计量经济学回归分析案例
- 格式:ppt
- 大小:3.40 MB
- 文档页数:18
案例分析1— 一元回归模型实例分析依据1996-2005年《中国统计年鉴》提供的资料,经过整理,获得以下农村居民人均消费支出和人均纯收入的数据如表2-5:表2-5 农村居民1995-2004人均消费支出和人均纯收入数据资料 单位:元 年度 1995199619971998199920002001200220032004人均纯收入1577.7 1926.1 2090.1 2161.1 2210.3 2253.4 2366.4 2475.6 2622.2 2936.4人均消费支出1310.4 1572.1 1617.2 1590.3 1577.4 1670.1 1741.1 1834.3 1943.3 2184.7一、建立模型以农村居民人均纯收入为解释变量X ,农村居民人均消费支出为被解释变量Y ,分析Y 随X 的变化而变化的因果关系。
考察样本数据的分布并结合有关经济理论,建立一元线性回归模型如下:Y i =β0+β1X i +μi根据表2-5编制计算各参数的基础数据计算表。
求得:082.1704035.2262==Y X∑∑∑∑====3752432495.1986.788859011.516634423.1264471222ii i i iX y x y x 根据以上基础数据求得:623865.0423.126447986.788859ˆ21===∑∑iii xyx β8775.292035.2262623865.0082.1704ˆˆ10=⨯-=-=X Y ββ 样本回归函数为:ii X Y 623865.08775.292ˆ+= 上式表明,中国农村居民家庭人均可支配收入若是增加100元,居民们将会拿出其中的62.39元用于消费。
二、模型检验1.拟合优度检验952594.0011.516634423.1264471986.788859))(()(22222=⨯==∑∑∑iii i yx y x r2.t 检验525164.3061 210423.12644710.623865011.166345 2ˆˆ222122=-⨯-=--=∑∑n x y iiβσ049206.0423.1264471525164.3061ˆ)ˆ()ˆ(2211====∑ie xVar S σββ6717.112525164.3061423.126447110137.52432495ˆ)ˆ()ˆ(22200=⨯===∑∑σββii e xn X Var S 在显著性水平α=0.05,n-2=8时,查t 分布表,得到:306.2)2(2=-n t α提出假设,原假设H 0:β1=0,备择假设H 1:β1≠067864.12049206.0623865.0)ˆ(ˆ)ˆ(111==-=ββββe S t)2(67864.12)ˆ(21->=n t t αβ,差异显著,拒绝β1=0的假设。
回归分析实验案例数据引言:回归分析是一种常用的统计方法,用于探索一个或多个自变量对一个因变量的影响程度。
在实际应用中,回归分析有很多种,例如简单线性回归、多元线性回归、逻辑回归等。
本文将介绍一个回归分析实验案例,并分析其中的数据。
案例背景:一家汽车制造公司对汽车的油耗进行研究。
他们收集了一些汽车的相关数据,并希望通过回归分析来探究这些数据之间的关系。
数据收集:为了进行回归分析,他们收集了以下数据:1. 汽车型号:不同汽车型号的标识符。
2. 汽车价格:每辆汽车的价格,单位为美元。
3. 汽车速度:以每小时英里的速度来衡量。
4. 引擎大小:汽车引擎的容量大小,以升为单位。
5. 油耗:每加仑汽油行驶的英里数。
数据分析:通过对收集的数据进行回归分析,可以得出以下结论:1. 汽车价格与汽车引擎大小之间存在正相关关系。
即引擎越大,汽车价格越高。
2. 汽车速度与油耗之间呈现负相关。
即速度越高,油耗越大。
3. 汽车引擎大小与油耗之间存在正相关关系。
即引擎越大,油耗越大。
结论:基于以上分析结果,可以得出以下结论:1. 汽车价格受到引擎大小的影响,即引擎越大,汽车价格越高。
这一结论可以帮助汽车制造公司在制定价格策略时做出合理的决策。
2. 汽车速度与油耗之间呈现负相关。
这一结论可以帮助消费者在购买汽车时考虑速度对油耗的影响,从而选择更经济的汽车。
3. 汽车引擎大小与油耗之间存在正相关关系。
