浅谈混凝土腐蚀及其预防措施
- 格式:doc
- 大小:3.24 MB
- 文档页数:5
混凝土的腐蚀与防腐措施混凝土作为一种常见的建筑材料,在各种工程中被广泛使用。
然而,混凝土也容易受到腐蚀的影响,从而降低其强度和使用寿命。
本文将探讨混凝土的腐蚀原因以及可采取的防腐措施。
一、混凝土的腐蚀原因混凝土的腐蚀主要是由于以下几个方面原因:1. 外界环境因素:混凝土通常在各种恶劣的环境中使用,例如海洋环境中的盐雾、酸雨等,这些环境对混凝土的腐蚀作用较大。
2. 内部因素:混凝土中的一些化学成分本身就具有腐蚀性,例如硫酸盐、氯离子等,它们会与混凝土内部的钙石灰石反应,导致混凝土的腐蚀。
3. 缺陷与损伤:混凝土结构中的裂缝、孔洞等缺陷会导致水分和气体渗透到混凝土内部,从而引发腐蚀。
二、混凝土腐蚀的分类根据腐蚀的形式,混凝土腐蚀可以分为以下几种类型:1. 碳化:主要是由于二氧化碳进入混凝土中与钙石灰石反应,导致钢筋腐蚀和混凝土强度降低。
2. 氯盐侵蚀:海水中的氯离子会渗透到混凝土中,与钢筋发生化学反应,进而破坏混凝土结构。
3. 硫酸盐侵蚀:硫酸盐在一些工业废水中存在,会与混凝土内的钙石灰石反应,导致混凝土的腐蚀。
4. 冻融循环:在低温和高温交替时,水在混凝土中冻结和融化,会引起混凝土的体积变化和开裂,从而导致腐蚀。
三、混凝土防腐措施为了延长混凝土的使用寿命和提高结构的稳定性,人们采取了各种防腐措施,下面介绍几种有效的方法:1. 表面涂层:通过在混凝土表面涂覆阻隔涂层,可以有效地防止外界环境因素对混凝土的侵蚀。
涂层可以是聚合物涂料、硅酸盐涂料等,选择合适的涂层取决于具体使用环境。
2. 防水处理:混凝土的水化反应过程中会产生较多的孔隙和细小裂缝,这些都是混凝土腐蚀的通道。
通过混凝土防水处理,可以减少这些通道,阻止水分和气体的渗透。
3. 添加防腐剂:在混凝土的配比中添加防腐剂,可以改善混凝土的耐腐蚀性能。
例如,添加硅酸盐、硫酸盐等化学物质,可以减少混凝土与外界环境的反应。
4. 钢筋防腐:钢筋是混凝土中重要的构件,其防腐处理至关重要。
混凝土结构中防止腐蚀的方法一、引言混凝土是建筑中最常用的材料之一,但它也存在一些问题,其中最重要的是腐蚀。
腐蚀可能会导致混凝土结构的破坏,因此预防腐蚀非常重要。
本文将介绍混凝土结构中防止腐蚀的方法。
二、混凝土腐蚀的原因混凝土腐蚀主要是由于以下原因:1. 环境条件:混凝土结构所处的环境条件是腐蚀的主要原因之一。
例如,当混凝土结构暴露在海水、化学物质和高温等环境中时,它容易受到腐蚀。
2. 氯盐的侵入:氯盐是混凝土腐蚀的主要原因之一。
氯盐可以从混凝土表面渗透到混凝土内部。
氯盐在混凝土内部形成钢筋锈蚀的条件。
3. 氧化作用:钢筋暴露在空气中时会氧化,产生锈蚀。
钢筋的锈蚀会使其体积增大,因此混凝土会受到压力,最终导致混凝土的破坏。
三、混凝土腐蚀的预防方法1. 使用高品质的混凝土使用高品质的混凝土可以减少混凝土腐蚀。
高品质的混凝土具有更好的抗腐蚀性能,可以在腐蚀环境中更好地保护钢筋。
2. 保护混凝土表面保护混凝土表面可以减少混凝土腐蚀。
混凝土表面的保护可以使用涂层、沥青或贴膜等方法。
这些方法可以防止氯盐和其他腐蚀性物质侵入混凝土内部。
3. 控制环境条件控制环境条件可以减少混凝土腐蚀。
例如,在海洋环境中,可以使用防止盐水侵入的措施。
在化学厂中,可以控制化学品的使用和排放。
4. 使用防腐剂使用防腐剂可以减少混凝土腐蚀。
防腐剂可以减少氯盐的渗透,从而减少混凝土内部的钢筋锈蚀。
5. 使用不锈钢钢筋使用不锈钢钢筋可以减少混凝土腐蚀。
不锈钢钢筋不会锈蚀,因此不会对混凝土造成压力。
6. 及时维护及时维护可以减少混凝土腐蚀。
定期检查和维护可以及时发现混凝土腐蚀的问题,然后采取相应的措施加以修复。
