SWA-贝尔高林-奥雅在华作品
- 格式:doc
- 大小:36.50 KB
- 文档页数:7
Seismic Collapse Safety of Reinforced ConcreteBuildings.II:Comparative Assessment of Nonductile and Ductile Moment FramesAbbie B.Liel,M.ASCE 1;Curt B.Haselton,M.ASCE 2;and Gregory G.Deierlein,F.ASCE 3Abstract:This study is the second of two companion papers to examine the seismic collapse safety of reinforced concrete frame buildings,and examines nonductile moment frames that are representative of those built before the mid-1970s in California.The probabilistic assessment relies on nonlinear dynamic simulation of structural response to calculate the collapse risk,accounting for uncertainties in ground-motion characteristics and structural modeling.The evaluation considers a set of archetypical nonductile RC frame structures of varying height that are designed according to the seismic provisions of the 1967Uniform Building Code.The results indicate that nonductile RC frame structures have a mean annual frequency of collapse ranging from 5to 14×10À3at a typical high-seismic California site,which is approximately 40times higher than corresponding results for modern code-conforming special RC moment frames.These metrics demonstrate the effectiveness of ductile detailing and capacity design requirements,which have been introduced over the past 30years to improve the safety of RC buildings.Data on comparative safety between nonductile and ductile frames may also inform the development of policies for appraising and mitigating seismic collapse risk of existing RC frame buildings.DOI:10.1061/(ASCE)ST.1943-541X .0000275.©2011American Society of Civil Engineers.CE Database subject headings:Structural failures;Earthquake engineering;Structural reliability;Reinforced concrete;Concrete structures;Seismic effects;Frames.Author keywords:Collapse;Earthquake engineering;Structural reliability;Reinforced concrete structures;Buildings;Commercial;Seismic effects.IntroductionReinforced concrete (RC)frame structures constructed in Califor-nia before the mid-1970s lack important features of good seismic design,such as strong columns and ductile detailing of reinforce-ment,making them potentially vulnerable to earthquake-induced collapse.These nonductile RC frame structures have incurred significant earthquake damage in the 1971San Fernando,1979Imperial Valley,1987Whittier Narrows,and 1994Northridge earthquakes in California,and many other earthquakes worldwide.These factors raise concerns that some of California ’s approxi-mately 40,000nonductile RC structures may present a significant hazard to life and safety in future earthquakes.However,data are lacking to gauge the significance of this risk,in relation to either the building population at large or to specific buildings.The collapse risk of an individual building depends not only on the building code provisions employed in its original design,but also structuralconfiguration,construction quality,building location,and site-spe-cific seismic hazard information.Apart from the challenges of ac-curately evaluating the collapse risk is the question of risk tolerance and the minimum level of safety that is appropriate for buildings.In this regard,comparative assessment of buildings designed accord-ing to old versus modern building codes provides a means of evalu-ating the level of acceptable risk implied by current design practice.Building code requirements for seismic design and detailing of reinforced concrete have changed significantly since the mid-1970s,in response to observed earthquake damage and an in-creased understanding of the importance of ductile detailing of reinforcement.In contrast to older nonductile RC frames,modern code-conforming special moment frames for high-seismic regions employ a variety of capacity design provisions that prevent or delay unfavorable failure modes such as column shear failure,beam-column joint failure,and soft-story mechanisms.Although there is general agreement that these changes to building code require-ments are appropriate,there is little data to quantify the associated improvements in seismic safety.Performance-based earthquake engineering methods are applied in this study to assess the likelihood of earthquake-induced collapse in archetypical nonductile RC frame structures.Performance-based earthquake engineering provides a probabilistic framework for re-lating ground-motion intensity to structural response and building performance through nonlinear time-history simulation (Deierlein 2004).The evaluation of nonductile RC frame structures is based on a set of archetypical structures designed according to the pro-visions of the 1967Uniform Building Code (UBC)(ICBO 1967).These archetype structures are representative