江绥化)某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案. 【答案】3##三【分析】设购买甲种奖品x 件,乙种奖品y 件,列出关系式,并求出3124yx =-,由于1≥x ,1y ≥且x ,y 都是正整数,所以y 是4的整数倍,由此计算即可. 【详解】解:设:购买甲种奖品x 件,乙种奖品y 件, 4348x y +=,解得3124y x =-, ∵1≥x ,1y ≥且x ,y 都是正整数, ∴y 是4的整数倍, ∴4y =时,341294x ⨯=-=,8y =时,381264x ⨯=-=, 12y =时,3121234x ⨯=-=, 16y =时,3161204x ⨯=-=,不符合题意, 故有3种购买方案, 故答案为:3.【点睛】本题考查列关系式,根据题意判断出y 是4的整数倍是解答本题的关键. 50.(2022·海南)因式分解:ax ay +=___________. 【答案】()a x y +【分析】原式直接提取a 即可.【详解】解:ax ay +=()a x y +. 故答案为:()a x y +.【点睛】本题主要考查了分解因式,正确确定公因式是解答本题的关键. 三.解答题51.(2022·广西)先化简,再求值2()()(2)x x y x y xy xy x +-+-+,其中11,2x y ==. 【答案】x 3-2xy +x ,1【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:2()()(2)x x y x y xy xy x +-+-+ =x (x 2-y 2)+xy 2-2xy +x =x 3-xy 2+xy 2-2xy +x =x 3-2xy +x ,当x =1,y =12时,原式=13-2×1×12+1=1.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键. 52.(2022·湖南岳阳)已知2210a a -+=,求代数式()()()4111a a a a -++-+的值. 【答案】-2【分析】先化简所求的式子,再结合已知求解即可.【详解】解:()()()4111a a a a -++-+ 22411a a a =-+-+224a a =-()222a a =-,∵2210a a -+=, ∴221a a -=-, ∴原式()212=⨯-=-.【点睛】本题考查代数式的运算,熟练掌握单项式乘多项式,平方差公式是解题的关键. 53.(2022·江苏无锡)计算:(1)(21cos 602-⨯-;(2)()()()()23a a a b a b b b +-+---.【答案】(1)1 (2)2a +3b【分析】(1)先化简绝对值和计算乘方,并把特殊角的三角函数值代入,再计算乘法,最后算加减即可求解;(2)先运用单项式乘以多项式法则和平方差公式计算,再合并同类项即可. (1) 解:原式=11322⨯- =3122- =1; (2)解:原式=a 2+2a -a 2+b 2-b 2+3b =2a +3b .【点睛】本题考查实数混合运算,整式混合运算,熟练掌握实数运算法则和单项式乘以多项式法则,熟记特殊角的三角函数值、平方差公式是解题的关键.54.(2022·广西梧州)(125(3)(2)+-⨯- (2)化简:232()23a a a a a +--⋅. 【答案】(1)14-;(2)24a a -【分析】(1 (2)先去括号和计算乘法运算,然后合并同类项即可. 【详解】解:(1)解:原式=235(3)(2)-+-⨯- =35(3)4-+-⨯ =3512-- =14-;(2)原式=223226a a a a +-- =24a a -.【点睛】本题考查了实数的运算以及整式的混合运算,正确掌握相关运算法则是解题的关键. 55.(2022·北京)已知2220x x +-=,求代数式2(2)(1)x x x +++的值. 【答案】5【分析】先根据2220x x +-=,得出222x x +=,将2(2)(1)x x x +++变形为()2221x x ++,最后代入求值即可.【详解】解:∵2220x x +-=, ∴222x x +=, ∴2(2)(1)x x x +++22221x x x x =++++ 2241x x =++()2221x x =++221=⨯+5=【点睛】本题主要考查了代数式求值,完全平方公式,单项式乘多项式,将2(2)(1)x x x +++变形为()2221x x ++,是解题的关键.56.(2022·江苏常州)计算:(1)201(3)3---+π;(2)2(1)(1)(1)+--+x x x .【答案】(1)43(2)2x +2【分析】(1)利用负指数公式化简,零指数公式化简,平方根定义化简,合并后即可求出值;(2)利用完全平方,以及平方差计算,再合并即可求出值.(1)201(3)3---+π=2﹣1+13=43; (2)2(1)(1)(1)+--+x x x=22211x x x ++-+=2x +2.【点睛】此题考查了乘法公式,以及实数的运算,实数的运算涉及的知识有:零指数公式,负指数公式,绝对值的代数意义,以及平方根的定义.57.(2022·吉林)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.【答案】6A m =+,解答过程补充完整为26m -【分析】利用26m m +除以m 可得A ,再根据合并同类项法则补充解答过程即可.【详解】解:观察第一步可知,()26A m m m =+÷, 解得6A m =+,将该例题的解答过程补充完整如下:(6)6(1)m m m +-+2666m m m =+--26m =-,故答案为:26m -.【点睛】本题考查了多项式的乘除法、合并同类项,熟练掌握整式的运算法则是解题关键.58.(2022·吉林长春)先化简,再求值:()()()221a a a a +-++,其中4a =.【答案】4a +【分析】根据平方差公式与单项式乘以单项式进行计算,然后将4a 代入求值即可求解.【详解】解:原式=224a a a -++4a =+当4a =时,原式44=【点睛】本题考查了整式的混合运算,实数的运算,代数式求值,正确的计算是解题的关键.。
专题02 整式与因式分解一、单选题1.(2022·湖南郴州)下列运算正确的是( )A .325a a a +=B .632a a a ÷=C .()222a b a b +=+D 5=【答案】D【解析】【分析】根据合并同类项、同底数幂的除法法则,完全平方公式以及二次根式的计算法则进行计算即可.【详解】A.32a a +不能合并,故A 错误;B.633a a a ÷=,故B 错误;C.()2222a b a ab b +=++,故C 错误;5,故D 正确;故答案为:D .【点睛】本题考查了合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则等知识.掌握合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则是解答本题的关键. 2.(2022·山东临沂)计算()1a a a +-的结果是( )A .1B .2aC .22a a +D .21a a -+ 【答案】B【解析】【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()1a a a +- 22a a a a .故选B【点睛】本题考查的是整式的混合运算,单项式乘以多项式,掌握“单项式乘以多项式的运算”是解本题的关键. 3.(2022·内蒙古包头)若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A .8-B .5-C .1-D .16【答案】C【解析】【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c =,代入即可求解. 【详解】∵a ,b 互为相反数,∵0a b +=,∵c 的倒数是4, ∵14c =, ∵334a b c +-()34a b c =+-130414=⨯-⨯=-, 故选:C【点睛】 本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 4.(2022·广西河池)多项式244x x +﹣因式分解的结果是( )A .x (x ﹣4)+4B .(x +2)(x ﹣2)C .(x +2)2D .(x ﹣2)2【答案】D【解析】【分析】根据完全平方公式进行因式分解即可.【详解】解:()22442x x x +=-﹣. 故选:D .【点睛】本题主要考查了公式法分解因式,理解完全平方公式是解答关键.5.(2022·广西柳州)把多项式a 2+2a 分解因式得( )A .a (a +2)B .a (a ﹣2)C .(a +2)2D .(a +2)(a ﹣2)【答案】A【解析】【分析】运用提公因式法进行因式分解即可.【详解】22(2)a a a a +=+ 故选A【点睛】本题主要考查了因式分解知识点,掌握提公因式法是解题的关键.6.(2021·广西百色)下列各式计算正确的是( )A .33=9B .(a ﹣b )2=a 2﹣b 2C .+D .(2a 2b )3=8a 8b 3【答案】C【解析】【分析】分别根据有理数的乘方、二次根式的计算法则和整式的乘法计算法则进行计算判断即可得到答案.【详解】解:A 、33=27,此选项错误;B 、()2222a b a ab b -=-+,此选项错误;C 、D 、()362328a b a b =,此选项错误. 故选C.【点睛】本题主要考查了二次根式的加法运算和整式的乘法运算,解题的关键在于熟练的掌握相关知识进行求解. 7.(2021·甘肃兰州)如图,将图1中的菱形纸片沿对角线剪成4个直角三角形,拼成如图2的四边形ABCD(相邻纸片之间不重叠,无缝隙).若四边形ABCD 的面积为13,中间空白处的四边形EFGH 的面积为1,直角三角形的两条直角边分别为a 和b ,则()2a b +=( )A .12B .13C .24D .25【答案】D【解析】【分析】 根据菱形的性质可得对角线互相垂直平分,进而可得4个直角三角形全等,结合已知条件和勾股定理求得22a b +,进而根据面积差以及三角形面积公式求得12ab ,最后根据完全平方公式即可求得2()a b +. 【详解】菱形的对角线互相垂直平分,∴4个直角三角形全等;,90ADH BAE DAH HAD ∴∠=∠∠+∠=︒,AD AB BC CD ===,90DAB ∴∠=︒,∴四边形ABCD 是正方形,又正方形ABCD 的面积为13,∴根据勾股定理,则22213a b AB +==,中间空白处的四边形EFGH 的面积为1,∴4个直角三角形的面积为13112-=,112432ab ∴=÷=, 212ab ∴=,222()2a b a b ab +=++,∴()2a b +=121325+=.故选D .【点睛】 本题考查了正方形的性质与判定,菱形的性质,勾股定理,完全平方公式,求得12ab 是解题的关键. 8.(2022·青海)下列运算正确的是( )A .235347x x x +=B .()222x y x y +=+ C .()()2232394x x x +-=- D .()224212xy xy xy y +=+ 【答案】D【解析】【分析】根据合并同类项,完全平方公式,平方差公式,因式分解计算即可.【详解】A.选项,3x 2与4x 3不是同类项,不能合并,故该选项计算错误,不符合题意;B.选项,原式= ()2222x y x xy y +=++,故该选项计算错误,不符合题意;C.选项,原式= 249x -,故该选项计算错误,不符合题意;D.选项,原式=()212xy y +,故该选项计算正确,符合题意;故选:D .【点睛】本题考查了合并同类项,完全平方公式,平方差公式,因式分解,注意完全平方公式展开有三项是解题的易错点.9.(2020·四川广安)下列运算中,正确的是( )A .347x x x +=B .248236x x x ⋅=C .2242(3)9x y x y -=-D 【答案】D【解析】【分析】根据同类项的定义、单项式乘单项式法则和二次根式的乘法公式逐一判断即可.【详解】解:A .3x 和4x 不是同类项,不能合并,故错误;B .246236x x x ⋅= ,故错误;C .2242(3)9x y x y -=,故错误;D ==故选D .【点睛】此题考查的是整式的运算和二次根式的运算,掌握同类项的定义、单项式乘单项式法则和二次根式的乘法公式是解题关键.10.(2020·黑龙江大庆)若2|2|(3)0x y ++-=,则x y -的值为( )A .-5B .5C .1D .-1【答案】A【解析】【分析】根据绝对值和平方的非负性可求出x ,y 的值,代入计算即可;【详解】∵2|2|(3)0x y ++-=,∵20x +=,30y -=,∵2x =-,3y =,∵235-=--=-x y .故答案选A .【点睛】本题主要考查了绝对值和平方的非负性,准确计算是解题的关键.11.(2022·广东广州)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n 个图形需要2022根小木棒,则n 的值为( )A .252B .253C .336D .337【答案】B【解析】【分析】 根据图形的变化及数值的变化找出变化规律,即可得出结论.【详解】解:设第n 个图形需要an (n 为正整数)根小木棒,观察发现规律:第一个图形需要小木棒:6=6×1+0,第二个图形需要小木棒:14=6×2+2;第三个图形需要小木棒:22=6×3+4,…,∵第n 个图形需要小木棒:6n +2(n -1)=8n -2.∵8n -2=2022,得:n =253,故选:B .【点睛】本题考查了规律型中图形的变化类,解决该题型题目时,根据给定图形中的数据找出变化规律是关键. 12.(2022·内蒙古呼和浩特)以下命题:∵面包店某种面包售价a 元/个,因原材料涨价,面包价格上涨10%,会员优惠从打八五折调整为打九折,则会员购买一个面包比涨价前多花了0.14a 元;∵等边三角形ABC 中,D 是BC 边上一点,E 是AC 边上一点,若AD AE =,则3∠=∠BAD EDC ;∵两边及第三边上的中线对应相等的两个三角形全等;∵一列自然数0,1,2,3,55,依次将该列数中的每一个数平方后除以100,得到一列新数,则原数与对应新数的差,随着原数的增大而增大.