四、结论混凝土腐蚀是混凝土结构中最常见的问题之一。
预防混凝土腐蚀非常重要,可以通过使用高品质的混凝土、保护混凝土表面、控制环境条件、使用防腐剂、使用不锈钢钢筋和及时维护等方法来预防混凝土腐蚀。
这些方法可以确保混凝土结构的安全和耐久性。
钢筋混凝土结构的腐蚀及防护措施
钢筋混凝土结构是一种在建筑和工程中广泛使用的结构材料。
然而,
由于环境因素和长期使用,钢筋混凝土结构容易受到腐蚀的影响。
腐蚀会
导致钢筋锈蚀,从而降低结构的强度和耐久性。
为了保护钢筋混凝土结构
免受腐蚀的侵害,需要采取相应的防护措施。
为了防止钢筋混凝土结构的腐蚀,可以采取以下防护措施:
1.混凝土配料的选择:选用耐腐蚀性能好的混凝土原材料,并控制好
水胶比,以降低混凝土内部的渗透性,减少水分进入钢筋的机会。
2.防水层的施工:在混凝土表面施工一层防水涂料或防水膜,以减少
水分渗透,降低钢筋的腐蚀风险。
3.外部防护层的施工:可以在混凝土表面覆盖一层聚合物涂层或涂漆,以增加混凝土的密封性,减少氧气和水分的接触,防止钢筋的腐蚀。
4.防腐剂的使用:可以在混凝土中加入一些防腐剂,如磷酸盐、硫酸
盐等,以抑制钢筋的腐蚀反应。
5.阳极保护:在钢筋混凝土结构中引入阳极保护系统,通过施加外部
电流或引入阴极材料,以保护钢筋不被腐蚀。
6.定期维护检查:对钢筋混凝土结构进行定期检查和维护,发现问题
及时修复,以避免腐蚀问题的进一步发展。
总结起来,要防止钢筋混凝土结构的腐蚀,首先需要选用耐腐蚀性能
好的原材料,控制好水胶比,尽量减少水分渗透。
其次,可以在混凝土表
面施工防水层和防护层,增加混凝土的密封性。
此外,可以使用防腐剂,
引入阳极保护系统,并进行定期维护检查。
这些措施的综合应用可以有效地延长钢筋混凝土结构的使用寿命,提高结构的耐久性和安全性。
混凝土的结构腐蚀与防护设计混凝土是一种广泛应用于建筑和基础设施工程中的材料,具有强度高、耐久性好的特点。
然而,由于外界环境的影响以及使用过程中的各种因素,混凝土结构也存在着腐蚀的风险。
本文将探讨混凝土的结构腐蚀原因、常见的腐蚀类型以及有效的防护设计方法。
一、混凝土结构腐蚀的原因混凝土结构腐蚀主要是由于外界环境的侵蚀和内部因素的作用导致的。
以下是一些常见的原因:1. 酸碱侵蚀:大气中的酸雨以及土壤中的酸碱性物质会腐蚀混凝土结构表面,导致其失去保护层。
2. 氯离子渗透:在海洋工程或者盐湖地区,氯离子容易通过混凝土渗透至钢筋表面,形成钢筋锈蚀,从而引起混凝土的结构腐蚀。
3. 冻融循环:在寒冷地区,湿度高的条件下,冻融循环会造成混凝土内的水膨胀和收缩,最终导致混凝土结构的开裂和破坏。
4. 碱骑建筑废弃物:有些建筑废弃物中含有碱性物质,如果未经妥善处理就接触到混凝土结构中,会引起混凝土碱骑反应,导致结构损坏。
5. 金属腐蚀:如钢筋内的锈蚀会产生体积膨胀,导致混凝土的开裂与结构损坏。
二、混凝土结构腐蚀的类型混凝土结构腐蚀可分为表面腐蚀和内部腐蚀两种类型。
1. 表面腐蚀:表面腐蚀主要是由于酸碱侵蚀或大气中的氧化物进入混凝土,破坏混凝土保护层,导致表面起砂、剥落或结构开裂。
2. 内部腐蚀:内部腐蚀主要包括钢筋锈蚀和碱骑反应。
钢筋锈蚀是由于氯离子、二氧化碳等渗透到混凝土中,导致钢筋锈蚀并引起混凝土开裂和脱落。
碱骑反应是由于碱性物质与混凝土中的硅酸盐反应产生胶凝胶,导致混凝土体积膨胀,造成结构开裂。
三、混凝土结构腐蚀的防护设计为了延长混凝土结构的使用寿命,减少腐蚀风险,需要采取一系列的防护措施。
以下是一些常见的防护设计方法:1. 表面涂层:涂抹腐蚀特性良好的涂料或防水剂可在一定程度上防止酸碱侵蚀和氧化物的渗透,保护混凝土表面。
2. 添加防腐剂:在混凝土配制过程中添加适量的防腐剂,可减少腐蚀因素对混凝土的侵蚀作用。