这一结论可以帮助汽车制造公司在设计引擎时考虑油耗因素,从而提高汽车的燃油效率。
总结:回归分析是一种有效的统计方法,可以用于探索数据间的关系。
通过对汽车制造公司收集的数据进行回归分析,我们发现了汽车价格、速度和引擎大小与油耗之间的关系。
这些分析结果对汽车制造公司制定价格策略、消费者购车以及提高燃油效率都具有重要的指导意义。
计量经济学试题线性回归分析与计量经济学试题线性回归分析与应用一、简介线性回归分析是计量经济学中常用的统计方法之一,用于探究因变量和一个或多个自变量之间的关系。
本文将通过解答计量经济学试题来讨论线性回归分析的理论和应用。
二、理论基础1. 线性回归模型线性回归模型可表示为Y = α + βX + ε,其中Y是因变量,X是自变量,α和β是待估参数,ε是误差项。
线性回归模型的核心在于确定待估参数的估计值。
2. 估计参数通常使用最小二乘法估计回归模型中的参数。
最小二乘法的原理是最小化残差平方和,即使得观测值与模型估计值之间的差异最小。
三、实例分析假设一个研究者对某城市的住房价格进行研究,选取了以下两个自变量:房屋面积(X1)和楼层高度(X2)。
通过收集一定数量的样本数据,可以进行线性回归分析来探究自变量对住房价格的影响。
1. 数据收集首先,该研究者需要收集一定数量的样本数据,包括房屋面积、楼层高度和住房价格。
这些数据将用于构建线性回归模型。
2. 模型建立在收集到足够的样本数据后,可以通过最小二乘法估计线性回归模型中的参数。
假设模型为Y = α + β1X1 + β2X2 + ε,其中Y表示住房价格,X1表示房屋面积,X2表示楼层高度。
3. 参数估计利用最小二乘法估计模型中的参数α、β1和β2。
通过计算残差平方和最小化的方法,可以得到参数的估计值,并进一步进行假设检验和推断。
4. 模型评估在得到参数的估计值后,需要对模型进行评估。
常用的评估指标包括决定系数(R^2)、调整后的决定系数(adjusted R^2)、F统计量、t统计量等。
5. 假设检验通过进行显著性检验,判断自变量对因变量的影响是否显著。
常见的假设检验包括零假设(自变量对因变量无显著影响)和备择假设(自变量对因变量有显著影响)。
6. 拟合优度拟合优度是评价模型拟合程度的指标,通常用R方来表示。
R方越接近1,说明模型对样本数据的拟合程度越好。
四、应用案例1. 经济增长与教育投入关系分析通过线性回归分析,可以探究教育投入对于经济增长的影响。
选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。
由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。
所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数”一,数理经济学方程Y = C(1) + C(2)*XY i=β0+β2X2+β3X3+β4X4二,计量经济学方程设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ三,数据收集从《国家统计局》获取以下数据:年份财政收入(亿元)Y 国内生产总值(亿元)X2财政支出(亿元)X3商品零售价格指数(%)X41978 519.28 3624.1 1122.09 100.7 1979 537.82 4038.2 1281.79 102 1980 571.7 4517.8 1228.83 106 1981 629.89 4862.4 1138.41 102.4 1982 700.02 5294.7 1229.98 101.9 1983 775.59 5934.5 1409.52 101.5 1984 947.35 7171 1701.02 102.8 1985 2040.79 8964.4 2004.25 108.8 1986 2090.73 10202.2 2204.91 106 1987 2140.36 11962.5 2262.18 107.3 1988 2390.47 14928.3 2491.21 118.5 1989 2727.4 16909.2 2823.78 117.81990 2821.86 18547.9 3083.59 102.1 1991 2990.17 21617.8 3386.62 102.9 