金属卟啉催化氧化环己烷反应的研究进展
- 格式:pdf
- 大小:351.91 KB
- 文档页数:4
有机化学中的金属催化反应研究进展金属催化反应是有机化学中的重要研究领域,通过金属催化反应可以实现高效、高选择性的有机合成。
近年来,随着金属催化反应的不断发展,许多新颖的金属催化反应被开发出来,并被广泛应用于合成有机化合物的过程中。
本文将对有机化学中金属催化反应的研究进展进行综述,介绍不同类型的金属催化反应及其在有机合成中的应用。
1. 金属配合物催化的C-C键形成反应C-C键形成反应是有机合成中的关键步骤之一,金属配合物催化的C-C键形成反应为有机合成提供了高效、可控的方法。
例如,皂化-缩合反应是一种重要的C-C键形成反应,可以通过金属催化剂实现。
此外,交叉偶联反应也是一类常见的金属催化的C-C键形成反应,包括Suzuki反应、Stille反应和Negishi反应等。
这些反应在有机合成中具有广泛的应用,可以实现复杂分子的合成。
2. 金属烯烃复合物的催化反应金属烯烃复合物的催化反应是有机化学中的重要研究方向之一。
烯烃是有机合成中常用的合成前体,通过金属催化反应可以实现对烯烃的转化。
例如,烯烃与碳氢化合物的加成反应可以通过金属配合物催化实现,得到新的碳碳键和碳氢键。
此外,烯烃的氢化反应、环化反应和开环反应等也可以通过金属催化实现。
3. 金属催化的不对称合成不对称合成是有机合成领域的重要研究方向之一,可以实现手性有机分子的高选择性合成。
金属催化的不对称合成为有机化学家提供了重要的工具。
例如,Pd催化的Suzuki反应和Stille反应可以实现手性有机分子的合成,具有广泛的应用价值。
此外,Rh、Ir、Ru等金属催化的羰基化反应也可以实现手性有机分子的合成。
4. 金属催化的碳硅键形成反应碳硅键形成反应是有机合成中的一类重要的反应。
金属催化的碳硅键形成反应为有机化学家提供了高效、可控的方法。
例如,铜催化的碳硅键形成反应可以实现碳-硅键的构建,得到具有重要应用价值的有机硅化合物。
此外,钯、铂、铁等金属催化的碳硅键形成反应也得到了广泛研究。
金属卟啉类化合物特性及光催化机理与应用研究王攀;罗光富;曹婷婷;饶志;方艳芬;黄应平【摘要】概述了卟啉及金属卟啉类化合物的合成、性质及相关应用,重点综述了卟啉及金属卟啉类化合物的光电特性和光电化学性质,包括光致电子转移、光激发能量转移和高价金属卟啉氧化物种形成等,归纳了其光催化作用机理,包括光致电子转移产生的对分子氧的活化机理(超氧阴离子自由基机理)、光激发能量转移导致基态三线态氧活化产生的单线态氧机理和高价氧化物种对分子氧和H2O2的活化产生具有高氧化活性自由基机理,并对异相光催化体系及光催化应用作了概括.%This paper outlines the synthetic methods and some properties of porphyrins and their metal complexes s especially summarizes their principal optoelectric and photoelectrochemical properties such as photo-induced electron transfer and photo-excited energy transfer and the formation of high-valence metalloporphy-rin oxygen species. The applications and the mechanisms of the photocatalysis are also generalized, namely the photo-induced electron-transfer mechanism, the activations of molecular oxygen by dye-sensitized mechanism (superoxide anion mechanism), the photo-excited energy transfer mechanism that suggests how the triplet oxygen in ground state turns into the singlet oxygen, and the mechanism of activations of molecular oxygen and hydrogen peroxide by high-valence metal oxides in which free radicals with highly oxidative activities are supposed to be produced. Heterogeneous photocatalytic systems and applications of photocatalysis are also summarized.