3. 加固钢筋:采用不锈钢或镀锌钢筋替代普通钢筋,可有效防止锈蚀引起的混凝土破坏。
混凝土中的腐蚀原理及防治混凝土是一种常用的建筑材料,在各种建筑中都有广泛的应用。
但是,长期使用后,混凝土可能会遭受腐蚀,降低其强度和耐久性。
混凝土的腐蚀原理主要有以下几种:碳化腐蚀、氯离子腐蚀、硫酸盐腐蚀和碱-骨料反应等。
一、碳化腐蚀碳化腐蚀是混凝土中最常见的一种腐蚀形式。
当混凝土表面暴露在空气中时,混凝土表面的碳酸盐会与大气中的二氧化碳反应,形成碳酸氢盐。
随着时间的推移,表面的碳酸氢盐会逐渐渗入混凝土内部,与水泥基质中的钙化合物反应,形成碳化物。
碳化物的形成会导致混凝土的PH值减小,进而导致钢筋锈蚀。
二、氯离子腐蚀氯离子腐蚀是混凝土中最严重的一种腐蚀形式之一。
氯离子可以通过混凝土表面的微小孔隙渗入混凝土内部,进而与钢筋表面的保护层反应,形成氯化物。
氯化物可以使得钢筋表面的保护层脱落,导致钢筋发生腐蚀,从而导致混凝土的强度和耐久性下降。
三、硫酸盐腐蚀硫酸盐腐蚀是混凝土中较为罕见的一种腐蚀形式。
硫酸盐可以通过土壤或地下水渗入混凝土中,进而与混凝土中的钙化合物反应,形成硬质的石膏。
石膏的体积较大,会导致混凝土的体积膨胀,从而使混凝土发生开裂,进而导致混凝土的强度和耐久性下降。
四、碱-骨料反应碱-骨料反应是混凝土中一种较为罕见的腐蚀形式。
当混凝土中的硅酸盐反应过程中,硅酸盐会与碱性水泥反应,形成碳酸盐和硅酸盐胶体。
这种胶体可以与骨料表面的硅酸盐反应,形成胶体颗粒。
这些胶体颗粒会导致混凝土的体积膨胀,从而导致混凝土的开裂和强度下降。
以上是混凝土的腐蚀原理,接下来我们将介绍一些常用的混凝土腐蚀防治方法。
一、增加混凝土的密实性混凝土的密实性越高,其孔隙率就越低,对外界的侵蚀就越小。
因此,增加混凝土的密实性是防止混凝土腐蚀的重要方法之一。
常见的方法包括:选用高品质的水泥和骨料、控制混凝土的水灰比、采用合理的混凝土配合比、增加混凝土中的细集料、使用气泡剂等。
二、使用防腐涂料在混凝土外表面涂覆一层防腐涂料,可以有效地防止混凝土的腐蚀。
混凝土危害与防护措施引言混凝土是一种广泛应用于建筑和基础设施领域的重要材料。
然而,长期以来,我们也意识到混凝土存在一些危害和损坏的问题。
本文将讨论混凝土的危害以及如何采取相应的防护措施来延长其使用寿命和保障工程质量。
一、混凝土的危害1. 钢筋锈蚀混凝土中的钢筋暴露在潮湿环境中会受到氧气和水分的侵蚀,加速锈蚀的过程。
钢筋锈蚀不仅会降低钢筋的强度,还会导致内部应力的增加,从而导致混凝土开裂和破坏。
2. 冻融损伤在寒冷地区,混凝土容易受到冻融循环的影响,即在低温下水分凝结成冰,冰膨胀会引起混凝土的开裂和脱落。
这种冻融损伤会导致混凝土结构的强度和稳定性下降。
3. 碱-骨料反应碱-骨料反应是一种发生在混凝土中的化学反应,主要是由于骨料中存在的某些矿物质与混凝土中的碱性成分反应形成胶体,导致混凝土膨胀、开裂和破坏。
这种反应是混凝土危害的常见原因之一。
4. 硫酸盐侵蚀在工业环境中,混凝土常常面临硫酸盐的侵蚀。
硫酸盐对混凝土的侵蚀主要是通过与水分发生反应形成硫酸,从而破坏混凝土的结构并降低其强度。
二、混凝土的防护措施1. 表面涂层涂层是一种常见的混凝土表面防护措施,通过在混凝土表面形成一层保护膜来阻止水分和有害物质的渗透。
常用的涂层材料包括聚合物涂料、硅酸盐涂料和硅酸钾涂料。
涂层的选择应根据具体工程需求和环境条件来确定。
2. 防水剂防水剂可以加入混凝土中,通过改善混凝土的孔隙结构,减少水分渗透。
常用的防水剂包括有机防水剂和无机防水剂。
防水剂的选择应根据混凝土的用途和环境条件来确定。
3. 补强和加固对于已经受损的混凝土结构,可以采取补强和加固的方法来延长其使用寿命。