其中真命题的个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据全等三角形的判定与性质、二次函数的性质等知识逐项判断即可, 本号资料皆来源于微信公众*号:#数学 【详解】解:∵项,会员原来购买一个面包需要0.85a 元,现在需要a ×(1+10%)×0.9=0.99a ,则会员购买一个面包比涨价前多花了0.99a -0.85a =0.14a 元,故∵项正确;∵项,如图,∵∵ABC是等边三角形,∵∵B=∵C=60°,∵∵B+∵BAD=∵ADE+∵EDC,∵C+∵EDC=∵AED,又∵AD=AE,∵∵ADE=∵AED,∵∵B+∵BAD=∵ADE+∵EDC=∵C+∵EDC+∵EDC,本号资料皆来源于微#信:数学∵∵BAD=∵EDC+∵EDC=2∵EDC,故∵项错误;∵项,如图,∵ABC和∵DEF,AB=DE,AC=DF,AM是∵ABC的BC边上的中线,DN是∵DEF的边EF上的中线,AM=DN,即有∵ABC∵∵DEF,理由如下:延长AM至G点,使得AM=GM,连接GC,延长DN至H点,使得DN=NH,连接HF,∵AM是中线,∵BM=MC,∵AM=MG,∵AMB=∵GMC,∵∵AMB∵∵GMC,∵AB=GC,同理可证DE=HF,∵AM=DN,∵AG =2AM =2DN =DH ,∵AB =DE ,∵GC =HF ,∵结合AC =DF 可得∵ACG ∵∵DFH ,∵∵GAC =∵HDF ,同理可证∵GAB =∵HDE ,∵∵BAC =∵GAB +∵GAC =∵HDF +∵HDE =∵EDF ,∵AB =DE ,AC =DF ,∵∵ABC ∵∵DEF ,故∵正确;∵设原数为x ,则新数为21100x ,设原数与新数之差为y , 即21100y x x =-,变形为:21(50)25100y x =--+, 将x 等于0、1、2、3、55分别代入可知,y 随着x 的增大而增大,故∵正确;即正确的有三个,故选:C ,【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、二次函数的应用等知识,掌握全等三角形的判定与性质是解答本题的关键.13.(2022·广西玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A 处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A .4B .C .2D .0【答案】B【解析】【分析】由题意可分别求出经过2022秒后,红黑两枚跳棋的位置,然后根据正多边形的性质及含30度直角三角形的性质可进行求解.【详解】解:∵2022÷3=674,2022÷1=2022, 本号资料#皆来*源于微信公*众号:数学∵67461122,20226337÷=⋅⋅⋅⋅⋅÷=,∵经过2022秒后,红跳棋落在点A 处,黑跳棋落在点E 处,连接AE ,过点F 作FG ∵AE 于点G ,如图所示:在正六边形ABCDEF 中,2,120AF EF AFE ==∠=︒, ∵1,302AG AE FAE FEA =∠=∠=︒, ∵112FG AF ==,∵AG∵AE =故选B .【点睛】本题主要考查图形规律问题、勾股定理、含30度直角三角形的性质及正多边形的性质,熟练掌握图形规律问题、勾股定理、含30度直角三角形的性质及正多边形的性质是解题的关键.14.(2021·内蒙古)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3- 【答案】C【解析】【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.15.(2021·江苏苏州)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b +等于( ) A .2-B .1-C .1D .2【答案】A【解析】【分析】 先化简式子,再利用配方法变形即可得出结果.【详解】解:∵22=b a b a a b ab++, ∵()2222==a b ab b a b a a b ab ab +-++, ∵两个不等于0的实数a 、b 满足0a b +=, ∵()22-2===-2a b ab b a ab a b ab ab+-+, 故选:A .【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.16.(2021·山东临沂)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C【解析】【分析】 根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=, 再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=, ...,∵再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=, 此时132132⨯=mg , 故选C .【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.17.(2020·四川眉山)已知221224a b a b +=--,则132a b -的值为( ) A .4B .2C .2-D .4-【答案】A【解析】【分析】根据221224a b a b +=--,变形可得:()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭,因此可求出1a =,2b =-,把a 和b 代入132a b -即可求解. 【详解】 ∵221224a b a b +=-- ∵()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭ 即2(1)0a -=,21(1)02b += ∵求得:1a =,2b =-∵把a 和b 代入132a b -得:131(2)42⨯-⨯-= 故选:A【点睛】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键. 18.(2020·内蒙古呼和浩特)下列运算正确的是( )A 12±B .()325ab ab =C .22422()xy xy y x y x y x y x y y x ⎛⎫⎛⎫--+++=+ ⎪ ⎪--⎝⎭⎝⎭ D .223152845c a c c ab ab a-÷=- 【答案】C【解析】【分析】分别根据二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则判断即可.【详解】解:A 12===,故选项错误; B 、()3236ab a b =,故选项错误;C 、2422xy xy y x y x y x y y x ⎛⎫⎛⎫--+++ ⎪ ⎪--⎝⎭⎝⎭=()()()22422x y x y y x xy xy y x y x y y x y x ⎛⎫-+-⎛⎫-++ ⎪ ⎪ ⎪----⎝⎭⎝⎭=()()22x y x y x y y x+-⋅--- =()2x y +,故选项正确;D 、22222315348481510c a c c ab c ab ab ab a c a -÷=⨯=--,故选项错误; 故选C.【点睛】本题考查了二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则,解题的关键是学会计算,掌握运算法则.19.(2020·青海)下面是某同学在一次测试中的计算:∵22352m n mn mn -=-;∵()326224a b a b a b ⋅-=-;∵()235a a =;∵()32()a a a -÷-=,其中运算正确的个数为( ) A .4个B .3个C .2个D .1个【答案】D【解析】【分析】 根据整式的减法、整式的乘除法、幂的乘方逐个判断即可.【详解】23m n 与25mn 不是同类项,不可合并,则∵错误 本号资料*皆来源于微信:数学()332251122244a b a b a b a b ++⋅-=-=-,则∵错误 ()23326a a a ⨯==,则∵错误 ()33312()a a aa a a -÷=-÷-==,则∵正确 综上,运算正确的个数为1个故选:D .【点睛】 本题考查了整式的减法、整式的乘除法、幂的乘方,熟记整式的运算法则是解题关键.20.(2020·广西柳州)下列多项式中,能用平方差公式进行因式分解的是( )A .a 2﹣b 2B .﹣a 2﹣b 2C .a 2+b 2D .a 2+2ab +b 2 【答案】A【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、a 2﹣b 2符合平方差公式的特点,能用平方差公式进行因式分解;B 、﹣a 2﹣b 2两平方项符号相同,不能用平方差公式进行因式分解;C 、a 2+b 2两平方项符号相同,不能用平方差公式进行因式分解;D 、a 2+2ab +b 2是三项,不能用平方差公式进行因式分解.故选:A .【点睛】本题考查了用平方差公式进行因式分解.熟记平方差公式的结构特点是解题的关键.平方差公式:()()22a b a b a b -=+-. 本号资料皆来源于微信@公*众号:数#学21.(2022·内蒙古通辽)下列命题:∵()3235m n m n ⋅=;∵数据1,3,3,5的方差为2;∵因式分解()()3422x x x x x -=+-;∵平分弦的直径垂直于弦;∵1≥x .其中假命题的个数是( )A .1B .3C .2D .4【答案】C【解析】【分析】根据积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,逐项判断即可求解.【详解】解:∵()3362m n m n ⋅=,故原命题是假命题; ∵数据1,3,3,5的平均数为()1133534+++= ,所以方差为()()()()222211333335324⎡⎤-+-+-+-=⎣⎦,是真命题;∵()()()324422x x x x x x x -=-=+-,是真命题;∵平分弦(不是直径)的直径垂直于弦,故原命题是假命题;∵10x -≥,即1≥x ,是真命题;∵假命题的个数是2.故选:C【点睛】本题主要考查了积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,熟练掌握相关知识点是解题的关键.22.(2021·广西贺州)多项式32242x x x -+因式分解为( )A .()221x x -B .()221x x +C .()221x x -D .()221x x + 【答案】A【解析】【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:32242x x x -+()()2222121x x x x x =-+=- 故答案选:A .【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.23.(2021·四川眉山)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a +B .1a a +C .1a a -D .21a a + 【答案】B【解析】【分析】 小括号先通分合并,再将除法变乘法并因式分解即可约分化简.【详解】 解:原式()()()()221111111=11a a a a a a a a a a a a+-+--++⨯=⨯=--故答案是:B .【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则. 24.(2020·浙江金华)下列多项式中,能运用平方差公式分解因式的是( )A .22a b +B .22a b -C .22a b -+D .22a b --【答案】C【解析】【分析】根据平方差公式的定义判断即可;【详解】A 、原式不能利用平方差公式进行因式分解,不符合题意;B 、原式不能利用平方差公式进行因式分解,不符合题意;C 、原式()()b a b a =-+,能利用平方差公式进行因式分解,符合题意;D 、原式不能利用平方差公式进行因式分解,不符合题意,故选:C .【点睛】本题主要考查了平方差公式的应用,准确判断是解题的关键.25.(2020·湖南益阳)下列因式分解正确的是( ) 本号资料皆来源于微信:数学第六*感A .()()()()a a b b a b a b a b ---=-+B .2229(3)a b a b -=-C .22244(2)a ab b a b ++=+D .2()a ab a a a b -+=-【答案】C【解析】【分析】利用提公因式法分解因式和平方差公式以及完全平方公式进行分解即可得到答案.【详解】A 、2()()()()()a a b b a b a b a b a b ---=--=-,故此选项错误;B 、229(3)(3)a b a b a b -=+-,故此选项错误;C 、22244(2)a ab b a b ++=+,故此选项正确;D 、2(+1)a ab a a a b -+=-,故此选项错误.故选:C .【点睛】此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.26.(2020·内蒙古通辽)从下列命题中,随机抽取一个是真命题的概率是( )(1)无理数都是无限小数;(2)因式分解()()211ax a a x x -=+-;(3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ;(4)弧长是20cm π,面积是2240cm π的扇形的圆心角是120︒.A .14B .12C .34D .1【答案】C【解析】【分析】 分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解()()211ax a a x x -=+-,是真命题,(3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ,是真命题,(4)设扇形半径为r ,圆心角为n ,∵弧长是20cm π,则180n r π=20π,则3600nr =, ∵面积是2240cm π,则2360n r π=240π,则2nr =360×240, 则2360240243600nr r nr ⨯===,则n=3600÷24=150°, 故扇形的圆心角是150︒,是假命题,则随机抽取一个是真命题的概率是34,故选C.