【期刊名称】《三峡大学学报(自然科学版)》【年(卷),期】2011(033)005【总页数】9页(P84-92)【关键词】金属卟啉;光催化;机理;综述【作者】王攀;罗光富;曹婷婷;饶志;方艳芬;黄应平【作者单位】三峡大学三峡库区生态环境教育部工程研究中心,湖北宜昌 443002;三峡大学三峡库区生态环境教育部工程研究中心,湖北宜昌 443002;三峡大学三峡库区生态环境教育部工程研究中心,湖北宜昌 443002;三峡大学三峡库区生态环境教育部工程研究中心,湖北宜昌 443002;三峡大学三峡库区生态环境教育部工程研究中心,湖北宜昌 443002;三峡大学三峡库区生态环境教育部工程研究中心,湖北宜昌 443002【正文语种】中文【中图分类】O627;O644.1卟啉及其金属卟啉类化合物应用十分广泛,包括有金属离子的检测[1]、光催化动力学疗法[2]、太阳能的光电转化[3]、液晶材料的制备[4]、选择性催化氧化[5]、光催化环氧化[6]和光催化降解有毒有机污染物等[7].近年来,卟啉及金属卟啉类化合物在光催化处理有毒有机污染物方面倍受研究者的关注,然而对其光催化作用机理还需要进行深入的研究和探讨.本文从卟啉及金属卟啉的基本性质出发,对卟啉的光电化学性质作了总结,并对其在光催化方面的应用等进行了归纳,重点综述了其光催化氧化作用机理.1 卟啉类化合物分子结构特性与化学合成卟啉类化合物是一类中心由20个C和4个N形成的具有一个24个中心26个电子的大π键,并且所有大环原子处于同一平面上的大共轭杂环类芳香性化合物,其中C和N均为sp2杂化,C上P轨道的一个单电子和N上P轨道的孤对电子参与共轭.卟啉和类卟啉化合物的共轭能约为1670~2500kJ/mol,具有较为稳定共轭结构,而中心环16π环18π电子体系对体系的稳定能贡献最大.由于共轭大环的存在,这类化合物在380~420nm之间出现非常强的吸收带,一般具有很深的颜色.卟啉主要吸收带通常称为Soret带(亦称为B带)和Q带,其中B带是卟啉环的a1u(π)-eg(π*)允许跃迁,为强吸收,其吸光系数均为10-4级,而Q带为弱吸收带,它们是卟啉环的a2u(π)-eg(π*)准允许跃迁.中性卟啉的Q带通常含有4个峰(见图1所示).图1 卟啉分子的Q带和B带吸收光谱卟啉因其吡咯环上的-NH键的存在而具有一定的弱碱性.作为弱碱,其pKa1≈7,pKa2≈4,它们可以被质子化形成双阳离子型卟啉.卟啉和它们的金属配合物均可被亲电试剂取代,例如在meso-和吡咯的β位上发生氘代、硝化和Vilsmeier酰化等取代反应,形成各种各样的卟啉及金属卟啉.卟啉类化合物经硼氢化钠、Na/Hg或催化加氢可以得到还原卟啉类化合物.卟啉化合物是用吡咯或者取代吡咯与各种醛通过缩合反应制得,在合成卟啉过程中,反应条件及方式对卟啉的产率有较大的影响.已有众多经典的合成方法,包括Alder-Longo法[8]、Lindsey法[9]2+2[10]合成法、和3+1[11]合成法等.这些合成方法各有优缺点,如Alder-Longo法,其操作简单,实验条件不是很苛刻,易于合成无取代及非水溶性取代卟啉,且反应产率较高,但是反应温度较高,其不能选用对酸敏感的醛类作为反应物,同时酸会使吡咯发生聚合,产生大量焦油状的副产物,也给分离纯化带来了一定的困难.Lindsey法是基于还原卟啉的合成,然后再氧化生成卟啉,此法能够克服酸对反应体系的影响,反应的产率较高且易分离纯化,然而其反应体系中原料浓度(一般10-2 M)较低,不利于大量合成.2+2和3+1合成法主要应用于不对称卟啉的合成,其合成活性较高,常在常温下进行,反应的副产物较少,是合成卟啉方法中产率最高的方法之一.图2 卟啉的合成方法2 金属卟啉类化合物特性金属离子进入卟啉环内以后形成的金属配合物称为金属卟啉,对称性较卟啉配体强,吸收峰数目减少.金属卟啉一般为D4h对称,卟啉配体则为D2h对称.卟啉可以与二价金属离子如Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ)形成不带电的四配位金属卟啉络合物,其中Ni(Ⅱ),Cu(Ⅱ)的卟啉络合物对另外的配体亲和力低;而 Mg (Ⅱ),Cd(Ⅱ)和Zn(Ⅱ)等二价金属离子容易与其他配体继续配位形成五配位络合物;Fe(Ⅱ),Co(Ⅱ),Mn(Ⅱ)能形成变形的八面体络合物[12].卟啉与金属形成配合物的难易程度不同,一般与金属离子的半径有较大关系,如离子半径较大的Hg、Pb及Cd不能进入卟啉配合,只能在卟啉分子的上或者下面反应,形成“坐顶络合物”,这个配合物能使卟啉核变性,易于与其他金属离子配合生成金属卟啉[13].高价金属卟啉属于金属卟啉配合物,然而中心离子的价态要比一般状态下的金属离子的价态高1到2价,因金属离子的价态升高,其比低价的金属卟啉具有更优异的氧化还原性质,同时与金属中心配位的轴向配体数目也相应的增多,在一定程度上会影响金属催化特性.在活化H2O2及O2过程中,金属离子通常在其轴向上与O结合形成双键,又被称高价卟啉金属氧络合物.高价卟啉金属氧络合物常用于端基的氧化及选择性环氧化方面,如在氯化血红素[14]及辣根过氧化物酶[15]模拟血红素选择性催化氧化烷烃及烯烃的反应体系中,催化剂的本质就是高价卟啉金属氧络合物.