1992 3296.91 26638.1 3742.2 105.4 1993 4255.3 34636.4 4642.3 113.2 1994 5126.88 46759.4 5792.62 121.7 1995 6038.04 58478.1 6823.72 114.8 1996 6909.82 67884.6 7937.55 106.1 1997 8234.04 74462.6 9233.56 100.8 1998 9262.8 78345.2 10798.18 97.4 1999 10682.58 82067.5 13187.67 97 2000 12581.51 89468.1 15886.5 98.5 2001 15301.38 97314.8 18902.58 99.2 2002 17636.45 104790.6 22053.15 98.7四,参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X1的散点图:Dependent Variable: YMethod: Least SquaresDate: 01/09/10 Time: 13:16Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.C -2582.755 940.6119 -2.745825 0.0121X2 0.022067 0.005577 3.956633 0.0007X3 0.702104 0.033236 21.12474 0.0000X4 23.98506 8.738296 2.744821 0.0121R-squared 0.997430 Mean dependent var 4848.366Adjusted R-squared 0.997063 S.D. dependent var 4870.971S.E. of regression 263.9591 Akaike info criterion 14.13511Sum squared resid 1463163. Schwarz criterion 14.33013Log likelihood -172.6889 F-statistic 2717.254Durbin-Watson stat 0.948521 Prob(F-statistic) 0.000000模型估计的结果为:Y i=-2582.755+0.022067X2+0.702104X3+23.98506X4(940.6119) (0.0056) (0.0332) (8.7383)t={-2.7458} {3.9567} {21.1247} {2.7449}R2=0.997 R2=0.997 F=2717.254 df=21五,相关检验1.经济意义检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP 每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。
计量经济学案例计量经济学是经济学的一个重要分支,它运用数理统计和数学工具来分析经济现象,验证经济理论和检验经济政策的有效性。
在实际应用中,计量经济学常常通过案例研究来展示其理论和方法在解决实际问题中的应用。
下面,我们将通过一个实际的案例来说明计量经济学的应用。
某国家的一家汽车制造商希望了解汽车价格与销量之间的关系,以便制定合理的定价策略。
为了研究这一问题,他们收集了过去几年的汽车价格和销量数据,并进行了分析。
首先,他们利用计量经济学中的回归分析方法,建立了汽车价格和销量之间的数学模型。
在这个模型中,销量是因变量,而价格是自变量。
通过回归分析,他们得到了汽车价格对销量的影响程度,以及其他可能影响销量的因素。
接着,他们进行了统计检验,验证了他们建立的数学模型的有效性。
通过检验结果,他们确认了汽车价格对销量的影响,并排除了其他因素对销量的影响。
这为他们制定合理的定价策略提供了重要的依据。
最后,他们利用建立的数学模型,进行了一系列的预测和模拟。
他们可以通过调整汽车价格,来预测不同定价策略对销量的影响,以及对企业利润的影响。
这些预测和模拟结果为企业提供了重要的决策参考。
通过这个案例,我们可以看到计量经济学在实际应用中的重要性和价值。