of regular well-designed RC frame structures constructed in California between approximately 1950and 1975.Collapse is predicted through1Assistant Professor,Dept.of Civil,Environmental and Architectural Engineering,Univ.of Colorado,Boulder,CO 80309.E-mail:abbie .liel@ 2Assistant Professor,Dept.of Civil Engineering,California State Univ.,Chico,CA 95929(corresponding author).E-mail:chaselton@csuchico .edu 3Professor,Dept.of Civil and Environmental Engineering,Stanford Univ.,Stanford,CA 94305.Note.This manuscript was submitted on July 14,2009;approved on June 30,2010;published online on July 15,2010.Discussion period open until September 1,2011;separate discussions must be submitted for individual papers.This paper is part of the Journal of Structural Engineer-ing ,V ol.137,No.4,April 1,2011.©ASCE,ISSN 0733-9445/2011/4-492–502/$25.00.492/JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .nonlinear dynamic analysis of the archetype nonductile RC frames,using simulation models capable of capturing the critical aspects of strength and stiffness deterioration as the structure collapses.The outcome of the collapse performance assessment is a set of measures of building safety and relating seismic collapse resistance to seismic hazard.These results are compared with the metrics for ductile RC frames reported in a companion paper (Haselton et al.2011b ).Archetypical Reinforced Concrete Frame StructuresThe archetype nonductile RC frame structures represent the expected range in design and performance in California ’s older RC frame buildings,considering variations in structural height,configuration and design details.The archetype configurations explore key design parameters for RC components and frames,which were identified through previous analytical and experimental studies reviewed by Haselton et al.(2008).The complete set of archetype nonductile RC frame buildings developed for this study includes 26designs (Liel and Deierlein 2008).This paper focuses primarily on 12of these designs,varying in height from two to 12stories,and including both perimeter (P )and space (S )frame lateral resisting systems with alternative design details.All archetype buildings are designed for office occupancies with an 8-in.(20-cm)flat-slab floor system and 25-ft (7.6-m)column spacing.The 2-and 4-story buildings have a footprint of 125ft by 175ft (38.1m by 53.3m),and the 8-and 12-story buildings measure 125ft (38.1m)square in plan.Story heights are 15ft (4.6m)in the first story and 13ft (4.0m)in all other stories.Origi-nal structural drawings for RC frame buildings constructed in California in the 1960s were used to establish typical structural configurations and geometry for archetype structures (Liel and Deierlein 2008).The archetypes are limited to RC moment frames without infill walls,and are regular in elevation and plan,without major strength or stiffness irregularities.The nonductile RC archetype structures are designed for the highest seismic zone in the 1967UBC,Zone 3,which at that time included most of California.Structural designs of two-dimensional frames are governed by the required strength and stiffness to satisfy gravity and seismic loading combinations.The designs also satisfy all relevant building code requirements,including maximum and minimum reinforcement ratios and maximum stirrup spacing.The 1967UBC permitted an optional reduction in the design base shear if ductile detailing requirements were employed,however,this reduction is not applied and only standard levels of detailing are considered in this study.Design details for each structure areTable 1.Design Characteristics of Archetype Nonductile and Ductile RC Frames Stucture Design base shear coefficient a,bColumn size c (in :×in.)Column reinforcementratio,ρColumn hoop spacing d,e (in.)Beam size f (in :×in.)Beam reinforcementratios ρ(ρ0)Beam hoop spacing (in.)Nonductile2S 0.08624×240.0101224×240.006(0.011)112P 0.08630×300.0151530×300.003(0.011)114S 0.06820×200.0281020×260.007(0.014)124P 0.06824×280.0331424×320.007(0.009)158S 0.05428×280.0141424×260.006(0.013)118P 0.05430×360.0331526×360.008(0.010)1712S 0.04732×320.025926×300.006(0.011)1712P 0.04732×400.032930×380.006(0.013)184S g 0.06820×200.028 6.720×260.007(0.014)84S h 0.06820×200.0281020×260.007(0.014)1212S g 0.04732×320.025626×300.006(0.011)1112S h 0.04732×320.025926×300.006(0.011)17Ductile2S 0.12522×220.017518×220.006(0.012) 3.52P 0.12528×300.018528×280.007(0.008)54S 0.09222×220.016522×240.004(0.008)54P 0.09232×380.016 3.524×320.011(0.012)58S 0.05022×220.011422×220.006(0.011) 4.58P 0.05026×340.018 3.526×300.007(0.008)512S 0.04422×220.016522×280.005(0.008)512P0.04428×320.0223.528×380.006(0.007)6aThe design base shear