在细胞色素P450的催化环氧化过程中的催化剂也属于高价铁物种[16].3 卟啉及金属卟啉类化合物光电及光催化性质3.1 光致电子转移所谓光致电子转移(Photoinduced Electron Transfer PET)[17],即受光激发的物质与未受激发的物质之间的电子的传递,和受光激后的物质将产生的电子由一个位点转移至另一位点的电子的传递.卟啉由于具有流动性较强的大π共轭结构,作为一个有色染料基团,它在光照的条件下通常都能发生光致电子的转移.在光致电子转移的体系中,卟啉配体常作为电子的供体,在受光激发后,能将光激发后产生的光电子转移至电子受体.卟啉的光致电子转移通常发生在共价结合的体系中,如Baskaran等[18]研究了作为电子供体间位取代的卟啉与作为电子受体的碳纳米管结合后的光致电子转移(图3).研究发现,在550nm激发光照射下,卟啉与碳纳米管共价结合后,在650nm和700nm处的荧光发射淬灭效率达95%~100%.在非共价结合(如:氢键、芳香π堆积、疏水作用等)的超分子自组装体系中,卟啉组装体也能发生光生电子转移的现象.在非共价的光生电子转移的过程中,氢键可以作为电子传递的界面(图3),如Derege研究Zn卟啉和Fe卟啉通过氢键组成体系中的电子传递特性发现:Zn卟啉作为电子的供体,而Fe卟啉作为电子的受体,其间的电子是通过苯甲酸取代基上两个羧基形成的分子间氢键传递的[19].光致电子转移能够有效的降低光致发光效率,提高光能向化学能的转化效率,这样有利于能量的传递.如Shan等将卟啉负载于纳米Pt上制成的催化剂能将光激发产生的电子转移至金属核上,提高了催化剂光催化还原水制氢,有效的将光能转变为化学能,反应过程中伴随着光生电子的转移,经过光电转移后的卟啉中产生了具有氧化活性的类似空穴的物种V+,需要在体系中加入EDTA来有效防止自身的氧化,说明光致电子转移赋予了卟啉催化剂光氧化能力[20].图3 共价和氢键电子转移卟啉与金属离子配位生成的金属卟啉因配体的存在具有一定的光致电子转移的特性.一般情况下,金属卟啉中的金属中心具有较高的氧化态,在光电转移过程中常作为电子受体,而卟啉配体则作为光致电子的供体.在光照条件下,卟啉配体将光致电子转移至金属中心,致使光致电荷分离,产生了类似半导体的具有催化氧化性和还原性的电子-空穴对,赋予了金属卟啉的光催化性质.3.2 卟啉的光致激发态能量转移光致电子传递能够促进光致激发态能量的转移,即光致激发态能量转移的过程中可以伴随着电子的传递(如图4),光致电子转移的结果往往导致光致电荷的分离,从而使电子受体多电子,而电子供体少电子.激发态能量转移最终是将激发态物质的激发态能量转移给未激发的底物,使底物变为激发态,自身则还原为基态,转移前后激发物与底物各自并未发生电子的得失.物质之间能发生能量转移的前提条件是激发态物质发射光谱的能量范围要与底物的吸收光谱的能量范围发生重叠(如图5).图4 电子传递能量转移图5 供体和受体间的能量要求能量转移可分为两大类,即辐射转移和无辐射转移.能量转移可以产生于不同的作用机理,其中包括Förster机理和 Dexter机理[21].所谓Förster机理即能量的转移受自旋规则的限制,一般只存在单线态-单线态(1 D*+1 A→1 D+1 A*)和单线态-三线态(1 D*+3 A→1 D+3 A*)的能量转移.而Dexter理论则是基于分子间电子云重叠作用的电子交换转移.同Förster机理相比,Dexter机理只需要给体-受体分子对的电子云有效的交叠,不论单线态-单态的能量转移,还是三线态-三线态的能量转移均是允许的,即D*+A→D+A*.卟啉的基态属于单重态(0S),受光激发后优先生成激发单重态(1S*),然后可以转化为激发三重态(3S*),在发生能量的转移过程中可以利用激发单线态活化单线态物质形成激发单线态,或者是活化三线态物质成激发三线态(如Förster机理所述).另一方面,激发态卟啉转变为激发三线态后能够将基态三线态物质活化为激发单线态和更高的激发三线态(如Dexter机理所述),而基态的3 O2为三线态,这样就赋予了卟啉光敏化能量转移活化分子3 O2产生具备更高氧化活性的1 O2的性质.3.3 金属卟啉氧化物种的种类、产生及性质金属卟啉具有光致电子传递和光激发能量转移的性质,这些光电性质都有助于它在光催化方面的应用.然而金属卟啉除了具有上述光电性质外,还具有高价金属卟啉氧化物种这一特殊的化学状态,这一性质也被作为金属卟啉催化机理的一个方面,引起了研究者的关注.金属卟啉氧化物种类较多,如高价锰氧卟啉、高价铬氧卟啉[21]、高价钌氧卟啉以及 Mo、Nb、Ti、V等高价金属氧卟啉[22],只要是金属卟啉的金属中心具有变价,其均能形成金属卟啉氧化物种,因它们在反应过程中通常以中间体的形式存在,又可称其为变价金属卟啉类化合物.变价金属卟啉氧化物种的产生在初期常常伴随着氧化剂的氧化,以高价铁氧卟啉化合物为例,其产生通常由铁(Ⅲ)卟啉与端基氧化物反应制得,如:间氯苯甲酸、亚碘酰苯和双氧水等[23].在选择性氧化反应中以中间氧化产物的形式存在而体现其催化特性.