常见的方法包括加固钢筋、加固碳纤维片和加固预应力等。
补强和加固应根据具体情况进行设计和施工。
4. 密封处理在混凝土施工完成后,进行密封处理可以有效防止水分渗透和有害物质的侵入。
常见的密封处理方法包括蜡涂层、硅酸盐封孔剂和聚合物封孔剂等。
密封处理的选择应根据混凝土的用途和环境条件来确定。
混凝土腐蚀的原理及防治方法一、混凝土腐蚀的原理混凝土腐蚀是指混凝土中的钢筋或钢筋与混凝土之间的化学反应,导致钢筋锈蚀或混凝土表面起壳、起皮等现象,严重影响混凝土结构的使用寿命和安全性。
1.1 钢筋锈蚀的原理钢筋锈蚀是混凝土腐蚀中最常见的一种形式。
在正常情况下,钢筋表面会形成一层氧化钢皮,这一层钢皮可以保护钢筋不被腐蚀。
然而,当混凝土中的碳酸盐、氯离子、硫酸盐等物质进入混凝土内部,会导致混凝土中的pH值下降,从而使得钢筋表面的氧化钢皮被破坏。
一旦钢筋表面的氧化钢皮被破坏,钢筋将会开始锈蚀,最终导致钢筋断裂。
1.2 混凝土表面起壳、起皮的原理混凝土表面起壳、起皮是指混凝土表面出现大量细小的裂缝,混凝土表面形成的一层薄膜被破坏,最终导致混凝土表面的破损。
这一现象的主要原因是混凝土中的水分被气温、湿度等环境因素影响,从而导致混凝土表面的膜层被破坏。
此外,混凝土表面的起壳、起皮也可能是由于混凝土中的碳酸盐、氯离子等物质导致的pH值下降,从而导致混凝土表面的膜层被破坏。
二、混凝土腐蚀的防治方法为了防止混凝土腐蚀,我们可以采取以下措施:2.1 合理设计混凝土结构合理的混凝土结构设计是预防混凝土腐蚀的关键。
在设计混凝土结构时,应该考虑到混凝土的强度、厚度、钢筋的数量和表面处理等因素,从而确保混凝土结构的安全性和使用寿命。
2.2 选择合适的材料在混凝土结构的建造过程中,应该选择高质量的钢筋和混凝土材料。
钢筋的质量直接影响混凝土结构的使用寿命,因此选择高质量的钢筋是预防混凝土腐蚀的关键。
此外,选择高质量的混凝土材料也能够提高混凝土结构的使用寿命。
2.3 加强混凝土维护为了延长混凝土结构的使用寿命,应该加强对混凝土结构的维护。
在混凝土结构的使用过程中,应该定期进行检查和维护,及时发现并处理混凝土腐蚀的问题。
2.4 采用防腐涂料为了保护混凝土中的钢筋,可以采用防腐涂料对钢筋进行涂抹,防止钢筋受到腐蚀。
此外,也可以对混凝土表面进行涂料处理,提高混凝土表面的抗腐蚀性能。
混凝土的腐蚀与防护混凝土作为一种重要的建材,在建筑和基础设施建设中广泛应用。
但是,长时间使用和受到环境因素的影响,混凝土会出现腐蚀的问题。
本文将讨论混凝土的腐蚀问题及其防护方法。
一、混凝土的腐蚀混凝土腐蚀是指混凝土结构在长时间、严酷的环境下,表面出现了裂缝和孔洞,进而使水和氧气渗透进入混凝土内部引起金属结构的锈蚀。
常见的混凝土腐蚀主要有以下三种类型:1.碳化腐蚀碳化是由于大气中的二氧化碳和水蒸气不断地渗透到混凝土中,使pH值下降,进而使混凝土表面的钙化物会渐渐被溶解,发生碳化。
当混凝土的碳化深度超过钢筋所在的深度,就会导致钢筋锈蚀。
2.氯离子腐蚀氯离子是混凝土中的一种主要有害离子,当混凝土中的氯离子含量超过一定限度时,钢筋表面就会形成锈层,腐蚀加速。
3.硫酸盐腐蚀硫酸盐的腐蚀是由于在土壤和水中存在一定量的硫酸盐、硫酸等有害物质,当浸泡在其中的混凝土受到这些物质的腐蚀,就会出现硫酸盐腐蚀。
二、混凝土的防护针对混凝土腐蚀的问题,需要采取一系列的防护措施,以保护混凝土结构的完整性和稳定性。
1.使用防腐涂层防腐涂层是一种保护混凝土结构的有效措施。
涂层具有防水、防潮和防氧化等作用,可形成一层防护膜,保护混凝土结构不受大气和渗水的侵蚀。
2.利用控制混凝土设计的方法控制混凝土设计主要是指通过控制混凝土的配合比、粉煤灰量、粘土量、水泥掺量,“浆聚剂”等,达到控制混凝土中主要化学成分含量的目的。