【点睛】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.二、填空题27.(2022·江苏常州)计算:42÷=m m_______.【答案】2m【解析】【分析】根据同底数幂的除法运算法则即可求出.【详解】解:422m m m÷=.故答案为:2m.【点睛】本题主要考查同底数幂的除法,掌握同底数幂的除法法则是解题的关键.28.(2022·吉林)篮球队要购买10个篮球,每个篮球m元,一共需要__________元.(用含m的代数式表示)【答案】10m【解析】【分析】根据“总费用=购买篮球的数量⨯每个篮球的价格”即可得.【详解】解:由题意得:一共需要的费用为10m元,故答案为:10m.【点睛】本题考查了列代数式,正确找出等量关系是解题关键.29.(2022·天津)计算1)的结果等于___________.【答案】18【解析】【分析】根据平方差公式即可求解.【详解】解:221)119118=-=-=,故答案为:18.【点睛】本题考查了平方差公式的应用,熟练掌握平方差公式的展开式是解题的关键.30.(2022·四川广安)已知a +b =1,则代数式a 2﹣b 2 +2b +9的值为________.【答案】10【解析】【分析】根据平方差公式,把原式化为()()29a b a b b +-++,可得9a b ++,即可求解.【详解】解:a 2﹣b 2 +2b +9()()29a b a b b =+-++29a b b =-++9a b =++19=+10=故答案为:10【点睛】本题主要考查了平方差公式的应用,利用整体代入思想解答是解题的关键.31.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD 的周长为26,则正方形d 的边长为______. 本号*资料皆来源于@微信:数学第*六感【答案】5【解析】【分析】设正方形a、b、c、d的边长分别为a、b、c、d,分别求得b=13c,c=35d,由“优美矩形”ABCD的周长得4d+2c=26,列式计算即可求解.【详解】解:设正方形a、b、c、d的边长分别为a、b、c、d,∵“优美矩形”ABCD的周长为26,∵4d+2c=26,∵a=2b,c=a+b,d=a+c,∵c=3b,则b=13 c,∵d=2b+c=53c,则c=35d,∵4d+65d =26,∵d=5,∵正方形d的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.32.(2022·黑龙江大庆)已知代数式22(21)4a t ab b+-+是一个完全平方式,则实数t的值为____________.【答案】52或32-【解析】【分析】直接利用完全平方公式求解.【详解】解:∵代数式22(21)4a t ab b +-+是一个完全平方式,∵()()()222222(21)4222a t ab b a b a b a b +-+++±=±±⋅⋅=,∵214t -=±, 解得52t =或32t =-, 故答案为:52或32- 【点睛】本题考查了完全平方公式的运用,熟记完全平方公式的特点是解题的关键.33.(2022·广西)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.【答案】14【解析】【分析】先根据2x =是关于x 的一元一次方程3ax b +=的解,得到23a b +=,再把所求的代数式变形为()()22221a b a b +++-,把23a b +=整体代入即可求值.【详解】解:∵2x =是关于x 的一元一次方程3ax b +=的解,∵23a b +=,∵2244421a ab b a b ++++-()()22221a b a b =+++-23231=+⨯- 14=.故答案为:14.【点睛】本题考查了代数式的整体代入求值及一元一次方程解的定义,把所求的代数式利用完全平方公式变形是解34.(2021·贵州黔西)已知2a ﹣5b =3,则2+4a ﹣10b =________.【答案】8【解析】【分析】先变形得出2+4a ﹣10b =2+2(2a ﹣5b ),再代入求出答案即可.【详解】解:∵2a ﹣5b =3,∵2+4a ﹣10b=2+2(2a ﹣5b )=2+2×3=8,故答案为:8.【点睛】本题考查了求代数式的值,掌握整体代入法是解此题的关键.35.(2021·贵州铜仁)如图所示:是一个运算程序示意图,若第一次输入1,则输出的结果是______________;【答案】11【解析】【分析】把x =1代入运算程序的y =6<9,无法输出,再把x =2代入运算程序得y =11>9,输出答案,问题得解.【详解】解:把x =1代入223y x x =++得y =1+2+3=6<9,无法输出,∵把x =1+1=2代入223y x x =++得y =4+4+3=11>9,输出答案.【点睛】本题考查了根据运算程序进行计算,理解运算程序是解题关键.36.(2021·河北)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为___________;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片___________块.【答案】 22a b + 4【解析】【分析】(1)直接利用正方形面积公式进行计算即可;(2)根据已知图形的面积公式的特征,利用完全平方公式即可判定应增加的项,再对应到图形上即可.【详解】解:(1)∵甲、乙都是正方形纸片,其边长分别为,a b∵取甲、乙纸片各1块,其面积和为22a b +;故答案为:22a b +.(2)要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,则它们的面积和为224a b +,若再加上4ab (刚好是4个丙),则()222442a b ab a b ++=+,则刚好能组成边长为2+a b 的正方形,图形如下所示,所以应取丙纸片4块.故答案为:4.【点睛】本题考查了正方形的面积公式以及完全平方公式的几何意义,解决本题的关键是牢记公式特点,灵活运用公式等,本题涉及到的方法为观察、假设与实践,涉及到的思想为数形结合的思想.37.(2020·宁夏)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.【答案】27【解析】【分析】根据题意得出a2+b2=15,(b-a)2=3,图2中大正方形的面积为:(a+b)2,然后利用完全平方公式的变形求出(a+b)2即可.【详解】解:由题意可得在图1中:a2+b2=15,(b-a)2=3,图2中大正方形的面积为:(a+b)2,∵(b-a)2=3a2-2ab+b2=3,∵15-2ab=3∵(a+b )2=a 2+2ab+b 2=15+12=27,故答案为:27.【点睛】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.38.(2022·辽宁锦州)分解因式:2232x y xy y -+=____________.【答案】2()y x y -【解析】【分析】先提取公因数y ,再利用完全平方公式进行二次分解.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:222223(2)(2)=-++=--x y xy y x xy y y x y y ;故答案为:2()y x y -【点睛】本题考查了提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式. 39.(2022·贵州黔东南)分解因式:2202240442022x x -+=_______.【答案】()220221x -【解析】【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式=()()2220222120221x x x -+=-; 故答案为()220221x -.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.40.(2020·浙江)化简:2121x x x +++=_____. 【答案】11x +【分析】先将分母因式分解,再根据分式的基本性质约分即可.【详解】2121x x x +++ =21(1)x x ++ =11x +. 故答案为:11x +. 【点睛】本题考查了分式的除法以及利用完全平方公式因式分解,解答本题的关键是掌握分式的基本性质以及因式分解的方法.41.(2022·浙江丽水)如图,标号为∵,∵,∵,∵的矩形不重叠地围成矩形PQMN ,已知∵和∵能够重合,∵和∵能够重合,这四个矩形的面积都是5.,AE a DE b ==,且a b >.(1)若a ,b 是整数,则PQ 的长是___________;(2)若代数式222a ab b --的值为零,则ABCD PQMNS S 四边形矩形的值是___________. 【答案】 -a b3+【解析】【分析】(1)根据图象表示出PQ 即可;(2)根据2220a ab b --=分解因式可得()()0a b a b -+-=,继而求得a b =+,根据这四个矩形的面积都是5,可得55,EP EN a b ==,再进行变形化简即可求解.(1)∵和∵能够重合,∵和∵能够重合,,AE a DE b ==,PQ a b ∴=-,故答案为:-a b ;(2)2220a ab b --=,2222222()2()()0a ab b b a b b a b a b ∴-+-=--=---=,0a b ∴-=或0a b -=,即a b =(负舍)或a b =+这四个矩形的面积都是5,55,EP EN a b ∴==,()()()()()()()()22555555ABCDPQMN a b a b a b a b S b a ab a b S a b a b a b b a ab⎛⎫++⋅++⋅ ⎪+⎝⎭∴===-⎛⎫----⋅ ⎪⎝⎭四边形矩形,2222222222222222a b ab a b a b a a b ab a b a b b ++++-===+-+-+,3=+【点睛】本题考查了代数式及其分式的化简求值,准确理解题意,熟练掌握知识点是解题的根据.本号资料皆来*源于微信公*众号:#数学42.(2022·四川自贡)化简:22a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________. 【答案】2aa +【解析】【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4--⋅+-+++ =2a 3(a 2)(a 2)2a 3a 2(a 2)-+-⋅+-++22222a aa a a -=+=+++ 故答案为2aa +本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键.43.(2021·四川内江)若实数x 满足210x x --=,则3222021x x -+=__.【答案】2020【解析】【分析】由等式性质可得21x x =+,21x x -=,再整体代入计算可求解.【详解】解:210--=x x ,21x x ∴=+,21x x -=,3222021x x -+2(1)22021x x x =+-+2222021x x x =+-+22021x x =-+12021=-+2020=.故答案为:2020.【点睛】本题主要考查因式分解的应用,将等式转化为21x x =+,21x x -=是解题的关键.44.(2021·广东)若1136x x +=且01x <<,则221x x -=_____. 【答案】6536-【解析】【分析】 根据1136x x +=,利用完全平方公式可得2125()36x x -=,根据x 的取值范围可得1x x -的值,利用平方差公式即可得答案.【详解】 ∵1136x x +=, ∵2211125()()436x x x x x x -=+-⋅=,∵1x x<, ∵1x x-=56-, ∵221x x -=11()()x x x x +-=135()66⨯-=6536-, 故答案为:6536-【点睛】本题考查了完全平方公式及平方差公式,准确运用公式是解题的关键.45.(2021·湖北十堰)已知2,33xy x y =-=,则322321218x y x y xy -+=_________.本号资料皆来源于微信:数学第*六感【答案】36【解析】【分析】先把多项式因式分解,再代入求值,即可.【详解】∵2,33xy x y =-=,∵原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键.46.(2020·湖南)阅读理解:对于x 3﹣(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式:@ 本@号资料皆来源于微信:数学 x 3﹣(n 2+1)x +n =x 3﹣n 2x ﹣x +n =x (x 2﹣n 2)﹣(x ﹣n )=x (x ﹣n )(x +n )﹣(x ﹣n )=(x ﹣n )(x 2+nx ﹣1).理解运用:如果x 3﹣(n 2+1)x +n =0,那么(x ﹣n )(x 2+nx ﹣1)=0,即有x ﹣n =0或x 2+nx ﹣1=0, 因此,方程x ﹣n =0和x 2+nx ﹣1=0的所有解就是方程x 3﹣(n 2+1)x +n =0的解.解决问题:求方程x 3﹣5x +2=0的解为_____.【答案】x =2或x =﹣或x =﹣1.【解析】【分析】将原方程左边变形为x 3﹣4x ﹣x +2=0,再进一步因式分解得(x ﹣2)[x (x +2)﹣1]=0,据此得到两个关于x 的方程求解可得.【详解】解:∵x 3﹣5x +2=0,∵x 3﹣4x ﹣x +2=0,∵x (x 2﹣4)﹣(x ﹣2)=0,∵x (x +2)(x ﹣2)﹣(x ﹣2)=0,则(x ﹣2)[x (x +2)﹣1]=0,即(x ﹣2)(x 2+2x ﹣1)=0,∵x ﹣2=0或x 2+2x ﹣1=0,解得x =2或x =﹣1故答案为:x =2或x =﹣或x =﹣1.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到解方程的方法.三、解答题47.(2021·吉林长春)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =. 【答案】4,5a【解析】【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题.【详解】 221a a a a224a a a =-+-4a =-当4a =时,原式44-=【点睛】本题考查了整式的混合运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.48.(2021·湖南永州)先化简,再求值:()()212(2)x x x +++-,其中1x =.【答案】25x +,7.【解析】【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将1x =代入求值即可得.【详解】解:原式22214x x x =+++-, 25x =+,将1x =代入得:原式2157=⨯+=.【点睛】本题考查了整式的化简求值,熟记完全平方公式和平方差公式是解题关键.49.(2021·河北)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.【答案】(1)410Q m n =+(2)52.310Q =⨯【解析】【分析】(1)进m 本甲种书和n 本乙种书共付款为2种书的总价,用单价乘以数量即可;(2)将书的数量代入(1)中结论,求解,最后用科学记数法表示.【详解】(1)410Q m n =+(2)43,351010m n =⨯⨯=43510410310Q ∴=⨯+⨯⨯⨯44453102310201 2.3100=+⨯=⨯=⨯⨯所以52.310Q =⨯.。