在变价卟啉氧化物种催化氧化的过程中,因金属离子与氧之间键的断裂方式的不同,产生的中间氧化物种也不同,通常情况下,异裂产生氧化物种FeV=O.因在反应的过程中常伴随着电荷的分离及自由基信号的产生,金属卟啉可被称为高价金属卟啉π阳离子自由基,如:铁(Ⅳ)氧卟啉π阳离子自由基([(Porp)+.FeIV=O]+),而均裂则产生FeⅣ=O,其可以通过质子配对电子转移的方式转变为([(Porp)+.FeIV=O]+).在细胞色素P450中,低自旋的过氧羟基铁卟啉通过异裂的方式产生一个FeV=O物种,这个物种可以更准确的用[FeIV=O(*Por)]+来表示,其自由基阳离子的产生反映在配体的电子自旋离域性上面.高价金属卟啉π阳离子自由基是一个亲电物种,这样有利于其与烯烃等物质的接触来实现其选择性催化氧化[24].变价金属卟啉氧化物种往往出现在酶催化体系中,酶催化剂通常为Fe、Cu的变价金属卟啉化合物,在生物体中通常与氧结合,扮演着运输和活化分子氧的重要角色.如属于血红素酶的辣根过氧化物酶,其既能活化过氧化氢,也能活化分子氧,除了具有过氧化物酶的特点外,也能催化氧化某些底物.变价金属卟啉的催化氧化的机理包含两种,一种是自由基的反应,而另外一种则是氧合过氧化物酶的机理.氧合过氧化物酶在很多方面与氧合肌红蛋白相似,它们都含有一个与组氨酸结合的正铁血红素,同时氧分子作为它们的第五或者第六配体.然而氧合过氧化物酶能高度的活化分子氧,而氧合肌红蛋白则不能活化分子氧,这是因轴向配体的不同使分子氧O-O键的强弱不同导致.Atkinson等利用共振拉曼光谱研究了辣根氧合过氧化物酶和氧合肌红蛋白之间的性质差异,研究发现:含有卟啉环的辣根氧合过氧化物酶的环有轻微的扩展,其Fe中心更接近于卟啉平面,且其较氧合肌红蛋白有较高的Fedx-Oπ*反键轨道,其Fe-O键的拉曼光谱分别为570和562cm-1.这是由于氧合过氧化物酶中的Fe-His键提高了Fe3dx轨道能量,使其更接近于O的π*轨道,形成了更高的Fedx-Oπ*反键轨道的缘故,这样就减弱了O-O键,从而在过氧化物反应体系中作为一个电子受体来活化分子氧参与氧化反应[25].同时,不同价态的高价铁物种的氧化性随着轴向配体的种类、卟啉中心离子的电性及反应的底物的不同而有所不同.如Kang等研究了不同对位取代的吡啶氧作为轴向配体对高价金属卟啉π阳离子自由基的氧化反应活性的影响,发现不同取代的轴向配体的价铁物种的氧化性不同,其氧化活性随着轴向配体的拉电子效应的增强而增强,其氧化活性顺序为1-OCH3>1-CH3>1-H>1-Cl[26].这是因为拉电子轴向配体及阴离子配体能加强Fe-H的键强度,提高了其夺氢活性,同时减弱Fe=O双键的强度,有利于其键的断裂及氧的转移来实现催化氧化.由此可知金属卟啉在一定程度上能活化分子氧,并可通过金属离子及配体的选择来调节其催化特性,具有光催化的潜质.4 卟啉光催化机理4.1 卟啉敏化光致电子转移光催化X.Q等用碘化氨基卟啉(TAPPI)和磺基苯基Co卟啉(TPPSCo)与一维的ZnO复合形成的异相光催化剂,在可见光下活化分子氧光催化降解了RhB,提高了ZnO可见光催化活性,并初步描述了其催化氧化机理[27].最具有典型代表的是卟啉敏化TiO2光催化降解,蔡金华等制备的5-(对-烯丙氧基)苯基-10,15,20-三对氯苯基卟啉(APTCPP)敏化的 TiO2复合微球APTCPP-MPSTiO2有效提高了TiO2对α-松油烯的光催化氧化,催化氧化产物主要是土荆芥油素[28].在光催化氧化过程中,卟啉作为有色染料,将受光激发后产生的电子转移至半导体ZnO或者TiO2的价带,使产生的电子与卟啉配体发生了分离,避免了其光生电子与空穴的复合,有利于价带电子还原分子氧O2产生·O2-、·OH等氧化物种,实现对底物的选择性氧化及降解,光催化氧化机理如图6所示.图6 光电子转移及卟啉敏化ZnO和TiO2作者课题组利用β-CD-Hemin(CDH)光催化降解RhB和二氯酚(DCP),发现其在可见光、H2O2及中性条件下能够很好的氧化RhB及DCP,其矿化率分别可达72%和85%[29],拓宽了Fenton体系的pH应用范围,提高其实际应用性,并具有较高的催化稳定性.在降解过程中,金属卟啉先与H2O2反应形成HOOFeⅢ-L,在光照和β-CD辅助条件下,通过电子由金属到配体的电荷转移(MLCT)导致O=FeIV-L和·OH的产生,由于·OH较高价铁物种具有更高的氧化活性而对有机底物具有较高的氧化矿化效果.说明电子转移存在于金属卟啉配合物类Fenton光催化氧化降解有毒有机污染物体系之间.其机理如下:Maldotti等在表面活性剂的作用下形成的[Fe(III)(TDCPP)]微乳异相光催化体系在可见光及分子氧的条件下,能将环己烯和环辛烯氧化生成环氧化物、酮和醇等氧化产物.在氧化过程中,[Fe(III)(TDCPP)]在可见光照下发生配体到金属Fe(III)中心的光致电子转移(LMCT),生成[Fe(II)(TDCPP)],使其在轴向上与O2结合后生成铁氧端基自由基,并在烯丙基位置上发生自由基亲电加成反应,生成过氧产物[30],此过氧产物经过异裂和均裂的方式生成酮类物质和醇类物质,其卟啉端在异裂过程中产生了高价Fe氧络合物,参与催化环氧化反应,成功实现了卟啉对分子氧的活化和转移.