它不仅可以帮助企业了解市场和消费者行为,还可以为企业决策提供科学的依据。
当然,计量经济学的方法和工具不仅局限于汽车制造业,它在其他行业和领域也有着广泛的应用。
总之,计量经济学案例的研究对于理论的验证和实证分析都具有重要的意义。
通过实际案例的研究,我们可以更好地理解计量经济学的方法和工具,以及它们在解决实际问题中的应用。
希望这个案例能够给大家带来一些启发,也希望大家能够更加重视计量经济学的学习和研究。
计量经济学多元回归分析案例引言计量经济学是运用数理统计和经济学方法研究经济现象的一门学科。
在实际研究中,多元回归分析是一种常用的方法。
本文将通过一个实际案例来介绍计量经济学中的多元回归分析方法和应用。
研究背景单因素回归分析在计量经济学中,单因素回归分析是最基本的方法之一。
它通过确定一个因变量和一个自变量之间的关系,来解释因变量的变化。
然而,在现实世界中,经济现象往往受到多个因素的影响,因此需要使用多元回归分析来更全面地解释经济现象的变化。
问题陈述本研究的问题是探究某个城市的房价与多个因素之间的关系。
具体来说,我们感兴趣的因变量是房价,自变量包括房屋面积、地理位置、周边设施等。
我们希望通过建立一个多元回归模型来解释房价的变化,并分析不同因素对房价的影响程度。
数据收集为了进行多元回归分析,我们需要收集相关的数据。
在本案例中,我们采集了以下数据:1.房价:通过不同的房地产网站获取该城市的房屋销售数据,包括每个房屋的售价信息。
2.房屋面积:通过购房广告或房产中介提供的信息收集每个房屋的面积数据。
3.地理位置:通过经纬度或邮政编码信息获取每个房屋的地理位置信息。
4.周边设施:通过地图应用或开放的公共数据接口获取每个房屋周边设施(如学校、医院、商场等)的数量和距离信息。
数据预处理在进行多元回归分析前,我们需要对收集到的数据进行预处理。
缺失值处理在数据收集过程中,可能会出现数据缺失的情况。
对于缺失的数据,我们可以选择删除相应的样本,或者通过插补方法进行填充。
在本案例中,我们选择使用均值填充的方法。
数据转换由于多元回归模型要求变量之间具有线性关系,因此我们需要对非数值型数据进行转换。
在本案例中,地理位置可以通过编码转换为数值型变量。
模型建立在进行多元回归分析时,我们需要选择适当的模型来描述因变量和自变量之间的关系。
在本案例中,我们选择使用普通最小二乘法(OLS)来估计回归模型的参数。
模型表达式我们将房价作为因变量(Y),房屋面积、地理位置和周边设施作为自变量(X)。
计量经济学案例分析多元回归分析案例财政收入规模的影响因素被解释变量:财政收入(亿元)解释变量:税收(亿元),经济活动人口(亿元),国内生产总值(亿元)样本:2000年—2011年的财政收入,税收(亿元),经济活动人口(亿元),国内生产总值(亿元)数据来源:中华人民共和国国家统计局(单位:亿元)财政收入Y 各项税收X1经济活动人口X2国民生产总值X31990 2,937.10 2,821.86 65,323.00 18,668.00 1991 3,149.48 2,990.17 66,091.00 21,618.00 1992 3,483.37 3,296.91 66,782.00 26,924.00 1993 4,348.95 4,255.30 67,468.00 35,334.00 1994 5,218.10 5,126.88 68,135.00 48,198.00 1995 6,242.20 6,038.04 68,855.00 60,794.00 1996 7,407.99 6,909.82 69,765.00 71,177.00 1997 8,651.14 8,234.04 70,800.00 78,973.00 1998 9,875.95 9,262.80 72,087.00 84,402.00 1999 11,444.08 10,682.58 72,791.00 89,677.00 2000 13,395.23 12,581.51 73,992.00 99,215.00 2001 16,386.04 15,301.38 73,884.00 109,655.00 2002 18,903.64 17,636.45 74,492.00 120,333.00 2003 21,715.25 20,017.31 74,911.00 135,823.00 2004 