coefficient in the 1967UBC is given by C ¼0:05=T ð1=3Þ≤0:10.For moment resisting frames,T ¼0:1N ,where N is the number of stories (ICBO 1967).bThe design base shear coefficient for modern buildings depends on the response spectrum at the site of interest.The Los Angeles site has a design spectrumdefined by S DS ¼1:0g and S D1¼0:60g.The period used in calculation of the design base shear is derived from the code equation T ¼0:016h 0:9n ,where h n isthe height of the structure in feet,and uses the coefficient for upper limit of calculated period (C u ¼1:4)(ASCE 2002).cColumn properties vary over the height of the structure and are reported here for an interior first-story column.dConfiguration of transverse reinforcement in each member depends on the required shear strength.There are at least two No.3bars at every location.eConfiguration of transverse reinforcement in ductile RC frames depends on the required shear strength.All hooks have seismic detailing and use No.4bars (ACI 2005).fBeam properties vary over the height of the structure and are reported here are for a second-floor beam.gThese design variants have better-than-average beam and column detailing.hThese design variants have better-than-average joint detailing.JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011/493D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .summarized in Table 1,and complete documentation of the non-ductile RC archetypes is available in Liel and Deierlein (2008).Four of the 4-and 12-story designs have enhanced detailing,as described subsequently.The collapse performance of archetypical nonductile RC frame structures is compared to the set of ductile RC frame archetypes presented in the companion paper (Haselton et al.2011b ).As sum-marized in Table 2,these ductile frames are designed according to the provisions of the International Building Code (ICC 2003),ASCE 7(ASCE 2002),and ACI 318(ACI 2005);and meet all gov-erning code requirements for strength,stiffness,capacity design,and detailing for special moment frames.The structures benefit from the provisions that have been incorporated into seismic design codes for reinforced concrete since the 1970s,including an assort-ment of capacity design provisions [e.g.,strong column-weak beam (SCWB)ratios,beam-column and joint shear capacity design]and detailing improvements (e.g.,transverse confinement in beam-column hinge regions,increased lap splice requirements,closed hooks).The ductile RC frames are designed for a typical high-seismic Los Angeles site with soil class S d that is located in the transition region of the 2003IBC design maps (Haselton and Deierlein 2007).A comparison of the structures described in Table 1reflects four decades of changes to seismic design provisions for RC moment frames.Despite modifications to the period-based equation for design base shear,the resulting base shear coefficient is relatively similar for nonductile and ductile RC frames of the same height,except in the shortest structures.More significant differencesbetween the two sets of buildings are apparent in member design and detailing,especially in the quantity,distribution,and detailing of transverse reinforcement.Modern RC frames are subject to shear capacity design provisions and more stringent limitations on stirrup spacing,such that transverse reinforcement is spaced two to four times more closely in ductile RC beams and columns.The SCWB ratio enforces minimum column strengths to delay the formation of story mechanisms.As a result,the ratio of column to beam strength at each joint is approximately 30%higher (on average)in the duc-tile RC frames than the nonductile RC frames.Nonductile RC frames also have no special provision for design or reinforcement of the beam-column joint region,whereas columns in ductile RC frames are sized to meet joint shear demands with transverse reinforcement in the joints.Joint shear strength requirements in special moment frames tend to increase the column size,thereby reducing axial load ratios in columns.Nonlinear Simulation ModelsNonlinear analysis models for each archetype nonductile RC frame consist of a two-dimensional three-bay representation of the lateral resisting system,as shown in Fig.1.The analytical model repre-sents material nonlinearities in beams,columns,beam-column joints,and large deformation (P -Δ)effects that are important for simulating collapse of frames.Beam and column ends and the beam-column joint regions are modeled with member end hinges that are kinematically constrained to represent finite joint sizeTable 2.Representative Modeling Parameters in Archetype Nonductile and Ductile RC Frame Structures Structure Axial load a,b (P =A g f 0c )Initial stiffness c Plastic rotation capacity (θcap ;pl ,rad)Postcapping rotation capacity (θpc ,rad)Cyclicdeterioration d (λ)First mode period e (T 1,s)Nonductile2S 0.110:35EI g 0.0180.04041 1.12P 0.030:35EI g 0.0170.05157 1.04S 0.300:57EI g 0.0210.03333 2.04P 0.090:35EI g 0.0310.10043 2.08S 0.310:53EI g 0.0130.02832 2.28P 0.110:35EI g 0.0250.10051 2.412S 0.350:54EI g 0.0290.06353 2.312P 0.140:35EI g 0.0450.10082 2.84S f 0.300:57EI g 0.0320.04748 2.04S g 0.300:57EI g 0.0210.03333 2.012S f 0.350:54EI g 0.0430.09467 2.312S g 0.350:54EI g 0.0290.06353 2.3Ductile2S 0.060:35EI g 0.0650.100870.632P 0.010:35EI g 0.0750.1001110.664S 0.130:38EI g 0.0570.100800.944P 0.020:35EI g 0.0860.100133 1.18S 0.210:51EI g 0.0510.10080 1.88P 0.060:35EI g 0.0870.100122 1.712S 0.380:68EI g 0.0360.05857 2.112P0.070:35EI g0.0700.1001182.1a Properties reported for representative interior column in the first story.(Column model properties data from Haselton et al.2008.)bExpected axial loads include the unfactored dead load and 25%of the design live load.cEffective secant stiffness through 40%of yield strength.dλis defined such that the hysteretic energy dissipation capacity is given by Et ¼λM y θy (Haselton et al.2008).eObtained from eigenvalue analysis of frame model.fThese design variants have better-than-average beam and column detailing.gThese design variants have better-than-average joint detailing.494/JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .effects and connected to a joint shear spring (Lowes and Altoontash 2003).The structural models do not include any contribution from nonstructural components or from gravity-load resisting structural elements that are not part of the lateral resisting system.The model is implemented in OpenSees with robust convergence algorithms (OpenSees 2009).As in the companion paper,inelastic beams,columns,and joints are modeled with concentrated springs idealized by a trilinear back-bone curve and associated hysteretic rules developed by Ibarra et al.(2005).Properties of the nonlinear springs representing beam and column elements are predicted from a series of empirical relation-ships relating column design characteristics to modeling parame-ters and calibrated to experimental data for RC columns (Haselton et al.2008).Tests used to develop empirical relationships include a large number of RC columns with nonductile detailing,and predicted model parameters reflect the observed differences in moment-rotation behavior between nonductile and ductile RC elements.As in the companion paper,calibration of model param-eters for RC beams is established on columns tested with low axial load levels because of the sparse available beam data.Fig.2(a)shows column monotonic backbone curve properties for a ductile and nonductile column (each from a 4-story building).The plastic rotation capacity θcap ;pl ,which is known to have an important influence on collapse prediction,is a function of the amount of column confinement reinforcement and axial load levels,and is approximately 2.7times greater for the ductile RC column.The ductile RC column also has a larger postcapping rotation capacity (θpc )that affects the rate of postpeak strength degradation.Fig.2(b)illustrates cyclic deterioration of column strength and stiffness under a typical loading protocol.Cyclic degradation of the initial backbone curve is controlled by the deterioration parameter λ,which is a measure of the energy dissipation capacity and is smaller in nonductile columns because of poor confinement and higher axial loads.Model parameters are calibrated to the expected level of axial compression in columns because of gravity loads and do not account for axial-flexure-shear interaction during the analysis,which may be significant in taller buildings.Modeling parameters for typical RC columns in nonductile and ductile archetypes are summarized in Table 2.Properties for RC beams are similar and reported elsewhere (Liel and Deierlein 2008;Haselton and Deierlein 2007).All element model properties are calibrated to median values of test data.Although the hysteretic beam and column spring parameters incorporate bond-slip at the member ends,they do not account for significant degradations that may occur because of anchorage or splice failure in nonductile frames.Unlike ductile RC frames,in which capacity design require-ments limit joint shear deformations,nonductile RC frames may experience significant joint shear damage contributing to collapse (Liel and Deierlein 2008).Joint shear behavior is modeled with an inelastic spring,as illustrated in Fig.1and defined by a monotonic backbone and hysteretic rules (similar to those shown in Fig.2for columns).The properties of the