其机理如图7所示.图7 金属卟啉光催化活化分子氧机理S D.G等利用苯基卟啉及其Cu、Ag和Sn的金属卟啉在太阳光及不同的pH条件下光催化降解甲基橙,发现在氧气饱和的溶液中,金属卟啉能够有效降解甲基橙,测定其催化降解的活性能力大小为TPP<CuTPP<AgTPP<SnTPP.并推测机理与半导体光催化机理中的空穴与电子类似[31],其中也涉及到光致电荷的分离.综上表明,在卟啉类化合物的光催化降解过程中,常常伴随着光致电子转移及分离,产生的分离态电子或空穴以实现卟啉类化合物的光催化活性,是卟啉类化合物光催化机理的一个方面.4.2 卟啉敏化能量转移光催化H.J等采用四磺基卟啉及Cu、Fe卟啉在未加任何氧化剂的情况下就能催化氧化降解TNT,生成三硝基苯甲酸和三硝基苯[32],虽然文中未能对其光催化机理作较为深入的研究,但可以初步推测其催化氧化过程可能涉及到光致能量转移活化分子氧历程.J.H 等将5-(4-烯丙氧基)苯基-10,15,20-三(2,6-二氯苯基)卟啉用3-巯基丙基三甲氧基硅烷修饰后负载于纳米SiO2球上用于可见光光催化降解1,5-二羟基萘,发现其能很好的催化氧化1,5-二羟基萘,并且其催化降解速率与氧气的浓度呈正比,说明此卟啉修饰的纳米二氧化硅催化剂能活化分子氧催化氧化无色小分子物质[33].众所周知SiO2为惰性载体,其导带不能为电子传递所用,故此催化剂不能产生光致电荷分离,而文中卟啉具有活化分子氧的能力,表明卟啉可以不通过光生电子的传递来活化分子氧来产生氧化物种.S D,G等将苯基卟啉及其金属卟啉(银、铜和锡)应用于异相光催化降解甲基橙,其催化降解机理涉及到敏化活化分子氧的氧化机理[31].W.K,J P等利用可溶性及非水溶性Sn卟啉负载SiO2进行了异相光催化降解4-氯苯酚和AO7,其氧化机理为活化分子氧机理[34].C.J,P.M 在研究水溶性卟啉光敏化降解二氯苯酚的机理过程中,采用激光作为敏化光源,同时运用对红外线敏感的光电倍增管测定了单线态氧在1270nm处淬灭时发射光谱,并由此计出TDCPPS、ZnTDCPPS和SnTDCPPS的单线态氧量子效率,分别为0.83%、0.55%和0.61%,更加确切地证明了单线态氧的存在[35].综上所述,在卟啉类化合物的光催化降解过程中,除了光致电子转移及分离产生的分离态的电子或空穴外,激发态卟啉类化合物能量转移活化分子氧及底物也能实现卟啉类化合物的光催化氧化,是卟啉类化合物光催化机理的一个方面.其机理可概括如图8所示.图8 卟啉敏化能量转移活化分子氧和底物4.3 变价金属卟啉光催化C.C J在研究中报道了锑卟啉在光照条件下具有活化分子氧的功能,在其光催化活化分子氧历程中经历了双电子或者是四电子还原氧分子的过程,其锑卟啉活化分子氧产生双氧水的历程可简述为:K.C等将Fe卟啉负载于纳米SiO2上用于五氯酚的氧化降解,发现在光催化条件下,催化剂能实现对五氯酚的高效氧化转化,并在实验过程中采用EPR和DR-UV-Vis光谱技术验证了高价Fe氧卟啉盐离子自由基的存在[37].Manhdi等利用卟啉敏化剂在光照条件下选择性环氧化环庚烯,其反应过程中伴随着变价金属卟啉物种的产生.综上所述,卟啉在体现其催化氧化过程中常伴随着高价金属卟啉物种的产生,作为中间氧化物种的金属卟啉物种具有一定的选择性催化氧化及活化分子氧等氧化剂的能力,是描述其光催化过程不可缺少的一个环节,其中具有典型代表的高价金属卟啉的是高价铁卟啉和高价锰卟啉[38],其机理可概述如下:卟啉类化合物的光催化过程较为复杂,其光催化氧化机理也较为多样,各种催化机理之间存在相互的联系,不能为单一的催化机理所能概括.另外,卟啉类化合物中的变价金属卟啉具有更加广阔的探讨空间,其催化活性往往因卟啉配体中取代基电性的不同及金属离子的不同而使氧化能力的大小不同.另外,卟啉的功能多样性可以通过对其基本电子结构的调节来实现,位于中心离子上的电性和轴向配体在卟啉类化合物光催化性质方面起着至关重要的作用,也是影响高价金属卟啉光催化活性的一个主要因素.5 金属卟啉异相光催化Konstantinos的异相光催化体系具有比均相的Fe卟啉更高的催化氧化五氯酚转化的效率,且催化剂具有较高的循环利用性[37].同时不同的载体负载对卟啉负载敏化催化剂有较大的影响,这就要求考虑卟啉负载后其与载体连接的稳定性、连接后的活性等因素[35].另外进行载体负载后的光催化机理也会发生相应的改变. Giuseppe等在文中将四丁基苯基卟啉和其金属卟啉负载于聚晶TiO2上,并将其应用在光催化降解4-硝基酚中,发现负载后的催化剂的催化活性有了较大提高是因为卟啉负载使其光生空穴离域化,从而有了较长的生存时间,更有利于其对底物的光催化氧化[39],与负载前的TiO2自身半导体光催化和卟啉自身的染料敏化。
环己酮环己酮为无色至淡黄色低挥发性的液体,类似丙酮或薄荷气味。
它微溶于水,可与乙醇、乙醚和普通有机溶剂相溶。
分子量98.14、比重0.9478(20℃)。
沸点155.6℃,蒸汽压4.5 mmHg(25℃)。