26,396.47 24,165.68 75,290.00 159,878.00 2005 31,649.29 28,778.54 76,120.00 183,085.00 2006 38,760.20 34,804.35 76,315.00 211,923.00 2007 51,321.78 45,621.97 76,531.00 257,306.00 2008 61,330.35 54,223.79 77,046.00 307,064.00 2009 68,518.30 59,521.59 77,510.00 335,353.00 2010 83,101.51 73,210.79 78,388.00 362,181.00 2011 103,874.43 89,738.39 78,579.00 471,564.00对数据进行回归,得出回归模型:变量间的关系:OLS估计结果:ML估计结果:MM估计结果:根据回归结果进行模型检验:Y:财政收入(亿元)X1:税收(亿元), X2:经济活动人口(人) X3:国民生产总值(亿元) 1、 系数的显著性水平检验Y = 1.0739********X1 - 0.271936276384*X2 + 0.0237723014946*X3 + 17296.8669142 t 值 (34.57) (-7.10) (3.39) (6.90) 从上面的t 值来看:“税收”系数的t 统计值大于4,p<0.01, 表示拒绝在此模型中“税收”与“财政收入”无关的原假设,而得出二者间有明显关系存在的结论。
计量经济学模型案例计量经济学是经济学的一个重要分支,它通过建立数学模型来研究经济现象,并利用实证数据对模型进行检验和估计。
在实际应用中,计量经济学模型可以帮助我们理解经济现象的规律,预测未来的经济走势,制定经济政策等。
下面,我们将通过几个实际案例来介绍计量经济学模型在经济分析中的应用。
首先,我们来看一个简单的线性回归模型的案例。
假设我们想研究劳动力市场的供求关系,我们可以建立一个简单的线性回归模型来分析劳动力市场的工资水平与就业率之间的关系。
我们收集了一些城市的数据,包括每个城市的平均工资水平、就业率、教育水平等变量,然后利用线性回归模型来估计工资水平与就业率之间的关系。
通过对模型的检验和估计,我们可以得出一些结论,比如工资水平的提高是否会影响就业率,教育水平对工资水平的影响等。
其次,我们来看一个时间序列模型的案例。
假设我们想预测未来几个季度的经济增长率,我们可以利用时间序列模型来进行预测。
我们收集了过去几年的经济增长率数据,然后利用时间序列模型来对未来的经济增长率进行预测。
通过对模型的估计和预测,我们可以得出一些结论,比如未来几个季度的经济增长率可能会呈现什么样的趋势,有助于政府制定经济政策和企业进行经营决策。
最后,我们来看一个面板数据模型的案例。
假设我们想研究不同地区的经济增长对环境污染的影响,我们可以利用面板数据模型来进行分析。
我们收集了不同地区的经济增长率和环境污染指标的数据,然后利用面板数据模型来估计经济增长与环境污染之间的关系。
通过对模型的检验和估计,我们可以得出一些结论,比如经济增长对环境污染的影响程度,不同地区之间的差异等。
综上所述,计量经济学模型在经济分析中具有重要的应用价值。
通过建立合适的模型并利用实证数据进行分析,我们可以更好地理解经济现象的规律,预测未来的经济走势,为政府制定经济政策和企业经营决策提供科学依据。
希望以上案例可以帮助大家更好地理解计量经济学模型在实际应用中的重要性和价值。
计量经济学课程设计班级:学号:姓名:2011年月一、引言财政收入是衡量一国政府财力的重要指标,国家在社会活动中提供公共物品和服务,很大程度上需要财政收入的鼎力相助。
财政收入既是国家的集中性分配活动,又是国家进行宏观调控的重要工具。
税收是国家为实现其职能的需要,凭借其政治权利并按照特定的标准,强制、无偿的取得财政收入的一种形式,它是现代国家财政收入最重要的收入形式和最主要的收入来源。
本课题跟据我国最近几年的经济发展水平和税收收入并结合我国各地区在2008年的实际情况,利用《中国统计年鉴2009》做出了税收收入的计量模型,比较分析了职工工资总额、财政支出和人均家庭总收入等变量对税收收入的不同影响,得出了几个重要的结论。
税收是国家在社会经济活动中为提供公共物品和服务的主要收入来源,在很大程度上决定于财政收入的充裕状况。