3.加强混凝土的密实性通过采用密实性好的粗细骨料及控制混凝土配合比等措施,使混凝土密实程度达到最大,从而减少水泥骨料之间的连接空隙,防止水分渗透到混凝土中导致腐蚀。
4.土壤改良采用化学方法对坏土进行改良,降低土壤的酸碱性,降低土壤中化学物质对混凝土的腐蚀影响。
5.采用阴极保护技术阴极保护技术是一种先进的腐蚀防护技术,通过为钢筋设置外部电源,使其形成不足以使钢筋腐蚀的极化电压。
这样,当钢筋表面出现裸露的情况时,阴极保护技术可以防止腐蚀的发生。
混凝土结构的腐蚀与防护一、概述混凝土结构是建筑工程中常见的结构类型之一,它的优点包括强度高、耐久性好、可塑性强等。
然而,混凝土结构也存在着腐蚀的问题,这会对结构的安全性和使用寿命造成严重的影响。
为了保障混凝土结构的安全和长期使用,需要对混凝土结构的腐蚀问题进行深入研究,并制定相应的防护措施。
二、混凝土腐蚀的原因1.化学侵蚀:混凝土中的水泥基质中含有大量的氢氧化钙,当混凝土表面接触到化学性质较强的酸性物质,会发生酸碱反应,产生反应物,导致混凝土表面腐蚀。
2.物理侵蚀:混凝土结构长期受到风吹日晒、雨淋雪打等自然气候的侵蚀,也会导致混凝土表面的腐蚀。
此外,混凝土中的钢筋与混凝土之间的界面也会发生腐蚀。
3.电化学腐蚀:电化学腐蚀是混凝土结构中最常见的腐蚀形式之一。
当混凝土结构中的钢筋暴露在空气中时,钢筋表面的氧化层会形成一对电池,导致钢筋发生电化学腐蚀。
三、混凝土腐蚀的危害混凝土腐蚀会导致结构的强度降低、承载能力下降,严重时甚至会造成结构的崩塌。
此外,混凝土腐蚀还会影响结构的美观性和使用寿命,给人们的生产和生活带来不便和危害。
四、混凝土腐蚀的防护措施1.防止化学侵蚀:在混凝土结构的表面进行化学防腐处理,例如使用化学防腐涂料、防蚀剂等。
此外,在混凝土结构的设计、施工和维护过程中,也应该尽量避免使用酸性物质,减少化学侵蚀的发生。
2.防止物理侵蚀:加强混凝土结构的防水、防潮、防冻、防晒等措施,减少混凝土表面的物理侵蚀。
此外,还应该加强混凝土的维护和保养,定期进行清洗和涂刷防腐涂料等。
3.防止电化学腐蚀:在混凝土结构中采用防腐钢筋和防腐涂料等防护措施,减少钢筋表面的氧化和腐蚀。
此外,还可以采用阴极保护、阳极保护等电化学防腐技术,减少电化学腐蚀的发生。
4.加强混凝土结构的设计和施工:在混凝土结构的设计和施工过程中,应该加强对混凝土材料的质量控制和选择,确保混凝土结构的耐久性和安全性。
此外,还应该加强混凝土结构的维护和保养,及时进行检查和修缮。
混凝土结构的腐蚀及防护技术混凝土结构的腐蚀一直是工程领域面临的重要问题之一。
腐蚀不仅会严重损害建筑物的结构和外观,而且对安全性也有潜在的威胁。
因此,在建筑和维护混凝土结构时,必须采取有效的防护措施,以延长结构的寿命。
本文将探讨混凝土结构的腐蚀机制以及常用的防护技术。
第一节:混凝土结构的腐蚀机制混凝土结构的腐蚀主要是由外部环境导致的化学反应引起的。
首先,外界的湿度和温度变化会导致水分进入到混凝土中,这是腐蚀的基础。
此外,大气中存在的二氧化碳、硫酸盐和盐等物质会与混凝土中的水和水泥发生反应,从而产生强酸性或强碱性的物质。
这些化学物质会破坏混凝土的结构,使其失去耐久性。
第二节:常见的混凝土结构腐蚀问题混凝土结构腐蚀问题主要表现为表面剥落、龟裂和钢筋锈蚀等。
表面剥落是由于混凝土中的钢筋受到腐蚀而膨胀,使混凝土表面出现裂缝,并逐渐脱落。
龟裂则是由于混凝土内部的腐蚀反应导致了结构的破坏,使得混凝土表面出现网状的裂缝。
钢筋锈蚀是最为严重的腐蚀问题之一,当钢筋锈蚀后体积膨胀,会导致混凝土破坏,加速结构的老化。
第三节:常用的混凝土结构防护技术为了延长混凝土结构的使用寿命,必须采取适当的防护措施。