中考数学整式乘法与因式分解易错压轴解答题专题练习(及答案)一、整式乘法与因式分解易错压轴解答题1.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.2.好学小东同学,在学习多项式乘以多项式时发现:( x+4)(2x+5)(3x-6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是: ×5×(-6)+2×(-6)×4+3×4×5=-3,即一次项为-3x.请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x+2)(3x+1)(5x-3)所得多项式的一次项系数为________.(2)( x+6)(2x+3)(5x-4)所得多项式的二次项系数为________.(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式不含一次项,求a的值;(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,则a2020=________.3.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“奇巧数”,如, ···,因此都是奇巧数.(1)是奇巧数吗?为什么?(2)奇巧数是的倍数吗?为什么?4.数学活动课上,老师准备了若干个如图1的三种纸片,种纸片是边长为的正方形,种纸片是边长为的正方形,种纸片是长为,宽为的长方形.并用种纸片一张,种纸片一张,种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积:方法1:________;方法2:________;(2)观察图2,请你写出代数式:之间的等量关系________;(3)根据(2)题中的等量关系,解决如下问题:①已知:,求的值;②已知,求的值;③已知(a-2019)2+(a-2021)2=8,则求(a-2020)2的值.5.(探究)如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)(1)通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式________.(用含a,b的等式表示)(2)(应用)请应用这个公式完成下列各题:①已知4m2=12+n2, 2m+n=4,则2m﹣n的值为________.②计算:20192﹣2020×2018.________(3)(拓展)计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.6.阅读下列材料:对于多项式x2+x-2,如果我们把x=1代入此多项式,发现x2+x-2的值为0,这时可以确定多项式中有因式(x-1):同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x-2=(x-1)(x+2)又如:对于多项式2x2-3x-2,发现当x=2时,2x2-3x-2的值为0,则多项式2x2-3x-2有一个因式(x-2),我们可以设2x2-3x-2=(x-2)(mx+n),解得m=2,n=1,于是我们可以得到:2x2-3x-2=(x-2)(2x+1)请你根据以上材料,解答以下问题:(1)当x=________时,多项式6x2-x-5的值为0,所以多项式6x2-x-5有因式________ ,从而因式分解6x2-x-5=________.(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式.请你尝试用试根法分解多项式:①2x2+5x+3;②x3-7x+6(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:代数式(x-2)3-(y-2)3-(x-y)3有因式________ ,________ ,________ ,所以分解因式(x-2)3-(y-2)3-(x-y)3= ________。
1专题04因式分解(28题)一、单选题1.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .92.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -二、填空题3.(2024·甘肃·中考真题)因式分解:228x -=.4.(2024·黑龙江绥化·中考真题)分解因式:2228mx my -=.5.(2024·浙江·中考真题)因式分解:27a a -=6.(2024·甘肃临夏·中考真题)因式分解:214x -=.7.(2024·四川眉山·中考真题)分解因式:3312m m -=.8.(2024·北京·中考真题)分解因式:325x x -=.9.(2024·山东威海·中考真题)因式分解:()()241x x +++=.10.(2024·四川凉山·中考真题)已知2212a b -=,且2a b -=-,则a b +=.11.(2024·山东·中考真题)因式分解:22x y xy +=.12.(2024·四川遂宁·中考真题)分解因式:4ab a +=.13.(2024·四川广安·中考真题)分解因式:39a a -=.14.(2024·四川自贡·中考真题)分解因式:23x x -=.15.(2024·四川内江·中考真题)分解因式:25m m -=.16.(2024·内蒙古赤峰·中考真题)因式分解:233am a -=.17.(2024·四川广元·中考真题)分解因式:2(1)4a a +-=.18.(2024·陕西省·中考真题)分解因式:2a ab -=.19.(2024·吉林省中考真题)因式分解:a 2﹣3a=.20.(2024·四川宜宾·中考真题)分解因式:222m -=.21.(2024·四川达州·中考真题)分解因式:3x 2﹣18x+27=.222.(2024·江苏扬州·中考真题)分解因式:2242a a -+=.23.(2024·福建省·中考真题)因式分解:x 2+x =.24.(2024·江苏盐城·中考真题)分解因式:x 2+2x +1=25.(2024·江西省·中考真题)因式分解:22a a +=.三、解答题26.(2024·黑龙江齐齐哈尔·中考真题)(1)()2014cos 60π52-⎛⎫-︒--+ ⎪⎝⎭(2)分解因式:3228a ab -27.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL 一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:3假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.28.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,bcm n mn a a +==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.。
中考数学分类(含答案)因式分解一、选择题1. (2010山东济宁)把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D2.(2010四川眉山)把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x -【答案】D3.(2010台湾) 下列何者为5x 2+17x -12的因式?(A) x +1 (B) x -1 (C) x +4 (D) x -4 。
【答案】C4.(2010 贵州贵阳)下列多项式中,能用公式法分解因式的是(A )xy x -2 (B )xy x +2 (C )22y x + (D )22y x - 【答案】D5.(2010 四川自贡)把x 2-y 2-2y -1分解因式结果正确的是( )。
A .(x +y +1)(x -y -1)B .(x +y -1)(x -y -1)C .(x +y -1)(x +y +1)D .(x -y +1)(x +y +1) 【答案】A6.(2010宁夏回族自治区)把多项式322x x x -+分解因式结果正确的是 ( )A .2(2)x x x -B .2(2)x x -C .(1)(1)x x x +-D .2(1)x x -【答案】D二、填空题1.(2010江苏苏州)分解因式a 2-a= ▲ . 【答案】 2.(2010安徽芜湖)因式分解:9x 2-y 2-4y -4=__________. 【答案】3.(2010广东广州,15,3分)因式分解:3ab 2+a 2b =_______.【答案】ab (3b +a )4.(2010江苏南通)分解因式:2ax ax -= ▲ .【答案】ax (x-1)5.(2010江苏盐城)因式分解:=-a a 422 ▲ .【答案】2a (a -2)6.(2010浙江杭州)分解因式 m 3 – 4m = .【答案】m (m +2)(m – 2)7.(2010浙江嘉兴)因式分解:=+-m mx mx 2422 ▲ .【答案】2)1(2-x m8.(2010浙江绍兴)因式分解:y y x 92-=_______________. 【答案】)3)(3(-+x x y9.(2010 浙江省温州)分解因式:m 2—2m= .【答案】m (m-2)10.(2010 浙江台州市)因式分解:162-x = ▲ .【答案】)4)(4(-+x x11.(2010山东聊城)分解因式:4x 2-25=_____________.【答案】(2x +5)(2x -5)12.(2010 福建德化)分解因式:442++a a =_______________ 【答案】2)2(+a13.(2010 福建晋江)分解因式:26_________.x x +=【答案】(6)x x +14.(2010江苏宿迁)因式分解:12-a = ▲ .【答案】(a+1)(a-1)15.(2010浙江金华)分解因式=-92x ▲ .【答案】(x -3)(x +3)16.(2010 山东济南)分解因式2x 2-8=_____ .【答案】2(x +2)(x -2)17.(2010 浙江衢州) 分解因式:x 2-9= . 全品中考网【答案】(x +3)(x -3)18.(2010福建福州)因式分解:x 2-1=_______.【答案】(x +1)(x -1)19.(2010江苏无锡)分解因式:241a -=▲ .【答案】(21)(21)a a +-20.(2010年上海)分解因式:a 2 ─ a b = ______________.【答案】a ( a ─b )21.(2010四川宜宾)分解因式:2a 2– 4a + 2=【答案】2(a -1)222.(2010 黄冈)分解因式:x 2-x =__________.【答案】x (x+1)(x -1)23.(2010 山东莱芜)分解因式:=-+-x x x 232 . 【答案】2)1(--x x24.(2010 广东珠海)分解因式22ay ax -=________________.【答案】a(x+y)(x-y)25.(2010福建宁德)分解因式:ax 2+2axy +ay 2=______________________.【答案】a(x +y)226.2010江西)因式分解:=-822a . 【答案】)2)(2(2-+a a27.(2010四川 巴中) 把多项式2336x x +-分解因式的结果是【答案】3(x-1)228.(2010江苏常州)分解因式:224a b -= 。