环己酮在水中溶解度为9%(质量、20℃);水在环己酮中溶解度为5.7%(质量、20℃)。
环己酮是生产己内酰胺和尼龙-66盐的中间体,也是性能优良的溶剂,可用作油漆、硝化纤维、氯乙烯聚合物与共聚物的溶剂,可以溶解聚醋酸乙烯、聚氨酯、聚甲基丙烯酸甲酯和ABS,也可以溶解PS、醇酸树脂、丙烯酸树脂、天然树脂、合成橡胶等。
在涂料工业中可用于生产聚氨酯漆、环氧树脂漆和各种乙烯树脂漆等;在医药工业中用于生产氢化可的松、醋酸泼尼松和黄体酮。
此外,还可以用作染色和褪光的均化剂、擦亮金属的脱脂剂以及活塞型航空润滑油的粘滞溶剂,在印花薄膜、干洗、农药等方面也有应用。
环己酮用途广泛,通常将其分为酰胺用和非酰胺用两大类。
酰胺用环己酮主要用于己内酰胺和己二酸的生产;非酰胺用主要是作为有机溶剂使用,另外还用于生产环己胺衍生物、防老剂、引发剂、交联剂及医药农药原料等。
非己内酰胺用环己酮及衍生物的主要应用领域早期,国内环己酮只是己内酰胺的中间产品,制造厂商的环己酮生产能力与其己内酰胺装置相匹配,只有很少的商品环己酮供应市场。
环己酮作为一个独立行业成长和发展起来主要有两个原因:一是由于环己酮的用途不断扩大,特别是作为一种高档有机溶剂,在涂料、油墨、胶粘剂等行业被广泛应用,形成了较大的商品市场;二是国产化己内酰胺生产存在着装置规模、工艺技术、产品质量、生产成本等问题,导致国产化己内酰胺装置步履艰难。
目前,除巨化公司锦纶厂的己内酰胺还在勉强维持生产外,锦西化工总厂、太原化工厂、南化公司磷肥厂、岳化总厂锦纶厂的国产化己内酰胺装置均已先后停产,而只生产商品环己酮。
因而环己酮与国民经济关系十分密切,除用来生产人民生活必不可少的锦纶外,还广泛应用于涂料、国防、轻工等各个工业部门。
金属卟啉在催化反应中的应用白发红;刘秀方;冯建营;金欣【摘要】金属卟啉化合物从结构和性能上都是细胞色素P-450单加氧酶的有效模拟物,综述了卟啉及金属卟啉类化合物作为催化剂在氧化反应、CO2环加成反应、胺化反应、烷基化反应等诸多反应中的应用,并对目前金属卟啉在催化反应中存在的主要问题以及未来的发展进行了总结.【期刊名称】《化工科技》【年(卷),期】2019(027)004【总页数】10页(P55-64)【关键词】金属卟啉;催化;氧化;CO2环加成【作者】白发红;刘秀方;冯建营;金欣【作者单位】青岛科技大学化工学院,山东青岛266042;青岛科技大学化工学院,山东青岛266042;青岛科技大学化工学院,山东青岛266042;青岛科技大学化工学院,山东青岛266042【正文语种】中文【中图分类】O643.36卟啉(Porphyrins,简称Por)及金属卟啉类化合物是一类具有共轭大环结构的芳香族杂环化合物。
卟啉和金属卟啉类化合物的母体结构均为卟吩,卟吩是由4个吡咯环通过亚甲基相连而成的具有平面共轭环状结构的大分子(1)(见图1)。
卟啉是卟吩环上的氢原子部分或全部被其他原子或者基团取代的同系物和衍生物的总称。
卟啉的中心具有一个空腔,里面的吡咯氮原子与金属络合后即成为金属卟啉(2)(见图1)。
图1 卟吩及金属卟啉化学结构卟啉及金属卟啉化合物广泛存在于动植物中,其中血红素、细胞色素P-450以及过氧化氢酶是金属铁卟啉化合物,叶绿素是金属镁卟啉化合物,维生素B12是金属钴卟啉化合物[1]。
金属卟啉具有与酶功能结构类似的单元结构,反应条件温和,在生物医学、生物仿生、分析化学、分子识别、材料化学等方面均有广泛的应用,均表现出良好的性能[2-3]。
其中,仿生催化作为一种绿色环保可持续的反应,在合成有机药物中间体等物质中得到广泛应用[4]。
作者较全面地综述了近年来国内外报道的金属卟啉在催化反应中应用的研究成果。
1 氧化反应在有机化合物中,C—H通常在常规有机转化中呈惰性。
卟啉化合物的应用与合成研究进展摘要:卟啉化学是现代化学领域中重要的研究分支之一。
概述卟啉化合物在医学、化学、生物学、材料学、能源等领域的应用;同时还介绍了卟啉化合物的合成方法。
关键词: 卟啉;合成;应用卟啉(porphyrins)是卟吩(porphine)外环带有取代基的同系物和衍生物的总称,当其氮上2 个质子被金属离子取代后即成金属卟啉配合物(metalloporphyrins)。
该类化合物的共同结构是卟吩核,卟吩是由18个原子、18 个电子组成的大π体系的平面性分子,具有芳香性,有 2 个共振异构体。
[1]卟啉和金属卟啉都是高熔点的深色固体,多数不溶于水和碱,但能溶于无机酸,溶液有荧光,对热非常稳定。
卟啉体系最显著的化学特性是其易与金属离子生成1:1 配合物,卟啉与元素周期表中各类金属元素(包括稀土金属元素)的配合物都已得到,大多数具有生理功能的吡咯色素都以金属配合物形式存在,如镁元素存在于叶绿素中,铁元素存在于血红素中。
由于卟啉具有独特的结构及性能,近年来在生物化学、医学、分析化学、合成化学、材料科学等领域有着广泛的应用。
卟啉化学的研究也有迅速的发展。
以下就目前卟啉及其金属化合物在不同领域的应用和合成研究分别加以阐述。
1 卟啉化合物的应用1.1 在医学方面的应用卟啉在医药方面的应用主要集中在检测和治疗癌细胞。