首先是在建筑过程中采取合理的混凝土配合比和施工工艺,确保混凝土的密实性。
其次是选择适当的混凝土保护涂层,以阻断水分和化学物质的进入,保护混凝土。
此外,定期检查和维护混凝土结构也是非常重要的。
如果发现有损坏或腐蚀的部分,应及时修复和防止进一步恶化。
第四节:新兴的混凝土结构防护技术随着科技的进步,一些新兴的混凝土结构防护技术也被广泛研究和应用。
例如,使用耐久性更高的材料,如高性能混凝土和纤维增强混凝土,可以提高混凝土结构的抗腐蚀能力。
此外,新型的混凝土防腐剂和防水剂也被广泛开发,可以加强混凝土的耐久性和抗腐蚀性。
虽然这些新技术有一定的成本,但可以显著提高混凝土结构的寿命和可靠性。
结论腐蚀是混凝土结构必须面对的重要问题,对结构和安全性都有直接的影响。
浅谈砼腐蚀以及防腐措施赵党锋刘华武石磊(天津工业大学纺织学院天津300160)摘要:本文介绍了混凝土腐蚀的主要因素,包括碳化、氯化物的侵蚀、冻融等因素。
并在分析原因的基础上论述了基本的防腐措施,主要有添加矿物质粉末、改善施工工艺、纤维混凝土结构等方法。
通过防腐措施可以有效改善混凝土使用的耐久性和安全性。
关键词:混凝土;腐蚀;防腐措施;耐久性;The discussion of concrete corrosion and anticorrosion methodsZhao Dangfeng,Liu Hua wu ,Shi Lei(Shool of Textiles, Tianjin Polytechnic University, Tianjin 300160, China)Abstract: This paper introduces the main factors of concrete corrosion, including carbonation, chloride corrosion, freeze-thaw and other factors. It also discusses the basic anticorrosion methods based on the analysis of the main factors of concrete corrosion. The main methods include adding mineral powder, improving the construction technology, structures of fiber reinforced concrete etc. the durability and safety of concrete can be effectively improved through the using of these methods.Keywords: concrete; corrosion; anti-corrosion measures; durability;前言混凝土即“砼”,混凝土是主要的建筑材料, 随着我国经济的高速发展,土木工程建设所用的主要建筑材料混凝土用量稳居世界前列[1]。
通常用的混凝土是由胶凝材料(水泥)、水和粗、细骨料按适当比例配合,拌制成拌合物,经一定时间硬化而成的人造石材。
当在混凝土中配以适量的钢筋,则为钢筋混凝土。
混凝土的腐蚀直接影响着混凝土使用的耐久性和安全性。
本文将混凝土的腐蚀以及防腐措施给予论述,希望给予大家参考。
1.混凝土腐蚀的原因分析1.1 混凝土碳化的影响CO2是全球变暖的温室气体主要组分,近年来人们为获得能源而向大自然索取的煤、石油、天然气的量在迅速增加,燃烧产生的CO2也在与日俱增,且由于全球人口猛增,森林草原迅速减少,碳源增加,碳源减少,综合结果使全球大气中CO2含量急剧增加[1]。