专题02整式与因式分解一.选择题1.(2021·湖北十堰市·中考真题)下列计算正确的是()A .3332a a a ⋅=B .22(2)4a a -=C .222()a b a b +=+D .2(2)(2)2a a a +-=-【答案】B【分析】根据同底数幂相乘、积的乘方、乘法公式逐一判断即可.【详解】解:A .336a a a ⋅=,该项计算错误;B .22(2)4a a -=,该项计算正确;C .222()2a b a ab b +=++,该项计算错误;D .2(2)(2)4a a a +-=-,该项计算错误;故选:B .【点睛】本题考查整式乘法,掌握同底数幂相乘、积的乘方、乘法公式是解题的关键.2.(2021·四川成都市·中考真题)下列计算正确的是()A .321mn mn -=B .()22346m n m n =C .()34m m m -⋅=D .()222m n m n +=+【答案】B 【分析】利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A .321mn mn mn -=≠,故选项A 计算不正确;B.()()()222232346m n m n m n =⋅=,故选项B 计算正确;C .()3344m m m m m m -⋅=-⋅=-≠,故选项C 计算不正确;D .()222222m n m mn n m n +=++≠+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.3.(2021·陕西中考真题)计算:()23a b -=()A .621a b B .62a b C .521a b D .32a b-【答案】A【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可.【详解】解:()23621a ba b -=,故选:A .【点睛】本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键.4.(2021·上海中考真题)下列单项式中,23a b 的同类项是()A .32a b B .232a b C .2a bD .3ab 【答案】B【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∴32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∴3ab 不是23a b 的同类项,不符合题意;故选B【点睛】本题考查了同类项,正确理解同类项的定义是解题的关键.5.(2021·浙江杭州市·中考真题)因式分解:214y -=()A .()()1212y y -+B .()()22y y -+C .()()122y y -+D .()()212y y -+【答案】A【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【点睛】本题考查利用平方差公式进行因式分解,是重要考点,难度较易,掌握相关知识是解题关键.6.(2020·柳州市柳林中学中考真题)下列多项式中,能用平方差公式进行因式分解的是()A .a 2﹣b 2B .﹣a 2﹣b 2C .a 2+b 2D .a 2+2ab +b 2【答案】A【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、a 2﹣b 2符合平方差公式的特点,能用平方差公式进行因式分解;B 、﹣a 2﹣b 2两平方项符号相同,不能用平方差公式进行因式分解;C 、a 2+b 2两平方项符号相同,不能用平方差公式进行因式分解;D 、a 2+2ab +b 2是三项,不能用平方差公式进行因式分解.故选:A .【点睛】本题考查了用平方差公式进行因式分解.熟记平方差公式的结构特点是解题的关键.平方差公式:()()22a b a b a b -=+-.7.(2021·湖北宜昌市·中考真题)从前,古希腊一位庄园主把一块边长为a 米(6a >)的正方形土地租给租户张老汉.第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A .没有变化B .变大了C .变小了D .无法确定【答案】C【分析】分别求出2次的面积,比较大小即可.【详解】原来的土地面积为2a 平方米,第二年的面积为2(6)(6)36a a a +-=-22(36)360a a --=-< ∴所以面积变小了,故选C .【点睛】本题考查了列代数式,整式的运算,平方差公式,代数式大小的比较,正确理解题意列出代数式并计算是解题的关键.8.(2021·江苏苏州市·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b aa b+等于()A .2-B .1-C .1D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【详解】解:∵22=b a b a a b ab ++,∴()2222==a b ab b a b a a b ab ab+-++,∵两个不等于0的实数a 、b 满足0a b +=,∴()22-2===-2a b ab b a ab a b ab ab+-+,故选:A .【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.9.(2021·浙江台州市·中考真题)将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖()A .20%B .+100%2x y⨯C .+3100%20x y⨯D .+3100%10+10x yx y⨯【答案】D【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解.【详解】解:混合之后糖的含量:10%30%3100%1010x y x yx y x y++=⨯++,故选:D .【点睛】本题考查列代数式,理解题意是解题的关键.10.(2021·浙江台州市·中考真题)已知(a +b )2=49,a 2+b 2=25,则ab =()A.24B .48C .12D .【答案】C【分析】利用完全平方公式计算即可.【详解】解:∵()222249a b a b ab +=++=,2225a b +=,∴4925122ab -==,故选:C .【点睛】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键.11.(2021·山东临沂市·中考真题)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是()A .4860年B .6480年C .8100年D .9720年【答案】C【分析】根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12,再经过1620年,即当3240年时,镭质量缩减为原来的21142=,再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=,...,∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=,此时132132⨯=mg ,故选C .【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.12.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=()A .2-B .1-C .2D .3【答案】A【分析】先根据新定义,可得9m +4n =0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【详解】解:∵(),m n 是“相随数对”,∴2323m n m n++=+,整理得9m +4n =0,()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A .【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.13.(2021·四川泸州市·中考真题)已知1020a =,10050b =,则1322a b ++的值是()A .2B .52C .3D .92【答案】C【分析】根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可.【详解】解:∵1020a =,10050b =,∴2310100102050100010a b a b +⋅==⨯==,∴23a b +=,∴()()1311233332222a b a b ++=++=+=.故选:C .【点睛】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.14.(2020·四川眉山市·中考真题)已知221224a b a b +=--,则132a b -的值为()A .4B .2C .2-D .4-【答案】A【分析】根据221224a b a b +=--,变形可得:()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭,因此可求出1a =,2b =-,把a 和b 代入132a b -即可求解.【详解】∵221224a b a b +=--∴()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭即2(1)0a -=,21(1)02b +=∴求得:1a =,2b =-∴把a 和b 代入132a b -得:131(2)42⨯-⨯-=故选:A 【点睛】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.15.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为()A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元【答案】D【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元,∴应缴水费为17a +3(a +1.2)=20a +3.6(元),故选:D .【点睛】本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.16.(2020·湖南娄底市·中考真题)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为()A .135B .153C .170D .189【答案】C【分析】由观察发现每个正方形内有:224,236,248,⨯=⨯=⨯=可求解b ,从而得到a ,再利用,,a b x 之间的关系求解x 即可.【详解】解:由观察分析:每个正方形内有:224,236,248,⨯=⨯=⨯=218,b ∴=9,b ∴=由观察发现:8,a =又每个正方形内有:2419,36220,48335,⨯+=⨯+=⨯+=18,b a x ∴+=1898170.x ∴=⨯+=故选C .【点睛】本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键.17.(2020·湖南郴州市·中考真题)如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式()A .2221(1)x x x -+=-B .21(1)(1)x x x -=+-C .2221(1)x x x ++=+D .2(1)x x x x -=-【答案】B【分析】利用大正方形的面积减去小正方形的面积得到空白部分的面积,然后根据面积相等列出等式即可.【详解】第一个图形空白部分的面积是x 2-1,第二个图形的面积是(x+1)(x-1).则x 2-1=(x+1)(x-1).故选:B .【点睛】本题考查了平方差公式的几何背景,正确用两种方法表示空白部分的面积是解决问题的关键.18.(2020·湖北中考真题)根据图中数字的规律,若第n 个图中出现数字396,则n =()A .17B .18C .19D .20【答案】B【分析】观察上三角形,下左三角形,下中三角形,下右三角形各自的规律,让其等于396,解得n 为正整数即成立,否则舍去.【详解】根据图形规律可得:上三角形的数据的规律为:2(1)n n +,若2(1)396n n +=,解得n 不为正整数,舍去;下左三角形的数据的规律为:21n -,若21396n -=,解得n 不为正整数,舍去;下中三角形的数据的规律为:21n -,若21396n -=,解得n 不为正整数,舍去;下右三角形的数据的规律为:(4)n n +,若(4)396n n +=,解得18n =,或22n =-,舍去,故选:B .【点睛】本题考查了有关数字的规律,能准确观察到相关规律是解题的关键.19.(2020·山东潍坊市·中考真题)若221m m +=,则2483m m +-的值是()A .4B .3C .2D .1【答案】D【分析】把所求代数式2483m m +-变形为24(2)3m m +-,然后把条件整体代入求值即可.【详解】∵221m m +=,∴2483m m +-=24(2)3m m +-=4×1-3=1.故选:D .【点睛】此题主要考查了代数式求值以及“整体代入”思想,解题的关键是把代数式2483m m +-变形为24(2)3m m +-.20.(2020·河南中考真题)电子文件的大小常用, ,,B KB MB GB 等作为单位,其中10101012,12,12GB MB MB KB KB B ===,某视频文件的大小约为1,1GB GB 等于()A .302B B .308BC .10810B ⨯D .30210B⨯【答案】A【分析】根据题意及幂的运算法则即可求解.【详解】依题意得1010101010101222222GB MB KB B ==⨯=⨯⨯=302B 故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则.21.(2020·江苏无锡市·中考真题)若2x y +=,3z y -=-,则x z +的值等于()A .5B .1C .-1D .-5【答案】C【分析】将两整式相加即可得出答案.【详解】∵2x y +=,3z y -=-,∴()()1x y z y x z ++-=+=-,∴x z +的值等于1-,故选:C .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.(2020·湖南中考真题)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【答案】D【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.【详解】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),应停在第12k(k+1)﹣7p格,这时P是整数,且使0≤12k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,12k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,12k(k+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.