税收是国家集中性分配活动,又是国家进行宏观调控的重要工具。
我国自改革开放以来税收一直随经济的增长在快速的增长,尤其是进入21世纪以来成高速发展趋势。
由1999年的10682.58亿元到2008年的54233.79亿元,十年来增加了5.08倍(见表1)。
近几年以来,尤其是2008年以来社会不公平和贫富差距进一步了大,造成了社会的不稳定。
2010年两会期间温家宝总理提出调整税收基数,从而来缩小贫富差距和社会公平问题。
表1 我国十年来税收一览表年份1999 2000 2001 2002 2003 2004 2005 2006 2007 2008税收收入10682.58 12581.51 15301.51 17636.38 20017.31 24165.68 28778.54 34804.35 45621.97 54223.79 (亿元)二、理论基础税收是国家为了实现其职能,以政治权利为基础,按规定标准以政治权力为基础,按预定标准像经济组织和居民无偿课征而取得的一种财政收入。
税收的影响因素有很多包括一国的经济实力,经济发展水平,劳动者的素质,职工工资总额,财政支出,家庭总收入,生产总值,商品零售价格指数等。
Ch2 双变量回归分析: 基本概念总体:研究对象的全体,总体的基本单位称为个体。
同一对象的度量数据集合,也成为总体。
样本:总体中若干个体的集合。
2.1. 例子假定某个国家的人口总体由60户组成,所要研究的问题是,家庭消费支出与家庭可支配收入的关系。
假定将收入不等的家庭分为10组。
表2.1 用X 表示收入,Y 表示消费X80 100 120 140 160 180 200 220 240 260Y 55 65 79 80 102 110 120 135 137 150 60 70 84 93 107 115 136 137 145 152 65 74 90 95 110 120 140 140 155 175 70 80 94 103 116 130 144 152 165 178 75 85 98 108 118 135 145 157 175 180 - 88 - 113 125 140 - 160 189 185-- - 115 - - -162-191iY ∑E(Y︱X)325 65462 77445 89707 101678 113750 125685 1371043 149966 1611211137条件概率与条件期望。
p(Y=60/X=80)=1/5p(Y=65/X=80)=1/5,p(Y=70/X=80)=1/5 p(Y=75/X=80)=1/5进而根据条件概率,我们可计算条件期望(均值),即1()55(1/5)60(1/5)65(1/5)70(1/5)75(1/5)65E Y X X ==++++=图2.1 总体回归直线对应X 的不同水平,Y 的条件期望(均值)的变化,由于Y 的条件均值是对于给定X 的值而对于相应的所有Y 的值求条件均值,因此称为总体回归直线(PRL )。
2.2. PRL 函数Y 的条件均值为函数,因此将Y 的条件均值表述为i X )()(i i X f X Y E = (2.1)称(2.1)为双变量总体回归函数。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载计量经济学第2章一元线形回归模型案例地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容一元线形回归模型案例分析案例:下表的数据为2003年全国31个省市自治区的城镇居民年人均可支配收入X与年人均消费支出。
资料来源:《中国统计年鉴2004》,表中数据均以当年价格计算。
建立计量模型由经济理论知,消费支出受可支配收入的影响,两者之间具有正向同步变化的趋势。
除可支配收入之外,对消费支出有影响的其他因素均包含在随机误差项中。
模型中,解释变量为年人均可支配收入X,被解释变量为年人均消费支出Y。
模型形式可根据凯恩斯的边际消费倾向理论建立一元线形回归模型,也可通过散点图来选择合适的模型形式。
两变量的散点图如下:由散点图可以看出,两变量之间呈线性关系,因此可以建立一元线形回归模型:Yi= 0 + 1 Xi + ut估计参数应用计量经济学软件Eviews得到如下估计结果:得回归方程如下:(0.86)(23.27) R2=0.9491 F=541.26 DW=1.22括号中对应的是估计参数对应的t统计量的值。