由于空气中含有大量的CO2 ,当CO2进入混凝土中的孔隙并溶解在孔隙水中形成一种酸性溶液,它与混凝土中的碱性物质发生中和反应,即CO2+NaOH→Na2CO3+H2O CO2 + 2Ca (OH)2→2CaCO3 + H2ONa2CO3溶于水后呈碱性,但碱性较弱。
而CaCO3是不溶于水的, 所以反应后会使孔隙水中的CO2含量减少,同时混凝土的pH 值将降低,而空气中的CO2会继续溶入孔隙水中,使反应继续进行,结果是降低了混凝土的高碱性,这样碳化就开始转向深一层的混凝土。
当碳化的深度到达钢筋时,钢筋的钝化保护就会失稳、消失,这时就会引起钢筋的腐蚀[2][4]。
混凝土碳化的速度除与空气中CO2浓度和混凝土中碱性物质浓度有关外,主要取决于CO2与混凝土中碱性物质的化学反应速度、CO2向混凝土的扩散速度以及氢氧化钙的扩散速度。
1.2 氯化物的侵蚀在沿海、内陆(如盐桥、盐碱地) 或盐碱工业区,混凝土的集料和用水的氯盐含量较高;而且其工作环境也受氯盐的侵蚀,氯盐对混凝土和钢材有如下的腐蚀作用。
(1)对混凝土的腐蚀:①MgCl2与混凝土中的Ca生成CaCl2能溶于水,形成多孔混凝土;②海水中的MgSO4与混凝土中的Ca(OH)2生成CaSO4 ,又与铝酸钙生成硫铝酸钙——水泥杆菌,混凝土膨胀破坏;③盐分子在混凝土毛细管内上升,不断结晶、聚集,胀裂混凝土。
(2) 对钢筋的腐蚀:①氯离子破坏钝化层;②氯离子与铁构成了腐蚀电池,在钢筋表面形成特有的坑蚀;③氯离子与铁离子生成FeCl2 ,再溶于水,转换成Fe(OH)2 ,释放出氯离子,周而复始,腐蚀钢筋,称为去极化作用。
然而,并非氯离子一到达钢筋表面就能破坏其钝化保护膜,也就是引起钢筋的腐蚀,而是当氯离子的浓度超过引起钢筋腐蚀的临界氯离子浓度才会发生钢筋的腐蚀[2]。
有研究表明:氯离子临界浓度与pH 值间存在一定的关系,Huasmann发现当[Cl-]/[OH-]>0.6 时,钢筋开始腐蚀。
而且,只要少数的氯离子就可以周而复始的引发腐蚀,造成恶性循环。
Gouda认为氯离子临界浓度与pH 值之间的关系为:pH=0.83logCl-+K(其中K为常数)。
到目前为止,关于临界氯离子浓度引起钢筋腐蚀的观点已得到许多科学工作者的认可,同时也取得了一些研究成果[3]。
1.3冻融[1] [6]冻融破坏是我国东北、西北和华北低温地区水工混凝土建筑在运行过程中产生的主要病害,对于混凝土破坏来说,无论酸蚀冻融如图1b、碱蚀冻融如图1c、还是盐蚀冻融如图1d,都是物理作用及化学作用的综合效应,而单一的冻融因素破坏过程,则基本上是一个物理变化过程,如图1a所示。
图1.试件内部结构变化结果示意图Fig.1 sketch of changes in the internal structure of specimen混凝土是由水泥砂浆及粗骨料组成的毛细多孔体。
在拌制混凝土时加入的水总要多于水泥的水化水,以得到必要的和易性。
多余的水便以游离水的形式滞留在混凝土中连通的毛细孔里。
这种毛细孔里的自由水是导致混凝土遭受冻害的主要内在因素,因为水遇冷结冰产生体积膨胀会引起混凝土内部结构的破坏。
当这种压力超过混凝土抗拉强度时,混凝土就会开裂。
在反复冻融循环作用后,混凝土中的损伤会不断扩大,裂缝会相互贯通,其强度会逐渐降低,最后甚至完全丧失。
混凝土在冻融破坏过程中,主要反映其密实度和强度上的宏观特性呈逐步下降的趋势,宏观特性呈逐步下降的趋势,冻结温度越低和冻结速率越快,混凝土的冻融破坏力越强;混凝土在冻融破坏过程中反映在微观结构上的微孔含量在逐步增加,微孔直径在逐步扩大,此时混凝土由密实体逐渐转变为松散体。
可见混凝土微孔结构的增加和微裂缝的发展,导致了混凝土宏观强度和密实度的降低。
1.4其它影响因素(1)二氧化硫、硫酸盐及细菌的影响。