【点睛】本题考查的是探索图形、数字变化规律,从图形中提取信息,转化为数字信息,探索数字变化规律是解答的关键.23.(2020·山东枣庄市·中考真题)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n2【答案】C【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.24.(2020·山东日照市·中考真题)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.71【答案】C【分析】由题意观察图形可知,第1个图形共有圆点5+2个;第2个图形共有圆点5+2+3个;第3个图形共有圆点5+2+3+4个;第4个图形共有圆点5+2+3+4+5个;…;则第n个图形共有圆点5+2+3+4+…+n+(n+1)个;由此代入n=10求得答案即可.【详解】解:根据图中圆点排列,当n=1时,圆点个数5+2;当n=2时,圆点个数5+2+3;当n=3时,圆点个数5+2+3+4;当n=4时,圆点个数5+2+3+4+5,…∴当n=10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=1411(111)2+⨯⨯+70=.故选:C.【点睛】本题考查图形的变化规律,注意找出数量上的变化规律,从而推出一般性的结论,利用规律解决问题.25.(2019·湖北中考真题)一列数按某规律排列如下:1121231234 ,,,,,,,,, 1213214321…,若第n个数为57,则n=()A.50B.60C.62D.71【答案】B【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为57时n的值,本题得意解决.【详解】1121231234,,,,,,,,,1213214321,…,可写为:1121231234,,,,,,,,,1213214321⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,…,∵57的分子和分母的和为12,∴分母为11开头到分母为1的数有11个,分别为1234567891011,,,,,,,,,,1110987654321,∴第n 个数为57,则123410560n =++++⋯++=,故选B .【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.26.(2019·重庆中考真题)按如图所示的运算程序,能使输出y 值为1的是()A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,【答案】D 【分析】逐项代入,寻找正确答案即可.【详解】解:A 选项满足m≤n ,则y=2m+1=3;B 选项不满足m≤n ,则y=2n-1=-1;C 选项满足m≤n ,则y=2m-1=3;D 选项不满足m≤n ,则y=2n-1=1;故答案为D ;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确的所代入代数式及代入得值.27.(2019·四川绵阳市·中考真题)已知4m a =,8n b =,其中m ,n 为正整数,则262m n +=()A .2ab B .2a b +C .23a b D .23a b +【答案】A【分析】先变形262m n +成4m 与8n 的形式,再将已知等式代入可得.【详解】解:∵4m a =,8n b =,∴2626222m n m n +=⨯()()22322m n =⋅248m n =⋅()248m n =⋅2ab =,故选A .【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与同底数幂的乘法运算法则.28.(2019·广西柳州市·中考真题)定义:形如a bi +的数称为复数(其中a 和b 为实数,i 为虚数单位,规定21i =-),a 称为复数的实部,b 称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如2222(13)1213(3)16916986i i i i i i i +=+⨯⨯+=++=+-=-+,因此,2(13)i +的实部是﹣8,虚部是6.已知复数2(3)mi -的虚部是12,则实部是()A .﹣6B .6C .5D .﹣5【答案】C【分析】先利用完全平方公式得出(3-mi )2=9-6mi+m 2i 2,再根据新定义得出复数(3-mi )2的实部是9-m 2,虚部是-6m ,由(3-mi )2的虚部是12得出m=-2,代入9-m 2计算即可.【详解】解:∵222222(3)323()9696mi mi mi mi m i m mi-=-⨯⨯+=-+=--∴复数2(3)mi -的实部是29m -,虚部是6m -,∴612m -=,∴2m =-,∴2299(2)945m -=--=-=.故选C .【点睛】本题考查了新定义,完全平方公式,理解新定义是解题的关键.二.填空题1.(2021·四川达州市·中考真题)已知a ,b 满足等式2690a a +++=,则20212020a b =___________.【答案】-3【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解.【详解】解:由2690a a +++=,变形得()230a ++=,∴130,03a b +=-=,∴13,3a b =-=,∴()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:-3【点睛】本题考查了完全平方公式,平方、算术平方根的非负性,同底数幂的乘法、积的乘方的逆用等知识,根据题意求出a 、b 的值,熟知同底数幂的乘法、积的乘方是解题关键.2.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m-【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m ∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.3.(2021·四川广安市·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______.【答案】-6【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.【详解】解:∵x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点睛】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.4.(2021·江苏苏州市·中考真题)若21m n +=,则2366m mn n ++的值为______.【答案】3【分析】根据21m n +=,将式子2366m mn n ++进行变形,然后代入求出值即可.【详解】∵21m n +=,∴2366m mn n ++=3m (m +2n )+6n =3m +6n =3(m +2n )=3.故答案为:3.【点睛】本题考查了代数式的求值,解题的关键是利用已知代数式求值.5.(2021·江苏扬州市·中考真题)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,...第n 个图形中的黑色圆点的个数为()12n n +,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.6.(2021·重庆中考真题)某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,A 、B 、C 三种饮料的单价之比为1:2:1.六月份该销售商加大了宣传力度,并根据季节对三种饮料的价格作了适当的调整,预计六月份三种饮料的销售总额将比五月份有所增加,A 饮料增加的销售占六月份销售总额的115,B 、C 饮料增加的销售额之比为2:1.六月份A 饮料单价上调20%且A 饮料的销售额与B 饮料的销售额之比为2:3,则A 饮料五月份的销售数量与六月份预计的销售数量之比为_____________.【答案】910【分析】设销售A 饮料的数量为3x ,销售B 种饮料的数量2x,销售C 种饮料的数量4x ,A 种饮料的单价y .B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%,总销售额为m ,可求A 饮料销售额为3xy+115m ,B 饮料的销售额为91210xy m +,C 饮料销售额:171420xy m +,可求=15m xy ,六月份A 种预计的销售额4xy ,六月份预计的销售数量103x ,A 饮料五月份的销售数量与六月份预计的销售数量之比103:3x x 计算即可【详解】解:某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,设销售A 饮料的数量为3x ,销售B 种饮料的数量2x,销售C 种饮料的数量4x ,A 、B 、C 三种饮料的单价之比为1:2:1.,设A 种饮料的单价y .B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%后单价为(1+20%)y,总销售额为m ,A 饮料增加的销售占六月份销售总额的115,A 饮料销售额为3xy+115m ,A 饮料的销售额与B 饮料的销售额之比为2:3,,B 饮料的销售额为31913=215210xy m xy m ⎛⎫++ ⎪⎝⎭B 饮料的销售额增加部分为3134215xy m xy ⎛⎫+- ⎪⎝⎭∴C 饮料增加的销售额为131342215xy m xy ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦∴C 饮料销售额:13117134+42215420xy m xy xy xy ⎡⎤⎛⎫+-=+ ⎪⎢⎥⎝⎭⎣⎦∴191171315210420xy m xy m xy m m +++++=∴=15m xy 六月份A 种预计的销售额1315415xy xy xy +⨯=,六月份预计的销售数量()1041+20%y 3xy x ÷=∴A 饮料五月份的销售数量与六月份预计的销售数量之比1093:9:10=310x x =故答案为910【点睛】本题考查销售问题应用题,用字母表示数,列代数式,整式的加减法,单项式除以单项式,掌握销售额=销售单价×销售数量是解题关键7.(2021·浙江嘉兴市·中考真题)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________.【答案】()221n n --.【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:∵22110=-,22321=-,22532=-,…∴第n 个等式为:()22211n n n -=--故答案是:()221n n --.【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键.8.(2021·湖北十堰市·中考真题)已知2,33xy x y =-=,则322321218x y x y xy -+=_________.【答案】36【分析】先把多项式因式分解,再代入求值,即可.【详解】∵2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键.9.(2021·陕西中考真题)分解因式:3269x x x ++=______.【答案】()23x x +【分析】题目中每项都含有x ,提取公因式x ;先提取公因式,再用完全平方公式即可得出答案.【详解】()322269(69)3x x x x x x x x ++=+++=故答案为()23x x +.【点睛】本题考查了整式的因式分解,提公因式法和公式法,熟练掌握提公因式法分解因式、完全平方公式法分解因式是解题关键.10.(2021·江苏连云港市·中考真题)分解因式:2961x x ++=____.【答案】(3x +1)2【分析】原式利用完全平方公式分解即可.【详解】解:原式=(3x +1)2,故答案为:(3x +1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.11.(2020·四川绵阳市·中考真题)因式分解:x 3y ﹣4xy 3=_____.【答案】xy (x+2y )(x ﹣2y )【分析】原式提取公因式xy ,再利用平方差公式分解即可;【详解】解:x 3y ﹣4xy 3,=xy (x 2﹣4y 2),=xy (x+2y )(x ﹣2y ).故答案为:xy (x+2y )(x ﹣2y ).【点睛】本题考查了提公因式法与公式法因式分解.一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.(2020·湖南中考真题)阅读理解:对于x 3﹣(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式:x 3﹣(n 2+1)x +n =x 3﹣n 2x ﹣x +n =x (x 2﹣n 2)﹣(x ﹣n )=x (x ﹣n )(x +n )﹣(x ﹣n )=(x ﹣n )(x 2+nx ﹣1).理解运用:如果x 3﹣(n 2+1)x +n =0,那么(x ﹣n )(x 2+nx ﹣1)=0,即有x ﹣n =0或x 2+nx ﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为_____.【答案】x=2或x=﹣或x=﹣1.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.【详解】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣或x=﹣1.