利用卟啉及其金属络合物对一些组织有特殊的亲和力,将卟啉化合物注入肿瘤患者体内,过一段时间卟啉聚集在病变部位,再利用它特殊的电子吸收和荧光吸收与机体的其他部位相区分(通过核磁共振或伽玛图像) ,就可确定恶性、良性或水肿肿瘤及其准确部位。
例如Gd- 卟啉化合物的射线具有增敏作用,可有效诊断癌症和其他疑难疾病,且对人体几乎无毒。
此外人们还发现,金属钌卟啉全部是抗磁性化合物,其中绝大多数在常态下是稳定的,是铁卟啉化合物的合适替代物,可作研究过氧化氢酶及肝细胞中药物代谢的良好模型体系。
光动力疗法[2,3](PDT)是近20年新发展起来的一种治疗恶性肿瘤的方法,它是利用特定的光敏剂在肿瘤组织中的选择性富集和光动力杀伤作用,在不影响正常组织功能的前提下,造成肿瘤组织的定向损伤。
环己烷的催化氧化反应研究的开题报告一、选题背景环己烷是一种重要的有机化合物,在工业生产和日常生活中均有广泛应用。
然而,环己烷具有高度不稳定性和易燃性,使得其使用过程中存在安全隐患。
因此,如何有效地将环己烷转化为更安全、环保的产物,是研究的一个热点问题。
催化氧化反应是一种重要的环己烷转化方法,在高温和高压条件下利用氧气、氧化剂等对环己烷进行催化氧化,可以得到较为理想的产物和高转化率。
因此,探究催化氧化反应对环己烷的影响,具有重要的理论和实际意义。
二、选题目的本研究旨在深入探究催化氧化反应对环己烷的影响,并通过实验方法进行验证。
通过此次研究,可以得到与环己烷催化氧化反应相关的实验数据和结论,为环境保护和工业生产提供科学依据。
三、研究内容和方法1. 研究内容(1)分析催化剂种类和用量对环己烷催化氧化反应的影响。
(2)研究反应条件(温度、压力等)对反应的影响。
(3)分析反应产物类型和产率,探究反应机理。
2. 研究方法(1)实验方法:选取不同催化剂种类和用量,对环己烷进行催化氧化反应,收集反应产物进行分析。
(2)分析方法:采用色谱分析、质谱分析等手段,对反应产物进行分析。
四、研究意义和预期成果本研究将通过实验方法探究催化氧化反应对环己烷的影响,研究结果可以为环境保护和工业生产提供科学依据,预期成果如下:(1)深入了解催化氧化反应对环己烷的影响。
(2)探究催化氧化反应的反应机理。
(3)为环境保护和工业生产提供科学依据。
(4)发表与本研究相关的学术论文。
五、研究进度安排本研究计划从2020年6月开始,预计于2021年6月完成,进度安排如下:第一阶段:2020年6月-2020年9月(1)查阅文献,学习催化氧化反应相关知识。
(2)选择实验方案,策划实验设计。
第二阶段:2020年10月-2021年1月(1)进行实验,收集相关数据。
(2)对实验数据进行分析和处理。
第三阶段:2021年2月-2021年5月(1)探究催化氧化反应机理。
金属卟啉类化合物在有机反应中的催化作用
李东红;陈淑华
【期刊名称】《云南化工》
【年(卷),期】1991(000)001
【摘要】卟啉能与多种金属形成络合物,结构如图1所示。
卟啉及金属卟啉在生物学、医学、地质化学及工业和实验室中有着不可缺少的作用和难以估量的实用潜力。
因而引起了人们的广泛注意。
随着酶学的发展,人们发现生物体内许多酶(如细胞色素P—450,过氧化氢酶,过氧化物酶)催化的氧化反应均是由含有过渡金属的卟啉络
合物作为辅基,因此金属卟啉的催化性质引起了科学家们的极大兴趣。
1980年,仅
有八篇关于金属卟啉催化氧化反应的参考文献,而到1985年,就达近100篇。
近年来,这方面的发展更为迅速,工作已深入到对催化反应的机理和活性中间体结构。
【总页数】6页(P12-17)
【作者】李东红;陈淑华
【作者单位】不详;不详
【正文语种】中文
【中图分类】O626.13
【相关文献】
1.乙酰葡萄糖氧代金属卟啉的合成及其对环己烷羟基化反应的催化作用 [J], 郭灿城;张晓兵;欧阳玉祝;李和平
2.FTIR-PAS技术在卟啉类化合物中的应用(Ⅰ)——过渡金属卟啉的傅立叶变换红
外光声光谱 [J], 师同顺
3.乙酰糖基金属卟啉的合成及其对烷烃温和氧化的选择性催化作用 [J], 郭灿城;张晓兵;宋建新;李和平
4.金属卟啉MTPPS对NADH氧化的催化作用 [J], 吴宝璋;杨长通;吴辉煌
5.抗体酶对有机反应的催化作用 [J], 陈捷;王德先
因版权原因,仅展示原文概要,查看原文内容请购买。
郭灿城,湖南大学化学化工学院院长,湖南大学二级教授。
化学学科、化学工程与技术学科博士生导师;享受国务院政府特殊津贴。
现任先进催化教育部工程研究中心主任,国家985工程湖南大学化学生物科技创新平台(一类)主任、首席科学家。
获国家机械工业青年科技专家称号(1995),入选湖南省首批“新世纪121人才工程”第一层次人选(2003)。
以第一完成人获湖南省科技进步二等奖1项(2001),国家教育部技术发明一等奖1项(2006),国家知识产权局中国专利优秀奖1项(2007)。
目前学术兼职:湖南省化学化工学会副理事长,国家教育部基础化学课程分教学指导委员会委员,《化工学报》、《湖南大学学报》(自科版)、《精细化工中间体》编委。