参数检验经济检验(结构分析)是样本回归直线的斜率,表示城镇居民的边际消费倾向,说明年人均消费支出增加1元时,消费支出将增加0.75元;是样本回归直线的截距,它表示不受可支配收入影响的自发性消费支出。
显然,两参数的符号和大小均符合经济理论和实际情况。
统计检验R2=0.9491表示总离差的94.91%被样本回归直线解释,因此样本回归直线对样本点的拟合优度较高。
拟合效果图如下给定显著性水平α=0.05,查临界值表得t0.025(29)=2.05。
,故回归系数显著不为0。
但,即系数不显著,可以考虑略去从新估计回归模型,也可包含在模型中。
第7章含有定性信息的多元回归分析:二值(或虚拟)变量在前面几章中,我们的多元回归模型中的因变量和自变量都具有定量的含义。
就像小时工资率、受教育年数、大学平均成绩、空气污染量、企业销售水平和被拘捕次数等。
在每种情况下,变量的大小都传递了有用的信息。
在经验研究中,我们还必须在回归模型中考虑定性因素。
一个人的性别或种族、一个企业所属的产业(制造业、零售业等)和一个城市在美国所处的地理位置(南、北、西等)都可以被认为是定性因素。
本章的绝大部分内容都在探讨定性自变量。
我们在第7.1节介绍了描述定性信息之后,又在第7.2、7.3和7.4节中说明了,如何在多元回归模型中很容易地包含定性的解释变量。
这几节几乎涵盖了定性自变量用于横截面数据回归分析的所有流行方法。
我们在第7.5节讨论了定性因变量的一种特殊情况,即二值因变量。
这种情形下的多元回归模型具有一个有趣的含义,并被称为线性概率模型。
尽管有些计量经济学家对线性概率模型多有中伤,但其简洁性还是使之在许多经验研究中有用武之地。
虽然我们在第7.5节将指出其缺陷,但在经验研究中,这些缺陷常常都是次要的。
7.1 对定性信息的描述定性信息通常以二值信息的形式出现:一个人是男还是女;一个人有还是没有一台个人计算机;一家企业向其一类特定的雇员提供还是不提供退休金方案;一个州实行或不实行死刑。
在所有这些例子中,有关信息可通过定义一个二值变量(binary variable)或一个0-1变量来刻画。
在计量经济学中,对二值变量最常见的称呼是虚拟变量(dummy variable),尽管这个名称并不是特别形象。
在定义一个虚拟变量时,我们必须决定赋予哪个事件的值为1和哪个事件的值为0。
比如,在一项对个人工资决定的研究中,我们可能定义female为一个虚拟变Array量,并对女性取值1,而对男性取值0。
这种情形中的变量名称就是取值1的事件。
通过定义male在一个人为男性时取值1并在一个人为女性时取值0,也能刻画同样的信息。
计量经济学作业二:二元线性回归分析
企业管理专业01 博赵冰学号:10128829
被解释变量:食品支出含义:我国分地区家庭年人均食品支出
解释变量:人均收入含义:我国分地区家庭人均收入
粮食单价含义:粮食单价
假设模型为:食品支出=β0 +β1 *人均收入+β2 *粮食单价+e
样本选取为我国30个地区的家庭年人均食品支出、年人均收入及粮食单价
根据数据作回归分析得结果如下:
Variables
Entered/Removed b price,income a.EnterModel1VariablesEnteredVariablesRemovedMethodAll requested variables entered.a. Dependent Variable: expenditureb.
Model Summary b.821a.675.650111.482Model1RR SquareAdjusted RSquareStd. Error ofthe EstimatePredictors: (Constant), price, incomea. Dependent Variable: expenditureb.
根据回归分析的结果可以看出,该模型可以拟合为:
食品支出=134.799+0.168*人均收入+399.557*粮食单价
该模型的R2
为0.821,说明有82.1%是由该模型解释的。
单参数t检验通过,整体参数检验也通过。
但常数的t检验没有通过,所以该模型存在一定问题。
从正态拟合图也可以看出拟合的不是很好。