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到解方程的方法.13.(2020·贵州黔南布依族苗族自治州·中考真题)若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=_______.【答案】9【分析】直接利用合并同类项法则得出m,n的值,进而得出答案.【详解】由题意知:单项式a m﹣2b n+7与单项式﹣3a4b4是同类项,∴m−2=4,n+7=4,解得:m=6,n=−3,故m−n=6−(−3)=9.故填:9.【点睛】此题主要考查了合并同类项,正确得出m,n的值是解题关键.14.(2020·四川中考真题)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=_____.【答案】65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+n的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44=44(441)2⨯+=990,1+2+3+ (45)45(451)2⨯+=1035,∴2020是第45组第1010-990=20个数,∴m=45,n=20,∴m+n=65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.15.(2020·四川绵阳市·中考真题)若多项式||22(2)1m n xy n x y -+-+是关于x ,y 的三次多项式,则mn =_____.【答案】0或8【分析】直接利用多项式的次数确定方法得出答案.【详解】解: 多项式||22(2)1m n xy n x y -+-+是关于x ,y 的三次多项式,20n ∴-=,1||3m n +-=,2n ∴=,||2m n -=,2m n ∴-=或2n m -=,4m ∴=或0m =,0mn \=或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.16.(2020·山东威海市·中考真题)如图①,某广场地面是用A .B .C 三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地时记作(2,1)…若(,)m n 位置恰好为A 型地砖,则正整数m ,n 须满足的条是__________.【答案】m 、n 同为奇数或m 、n 同为偶数【分析】几何图形,观察A 型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m 、n 满足的条件.【详解】解:观察图形,A 型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m ,n )位置恰好为A 型地砖,正整数m ,n 须满足的条件为m 、n 同为奇数或m 、n 同为偶数,故答案为:m 、n 同为奇数或m 、n 同为偶数.【点睛】本题考查了坐标表示位置:通过类比点的坐标考查解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.17.(2020·宁夏中考真题)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a ,较长直角边为b .如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.【答案】27【分析】根据题意得出a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,然后利用完全平方公式的变形求出(a+b )2即可.【详解】解:由题意可得在图1中:a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,∵(b-a )2=3a 2-2ab+b 2=3,∴15-2ab=32ab=12,∴(a+b )2=a 2+2ab+b 2=15+12=27,故答案为:27.【点睛】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.18.(2020·湖南长沙市·中考真题)某数学老师在课外活动中做了一个有趣的游戏:首先发给A ,B ,C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A 同学拿出三张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学,请你确定,最终B 同学手中剩余的扑克牌的张数为___________________.【答案】9【分析】把每个同学的扑克牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案.【详解】设每个同学的扑克牌的数量都是x ;第一步,A 同学的扑克牌的数量是3x -,B 同学的扑克牌的数量是3x +;第二步,B 同学的扑克牌的数量是33x ++,C 同学的扑克牌的数量是3x -;第三步,A 同学的扑克牌的数量是2(3x -),B 同学的扑克牌的数量是33x ++-(3x -);。
专题02整式与因式分解的核心知识点精讲1.能用幂的性质解决简单问题,会进行简单的整式乘法与加法的混合运算.2.能用平方差公式、完全平方公式进行简单计算.3.了解因式分解的意义及其与整式乘法之间的关系,会用提公因式法和公式法进行因式分解.4.能选用恰当的方法进行相应的代数式的变形,并通过代数式的适当变形求代数式的值.5.会列代数式表示简单的数量关系;能解释一些简单代数式的实际背景或几何意义,会求代数式的值,并能根据代数式的值或特征推断代数式反映的规律.考点1:代数式定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
考点2:整式的相关概念考点3:整式加减运算1.实质:合并同类项2.合并同类项:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3.去括号(1)a+(b+c)=a+b+c;(2)a-(b+c)=a-b-c考点4:幂运算(1)幂的乘法运算口诀:同底数幂相乘,底数不变,指数相加。
即a m ×a n =a (m+n )(a≠0,m,n 均为正整数,并且m>n)(2)幂的乘方运算口诀:幂的乘方,底数不变,指数相乘。
即amnnm=)(a (m,n 都为正整数)(3)积的乘方运算口诀:等于将积的每个因式分别乘方,再把所得的幂相乘。
即ba ab mnnnm=)((m,n 为正整数)(4)幂的除法运算口诀:同底数幂相除,底数不变,指数相减。
即a m ÷a n =a (m-n )(a≠0,m,n 均为正整数,并且m>n)考点5:整式乘法运算(1)单项式乘单项式单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式乘多项式单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.(3)多项式乘多项式多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.(4)乘法公式①平方差公式:22()()a b a b a b+--②完全平方公式:()222a b a ab b +=++2222)(b ab a b a +-=-(5)除法运算①单项式的除法:把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.考点6:因式分解【题型1:代数式及其求值】【典例1】(2023•南通)若a2﹣4a﹣12=0,则2a2﹣8a﹣8的值为()A.24B.20C.18D.161.(2023•雅安)若m2+2m﹣1=0,则2m2+4m﹣3的值是()A.﹣1B.﹣5C.5D.﹣3 2.(2023•常德)若a2+3a﹣4=0,则2a2+6a﹣3=()A.5B.1C.﹣1D.0 3.(2023•巴中)若x满足x2+3x﹣5=0,则代数式2x2+6x﹣3的值为()A.5B.7C.10D.﹣13【题型2:整式的相关概念及加减】【典例2】(2022•湘潭)下列整式与ab2为同类项的是()A.a2b B.﹣2ab2C.ab D.ab2c1.(2021•河池)下列各式中,与a b为同类项的是()A.﹣2a2b B.﹣2ab C.2ab2D.2a2 2.(2022•泰州)下列计算正确的是()A.3ab+2ab=5ab B.5y2﹣2y2=3C.7a+a=7a2D.m2n﹣2mn2=﹣mn23.(2022•包头)若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为.【题型3:幂运算】【典例3】(2023•株洲)计算:(3a)2=()A.5a B.3a2C.6a2D.9a21.(2023•丹东)下列运算正确的是()A.(3xy)2=9x2y2B.(y3)2=y5C.x2•x2=2x2D.x6÷x2=x32.(2023•陕西)计算:=()A.B.C.D.3.(2023•温州)化简a4•(﹣a)3的结果是()A.a12B.﹣a12C.a7D.﹣a7【题型4:整式的乘除及化简求值】【典例4】(2023•盐城)先化简,再求值:(a+3b)2+(a+3b)(a﹣3b),其中a=2,b=﹣1.1.(2023•长沙)先化简,再求值:(2﹣a)(2+a)﹣2a(a+3)+3a2,其中a=﹣.2.(2023•常州)先化简,再求值:(x+1)2﹣2(x+1),其中x=.3.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【题型5:因式分解】【典例5】(2023•北京)分解因式:x2y﹣y3=.1.(2023•盐城)因式分解:x2﹣xy=.2.(2023•陕西)分解因式:3x2﹣12=.3.(2023•怀化)分解因式:2x2﹣4x+2=.1.单项式mxy3与x n+2y3的和是5xy3,则m﹣n=()2.下列计算正确的是()A.2ab+3ab=5ab B.7y2﹣2y2=5C.4a+2a=6a2D.3m2n﹣2mn2=mn23.如图是由连续的奇数1,3,5,7,……排成的数阵,用如图所示的T字框框住其中的四个数,设竖列中间的数为x,则这四个数的和为()A.3x+1B.3x+2C.4x+1D.4x+24.某商品标价为m元,商店以标价7折的价格开展促销活动,这时一件商品的售价为()A.0.3m元B.1.7m元C.7m元D.0.7m元5.如图是一组有规律的图案,它们由边长相等的等边三角形组成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形,…,照此规律,摆成第6个图案需要的三角形个数是()A.19个B.22个C.25个D.26个6.若代数2x2+3x的值为5,则代数式4x2+6x﹣9的值是()A.1B.﹣1C.4D.﹣47.下列计算正确的是()A.(a3)2=a8B.a2•a3=a6C.(2ab2)3=8a3b6D.8.多项式3x2﹣2x+5的各项分别是()A.3x2,﹣2x,5B.x2,x,5C.3x2,2x,5D.3,2,59.下列各整式中是三次单项式的是()A.5a3b B.32a2b C.﹣a2b3D.9a2+b310.如果二次三项式x2+ax﹣2可分解为(x﹣2)(x+b),那么a+b的值为()A.﹣2B.﹣1C.1D.011.将长、宽分别为x、y的四个完全一样的长方形,拼成如图所示的两个正方形,则这个图形可以用来解释的代数恒等式是()A.(x+y)2=x2+2xy+y2B.(x﹣y)2=x2﹣2xy+y2C.(x+y)(x﹣y)=x2﹣y2D.(x+y)2﹣(x﹣y)2=4xy12.(﹣x3)2的运算结果是()A.﹣x5B.﹣x6C.x6D.x913.单项式﹣的系数和次数分别是()A.﹣,4B.﹣,5C.D.14.若M和N都是三次多项式,则M+N一定是()A.次数低于三次的整式B.六次多项式C.三次多项式D.次数不高于三次的整式15.多项式x2+mx+25是完全平方式,那么m的值是()A.10B.20C.±10D.±2016.要使多项式2x2﹣2(7+3x﹣2x2)+mx2化简后不含x的二次项,则m的值是()A.2B.0C.﹣2D.﹣617.先化简,再求值:(a+2)(a﹣2)+a(1﹣a),其中a=2023.18.甲、乙两个长方形的边长如图所示(m为正整数),其面积分别为S1,S2.(1)填空:S1﹣S2=(用含m的代数式表示);(2)若一个正方形的周长等于甲、乙两个长方形的周长之和.①设该正方形的边长为x,求x的值(用含m的代数式表示);②设该正方形的面积为S3,试探究:S3与2(S1+S2)的差是否是常数?若是常数,求出这个常数,若不是常数,请说明理由.1.已知有2个完全相同的边长为a、b的小长方形和1个边长为m、n的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推理得知,要求出图中阴影部分的周长之和,只需知道a、b、m、n中的一个量即可,则要知道的那个量是()A.a B.b C.m D.n2.已知8m=a,16n=b,其中m,n为正整数,则23m+12n=()A.ab2B.a+b2C.ab3D.a+b33.比较344,433,522的大小正确的是()A.344<433<522B.522<433<344C.522<344<433D.433<344<5224.若(a+2b)•_____=a2﹣4b2,则横线内应填的代数式是()A.﹣a﹣2b B.a+2b C.a﹣2b D.2b﹣a5.同号两实数a,b满足a2+b2=4﹣2ab,若a﹣b为整数,则ab的值为()A.1或B.1或C.2或D.2或6.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”设(a+b)n的展开式中各项系数的和为a n,若21010=x,则a1+a2+a3+…+a2020的值为()A.2x2B.2x2﹣2C.2020x﹣2D.2020x7.下列表格中的四个数都是按照规律填写的,则表中x的值是()A.135B.170C.209D.252故选:C.8.定义运算“★”:a★b=,关于x的方程(2x+1)★(2x﹣3)=t恰好有两个不相等的实数根,则t的取值范围是.9.