1989年开始从事金属卟啉仿生催化烃类氧化反应研究,先后主持了5项国家自然科学基金课题,2项国家863课题。
所领导课题组与中石化合作完成了国际上第一例金属卟啉仿生催化烃类氧化反应的工业应用,在解决40多年来存在于环己烷氧化制备环己酮工业生产中反应转化率低和反应转化率与选择性不能同时提高的技术难题方面取得了重要进展,被评价为我国近年来绿色化学领域3项具有跨越式进步的成果之一。
2008年被International Biographical Centre (England)评为2008 IBC 100 Top Scientists, 获American Biographical Institute 2008中国年度人物(Man of the Year for the People's Republic of China)提名。
在Chem.Eur.J., .Chem., J. Catal., Appl.Catal., J.Mol.Catal., Bioorg.Med.Chem.,《科学通报》,《化学学报》等SCI学术刊物发表论文80多篇,被他人引用300多次,申请国家发明专利16项,已获批准13项。
卟啉环催化氧还原卟啉环催化氧还原(Porphyrin Catalyzed Oxygen Reduction,PCOR)是一种新型的氧还原催化剂体系,能够降低氧还原时的过电位,从而提高燃料电池性能,与传统的白金催化剂相比,在催化剂的性能、稳定性和成本方面都具有优势。
一、卟啉环介绍1.1 卟啉环的基本结构和性质卟啉环是由四个呋喃环和一个吡嗪环组成的大环分子,是一类重要的关键分子,在生物学、药物化学和原材料化学等领域中有很广泛的应用。
卟啉环分子的特殊结构使得其具有电化学、光学和物理化学等方面的特性,因此被广泛用作高性能催化剂。
1.2 卟啉环的合成合成卟啉环的方法有很多,其中最常用的方法是表征合成和酸催化合成。
表征合成需要用到高琼酸和硫化铜等催化剂进行反应,但这种方法的产率较低,需要较长的反应时间。
酸催化合成是一种较为高效、产率较高的合成方法,需要使用两个前驱体反应,并加入乙醇、甲苯等溶剂进行催化。
二、PCOR的机理PCOR体系的基本机理是利用卟啉环催化活性中心催化氧还原反应,使得反应速率提高,同时降低反应的电化学过电位。
PCOR催化氧还原的机理主要包括以下两个方面:2.1 卟啉环的催化活性卟啉环在氧还原反应中具有很高的电化学催化活性,在环境中可以吸附氧分子并分解成单个的氧原子,使其更易参与到反应中来,从而提高反应速率。
同时,卟啉环还可以促进电子转移反应、生成各种反应中间体,从而实现催化反应的过程。
2.2 PCOR与氧分子的反应PCOR与氧分子反应的基本模型为卟啉环+ O2 → 卟啉环-O2,通过反应来降低氧还原反应的电化学过电位。
卟啉环-O2中的氧原子会吸附在卟啉环上形成卟啉环-O2,氧气存在于此状态下,更易参与到氧还原反应中来。
同时,卟啉环-O2中的氧原子还可以从卟啉环-O2的表面向离子导体中传输,进一步促进反应的进行。
三、PCOR的应用与前景PCOR作为新型的氧还原催化剂体系,在燃料电池、电化学传感器、电化学储能等领域具有广泛的应用前景。
环己酮的生产工艺及技术进展2.1 环己酮传统生产工艺世界上传统的环己酮生产工艺主要有苯酚加氢法、苯加氢氧化法、环己烷液相氧化法,生产环己酮的原材料是苯和氢。
2.1.1 苯酚加氢法苯酚合成环己酮工艺是最早应用于工业化生产环己酮的工艺, 该工艺早期分为两步: 第一步苯酚加氢为环己醇, 第二步环己醇脱氢生成环己酮:20世纪70年代开发成功了一步加氢法合成环己酮的新工艺。
苯酚一步加氢有气相和液相两种方式。
工业上主要是采用气相法,该工艺采用3--5个反应器串联,温度为140--170℃、压力为0.1MPa,收率可达95%。
苯酚加氢法生产的环己酮质量较好,安全性高, 但因为苯酚价格昂贵, 并使用了贵金属催化剂, 使环己酮的生产成本较高, 因此该工艺的应用受到了很大的限制。
2.1.2 苯加氢氧化法苯加氢氧化法工艺中苯与氢气在镍催化剂存在下, 在120--180℃下加氢反应生成环己烷, 环己烷于空气中在150--160℃、0.908Mpa下发生氧化反应生成环己醇和环己酮的混合物:混合物经分离后得环己酮, 副产品环己醇在锌、钙催化剂存在下脱氢生成环己酮:2.1.3 环己烷液相氧化法目前90%以上的环己酮是采用环己烷氧化法生产的。
工业生产中环己烷液相氧化法有两条氧化工艺路线,一种为催化氧化工艺,另一种为无催化氧化工艺。
……2.2 现有工艺技术的改进针对上述环己酮生产工艺存在的不足,许多生产企业与研究部门对环己酮生产技术进行了多方面的改进。
<1)延长开车周期。
钴盐法的优点是反应条件温和、温度低、压力低、停留时间短,对设备要求不严格。
但钴盐法最大的难题是反应过程中生成的羧酸钴盐残留在设备及管道上,结渣堵塞管道和阀门。
为了解决此难题,各国都进行了大量的研究。
工艺方面,氧化后未反应的环己烷被分离后循环使用,在氧化前的水用共沸蒸馏等方法除去,避免了反应器的结渣。
反应器方面,捷克斯洛伐克专利提出环己烷液相氧化采用卧式反应器,以垂直挡板将其分割成几个反应器。