二氧化硫能与混凝土发生中和作用,能生成微溶的钙盐,此钙盐结晶时结合大量的水,使固相体积大大增加,导致混凝土发生结晶性腐蚀。
若有硫氧化菌存在时,由于反应:S+O2+H2O→H2SO4生成的H2SO4不但会引起混凝土的碱度降低,而且还会导致混凝土发生结晶腐蚀。
同时,硫酸根离子也能对钢筋直接产生破坏作用,硫酸根的去钝化作用能导致钢筋发生腐蚀。
(2)碱—骨料反应碱—骨料反应是混凝土中某些活性矿物集料与混凝土孔隙中的碱性溶液之间发生的反应。
必备的三个条件是:活性矿物集料(活性二氧化硅、白云质类石灰岩或粘土质页岩等)、碱性溶液(KOH、NaOH)和水。
温度、湿度和含盐量对其有促进作用[4]。
(3)环境湿度的影响钢筋腐蚀与环境湿度有直接关系,在十分潮湿的环境中,其空气相对温度接近于100%时,混凝土孔隙充满水分,阻碍了空气中氧气向钢筋表面扩散,二氧化碳也难以透入,使钢筋难以腐蚀。
当相对湿度低于60%时,在钢筋表面难以形成水膜,钢筋几乎不生锈,碳化也难以深入。
而空气湿度在80%左右时,有利于碳化作用,混凝中钢筋锈蚀发展很快。
由于环境湿度往往随气候和生产情况而变化,因而混凝土也会随之变化会碳化,钢筋会腐蚀[5]。
(4)微生物的腐蚀微生物腐蚀硫杆菌能将硫、硫化硫酸盐、亚硫酸盐等氧化成硫酸盐,最终转化成对混凝土有强腐蚀性的硫酸;硫酸盐还原菌能将硫酸盐还原为强腐蚀性硫化氢,但高PH值、高密实度及不易渗透的混凝土对其是免疫的。
另外,流水、波浪侵袭力的磨损与冲刷,加强了腐蚀介质的渗透力量,对于码头等构筑物又常会受到船舶冲击,荷载作用下结构的应力状态给腐蚀破坏创造了方便的条件[4]。
混凝土的腐蚀是一个非常复杂的问题,混凝土的腐蚀往往是各种因素综合作用所产生的结果,因此分析混凝土腐蚀的原因有利于我们能够更好的来预防混凝土的腐蚀。
2.防腐措施研究分析2.1添加矿物质粉末矿物质粉末包括硅灰、粉煤灰和磨细高炉矿渣微粉, 从而提高水泥浆的密实性, 以阻断腐蚀介质侵入的通道,从而达到防腐的目的[2]。
高强黑曜石玻璃粉末是凝固的火山熔岩重新配方熔炼改性而成、直径小于2微米的特种材料,无毒,生产过程无污染,防辐射、耐高温、耐腐蚀、耐磨、隔热、防渗透、强度高达钢铁的12倍以上。
高强黑曜石玻璃粉末中含有大量纳米级微粒,能堵塞毛细微孔,提高混凝土致密性从而提高防水性能和耐腐蚀性能。
此外粉末均为光滑高强玻璃状微粒,可以大大改善混凝土的均匀性,减少混凝土的结构薄弱点,提高制品的整体结构强度,并且能够释放因凝絮作用被水泥颗粒包裹的游离水,起到解絮、减少用水量的作用。
还可以和水泥浆中的碱性物质发生化学反应,生成水化硅酸钙、水化铝酸钙等胶凝物质,能堵塞混凝土中的毛细组织,提高防水性能。
所以添加高强黑曜石玻璃粉末以后混凝土因为强度、防水、耐腐蚀和耐磨性能大大提高。
除添加矿物质粉末外。
还可以添加其他的添加剂,我国外加剂的品种目前已超过百种,其中包括减水剂、早强剂、加气剂、膨胀剂、速凝剂、缓凝剂、消泡剂、阻锈剂、密实剂、抗冻剂等[6]。
2.2 改善施工工艺(1)选择合理的水泥种类和钢筋配制水利工程,海洋工程的混凝土的水泥要求耐腐蚀能力强、抗冻融性好、水化热低。
应优先选用普通硅酸盐水泥或其他耐腐蚀水泥,而不采用快硬硅酸盐水泥等。
掺有高炉矿渣、火山灰、粉煤灰、硅藻土等活性熟料可有效阻止腐蚀性离子向混凝土内部渗透。
选用不锈钢筋是国外的一种发展趋势。
这种钢筋的价格是普通碳素钢的(4~6)倍,但它长期的耐腐蚀性足以补偿初期投入的成本。
无论混凝土种类和暴露状态,采用这种钢筋的混凝土保护层厚度可降低到30mm;裂缝宽度允许值放宽到0.3mm;并不需要对不锈钢筋进行硅处理[4]。
(2) 增加水泥用量混凝土中钢筋的锈蚀是由于钢筋周围的碱性环境不复存在,保护环境消失。