计算:已知:a+b=3,ab=1,则a2+b2=.10.如图,边长分别为a、b的两个正方形并排放在一起,当a+b=8,ab=10时,阴影部分的面积为.11.因式分解:2x2﹣4x+2=.12.已知xy=2,x+y=3,则x2y+xy2=.13.如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=9,两正方形的面积和S1+S2=51,则图中阴影部分面积为.14.若实数a,b满足a﹣b=1,则代数式a2﹣b2﹣2b+5的值为.15.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”这个三角形给出了(a+b)n (n=1,2,3,4,…)的展开式的系规律(按a的次数由大到小的顺序).请根据规律,写出(x+1)2022的展开式中含x2021项的系数是.16.观察下列一组数:a1=,a2=,a3=,a4=,a5=,…,它们是按一定规律排列的,请利用其中规律,写出第n个数a n=(用含n的式子表示)17.先化简,再求值:(2a+1)(2a﹣1)﹣4a(a﹣1),其中a=﹣1.18.已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.19.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.20.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数字等式,例如图1,可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=9,ab+bc+ac=26,求a2+b2+c2的值;(3)小明同学用2张边长为a的正方形、3张边长为b的正方形、5张边长为a、b的长方形纸片拼出了一个长方形,那么该长方形较长一边的边长为多少?(4)小明同学又用x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出了一个面积为(25a+7b)(2a+5b)长方形,求9x+10y+6.21.阅读理解:若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.迁移应用:(1)若x满足(2020﹣x)2+(x﹣2022)2=10,求(2020﹣x)(x﹣2022)的值;(2)如图,点E,G分别是正方形ABCD的边AD、AB上的点,满足DE=k,BG=k+1(k为常数,且k>0),长方形AEFG的面积是,分别以GF、AG作正方形GFIH和正方形AGJK,求阴影部分的面积.22.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成相等的四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法一:;方法二:;(3)根据(2)写出(m﹣n)2,(m+n)2,mn这三个代数式之间的等量关系及推理过程.1.(2023•西藏)下列计算正确的是()A.2a2b﹣3a2b=﹣a2b B.a3•a4=a12C.(﹣2a2b)3=﹣6a6b3D.(a+b)2=a2+b22.(2023•攀枝花)我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:其中,图形的面积关系能正确解释相应的代数恒等式的有()A.1个B.2个C.3个D.4个3.(2022•永州)若单项式3x m y与﹣2x6y是同类项,则m=.4.(2020•黔西南州)若7a x b2与﹣a3b y的和为单项式,则y x=.5.(2023•丽水)分解因式:x2﹣9=.6.(2023•淄博)分解因式:2a2﹣8b2=.7.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是.8.(2023•长春)先化简,再求值:(a+1)2+a(1﹣a),其中.9.(2023•邵阳)先化简,再求值:(a﹣3b)(a+3b)+(a﹣3b)2,其中a=﹣3,b=.10.(2023•河北)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如表2和表3,其面积分别为S1,S2.表2表3(1)请用含a的式子分别表示S1,S2,当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.。
因式分解 一、选择题 1.下列各式中,不含因式a+1的是( ) A. 2a2+2a B. a2+2a+1 C. a2﹣1 D. 2.下列因式分解错误的是( ) A. 2x(x﹣2)+(2﹣x)=(x﹣2)(2x+1) B. x2+2x+1=(x+1)2 C. x2y﹣xy2=xy(x﹣y) D. x2﹣y2=(x+y)(x﹣y) 3.下列因式分解中,正确的个数为( ) ①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y) A. 3个 B. 2个 C. 1个 D. 0个 4.若x=1, ,则x2+4xy+4y2的值是( ) A. 2 B. 4 C. D. 5.化简:(a+1)2-(a-1)2=( ) A. 2 B. 4 C. 4a D. 2a2+2 6.下列因式分解正确的是( ) A. (x-3)2-y2=x2-6x+9-y2 B. a2-9b2=(a+9b)(a-9b) C. 4x6-1=(2x3+1)(2x3-1) D. -x2-y2=(x-y)(x+y) 7.若代数式x2+ax可以分解因式,则常数a不可以取( ) A. ﹣1 B. 0 C. 1 D. 2 8.下列各多项式中,不能用平方差公式分解的是( ). A. a2b2-1 B. 4-0.25a2 C. -a2-b2 D. -x2+1 9.分解因式x2y﹣y3结果正确的是( ). A. y(x+y)2 B. y(x-y)2 C. y(x2-y2) D. y(x+y)(x-y) 10.边长为a、b的长方形周长为12,面积为10,则 的值为( ) A. 120 B. 60 C. 80 D. 40 11.如果2x2+mx﹣2可因式分解为(2x+1)(x﹣2),那么m的值是( ) A. ﹣1 B. 1 C. ﹣3 D. 3 12.下列各式从左边到右边的变形是因式分解的是( )
A. B. C. D. 二、填空题 13.分解因式:x2﹣16=________. 14.两个多项式①a2+2ab+b2 , ②a2﹣b2的公因式是________ 15.分解因式:x2﹣2x+1=________. 16.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=________ 17.把多项式x3 -25x分解因式的结果是________. 18.若x2﹣9=(x﹣3)(x+a),则a=________ 19.把多项式 分解因式的结果是________. 20.已知 , 则代数式 的值是________ 21.当a=3,a﹣b=1时,代数式a2﹣ab的值是________. 22.若a2﹣2a﹣4=0,则5+4a﹣2a2=________. 三、解答题
23.把下列各式分解因式: (1)x2(a-1)+y2(1-a); (2)18(m+n)2-8(m-n)2; (3)x2-y2-z2+2yz.
24.计算 (1)已知a+b=-3,ab=5,求多项式4a2b+4ab2-4a-4b的值 (2)已知x2-3x-1=0,求代数式3-3 x2+9x的值?
25.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程. 解:设x2﹣4x=y 原式=(y+2)(y+6)+4(第一步) =y2+8y+16(第二步) =(y+4)2(第三步) =(x2﹣4x+4)2(第四步) 回答下列问题: (1)该同学第二步到第三步运用了因式分解的( ) A. 提取公因式 B. 平方差公式 C. 两数和的完全平方公式 D. 两数差的完全平方公式 (2)该同学因式分解的结果是否彻底________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果________. (3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
26.对于多项式x3-5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3-5x2+x+10的值为0,由此可以断定多项式x3-5x2+x+10中有因式x-2(注:把x=a代入多项式,能使多项式的值为0,则多项式中一定含有因式(x-a),于是我们可以把多项式写成:x3-5x2+x+10=(x-2)(x2+mx+n),分别求出m,n后再代入x3-5x2+x+10=(x-2)(x2+mx+n)中,就可以把多项式x3-5x2+x+10因式分解). (1)求式子中m,n的值; (2)以上这种因式分解的方法叫“试根法”,用“试根法”分解因式x3+5x2+8x+4. 答案解析 一、选择题 1.【答案】D 【解析】 :A、∵2a2+2a=2a(a+1),故本选项不符合题意; B、a2+2a+1=(a+1)2 , 故本选项不符合题意; C、a2﹣1=(a+1)(a﹣1),故本选项不符合题意; D、 = ,故本选项符合题意. 故答案为:D. 【分析】根据因式分解的定义:把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式;把各个选项因式分解,找出不含因式a+1的选项. 2.【答案】A 【解析】 A、原式=(x﹣2)(2x﹣1),符合题意; B、原式=(x+1)2 , 不符合题意; C、原式=xy(x﹣y),不符合题意; D、原式=(x+y)(x﹣y),不符合题意, 故答案为:A. 【分析】根据因式分解的定义,将一个多项式化为几个整式的积的恒等变形就是因式分解,然后利用整式的乘法将变形的右边利用整式的乘法法则得出结果,和左边进行比较即可得出答案。 3.【答案】C 【解析 :①x3+2xy+x=x(x2+2y+1),故原题错误; ②x2+4x+4=(x+2)2;正确; ③﹣x2+y2=(x+y)(y﹣x),故原题错误; 故正确的有1个. 故答案为:C. 【分析】第一个中的第一项的指数是3,第三项不是y的平方,所以不符合完全平方式的条件;第三个应该是(x+y)(y-x). 4.【答案】B 【解析】 :原式=(x+2y)2=(1+2× )2=4.故答案为:B【分析】根据完全平方公式a22ab+b2=(ab)2 , 分解因式x2+4xy+4y2=(x+2y)2 , 把x、y的值代入,求出代数式的值.
5.【答案】C 【解析】 : (a+1)2-(a-1)2=[(a+1)-(a-1)]·[(a+1)+(a-1)]=2×2a=4a. 选C【分析】根据平方差公式a2-b2=(a+b)(a-b),分解即可. 6.【答案】C 【解析】 :A、(x-3)2-y2=x2-6x+9-y2 , 不是两数积的形式的形式,不符合因式分解特点,故此选项不符合题意; B、原式应该为:a2-9b2=(a+3b)(a-3b);故此选项不符合题意; C、4x6-1=(2x3+1)(2x3-1),故此选项符合题意; D、原式应该为:2xy-x2-y2=-(x-y)2 , 故此选项不符合题意;故答案为:C 【分析】根据因式分解的定义把一个多项式化为几个整式的积的形式,再根据平方差公式a2-b2=(a+b)(a-b)分解即可. 7.【答案】B 【解析】 :∵代数式x2+ax可以分解因式, ∴常数a不可以取0. 故答案为:B. 【分析】根据因式分解的定义,就是将一个多项式分解为几个整式的积的形式,从而可知x2+ax能分解因式的话,必须是多项式,故a≠0,从而得出答案。 8.【答案】C 【解析】 :A、a2b2-1=(ab)2-12 , 可以利用平方差公式分解因式,故A不符合题意; B、4-0.25a2=22-(0.5a)2 , 可以利用平方差公式分解因式,故B不符合题意; C、-a2-b2=-(a2+b2),不能分解因式,故C符合题意; D、-x2+1=-(x2-1),可以利用平方差公式分解因式,故D不符合题意; 故答案为:C【分析】平方差公式的特点:多项式含有两项,两项的符号相反,两项的绝对值都能写出平方形式,对各选项逐一判断即可。 9.【答案】D 【解析】 :x2y﹣y3=y(x2-y2)=y(x+y)(x-y) 故答案为:D 【分析】观察此多项式的特点,有公因式y,因此先提取公因式,再利用平方差公式分解因式。 10.【答案】B 【解析】 :∵边长为a、b的长方形周长为12,面积为10, ∴2(a+b)=12,ab=10 ∴a+b=6 ∴a2b+ab2 =ab(a+b)=10×6=60 【分析】根据已知求出a+b、ab的值,再将a2b+ab2 分解因式,然后整体代入求值即可。 11.【答案】C 【解析】 :∵2x2+mx﹣2=(2x+1)(x﹣2)=2x2﹣3x﹣2, ∴m=﹣3. 故答案为:C. 【分析】根据多项式的乘法运算,把(2x+1)(x﹣2)展开,再根据对应项的系数相等进行求解即可. 12.【答案】D 【解析】 A、是一个二元一次方程组,故A不符合题意; B、是单项式乘法的逆用,故B不符合题意; C是多项式乘以多项式的乘法运算,故C不符合题意; D是将一个多项式变形为两个整式的积,故D符合题意 【分析】根据因式分解的定义,把一个多项式分解为几个整式的积的形式,即可得出结论。 二、填空题
13.【答案】(x+4)(x-4) 【解析】 :x2﹣16=(x+4)(x﹣4).【分析】16=42 , 利用平方差公式分解可得. 14.【答案】a+b. 【解析】 :①a2+2ab+b2=(a+b)2; ②a2﹣b2=(a+b)(a﹣b); 故多项式①a2+2ab+b2 , ②a2﹣b2的公因式是a+b. 故答案为:a+b. 【分析】利用完全平方公式和平方差公式化简和展开得到(a+b)2和(a+b)(a﹣b),答案就很显然了. 15.【答案】(x﹣1)2 【解析】 :x2﹣2x+1=(x﹣1)2 . 【分析】利用完全平方公式分别即可。 16.【答案】15 【解析】 :分解因式x2+ax+b,甲看错了b,但a是正确的, 他分解结果为(x+2)(x+4)=x2+6x+8, ∴a=6,