joint shear spring are on the basisofFig.1.Schematic of the RC frame structural analysismodel(a)(b)Fig.2.Properties of inelastic springs used to model ductile and non-ductile RC columns in the first story of a typical 4-story space frame:(a)monotonic behavior;(b)cyclic behaviorJOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011/495D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .selected subassembly data of joints with minimal amounts of trans-verse reinforcement and other nonductile characteristics.Unfortu-nately,available data on nonconforming joints are limited.Joint shear strength is computed using a modified version of the ACI 318equation (ACI 2005),and depends on joint size (b j is joint width,h is height),concrete compressive strength (f 0c ,units:psi),and confinement (γ,which is 12to 20depending on the configu-ration of confining beams)such that V ¼0:7γffiffiffiffif 0c p b j h .The 0.7modification factor is on the basis of empirical data from Mitra and Lowes (2007)and reflects differences in shear strength between seismically detailed joints (as assumed in ACI 318Chap.21)and joints without transverse reinforcement,of the type consid-ered in this study.Unlike conforming RC joints,which are assumed to behave linear elastically,nonductile RC joints have limited duc-tility,and shear plastic deformation capacity is assumed to be 0.015and 0.010rad for interior and exterior joints,respectively (Moehle et al.2006).For joints with axial load levels below 0.095,data from Pantelides et al.(2002)are used as the basis for a linear increase in deformation capacity (to a maximum of 0.025at zero axial load).Limited available data suggest a negative postcapping slope of approximately 10%of the effective initial stiffness is appropriate.Because of insubstantial data,cyclic deterioration properties are assumed to be the same as that for RC beams and columns.The calculated elastic fundamental periods of the RC frame models,reported in Table 2,reflect the effective “cracked ”stiffness of the beams and columns (35%of EI g for RC beams;35%to 80%of EI g for columns),finite joint sizes,and panel zone flexibility.The effective member stiffness properties are determined on the basis of deformations at 40%of the yield strength and include bond-slip at the member ends.The computed periods are signifi-cantly larger than values calculated from simplified formulas in ASCE (2002)and other standards,owing to the structural modeling assumptions (specifically,the assumed effective stiffness and the exclusion of the gravity-resisting system from the analysis model)and intentional conservatism in code-based formulas for building period.Nonlinear static (pushover)analysis of archetype analysis mod-els shows that the modern RC frames are stronger and have greater deformation capacities than their nonductile counterparts,as illus-trated in Fig.3.The ASCE 7-05equivalent seismic load distribu-tion is applied in the teral strength is compared on the basis of overstrength ratio,Ω,defined as the ratio between the ultimate strength and the design base shear.The ductility is com-pared on the basis of ultimate roof drift ratio (RDR ult ),defined as the roof drift ratio at which 20%of the lateral strength of the structure has been lost.As summarized in Table 3,for the archetype designs in this study,the ductile RC frames have approximately 40%more overstrength and ultimate roof drift ratios three times larger than the nonductile RC frames.The larger structural deformation capacity and overstrength in the ductile frames results from (1)greater deformation capacity in ductile versus nonductile RC components (e.g.,compare column θcap ;pl and θpc in Table 2),(2)the SCWB requirements that promote more distributed yielding over multiple stories in the ductile frames,(3)the larger column strengths in ductile frames that result from the SCWB and joint shear strength requirements,and (4)the required ratios of positive and negative bending strength of the beams in the ductile frames.Fig.3(b)illustrates the damage concentration in lower stories,especially in the nonductile archetype structures.Whereas nonlin-ear static methods are not integral to the dynamic collapse analyses,the pushover results help to relate the dynamic collapse analysis results,described subsequently,and codified nonlinear static assessment procedures.Collapse Performance Assessment ProcedureSeismic collapse performance assessment for archetype nonductile RC frame structures follows the same procedure as in the companion study of ductile RC frames (Haselton et al.2011b ).The collapse assessment is organized using incremental dynamic analysis (IDA)of nonlinear simulation models,where each RC frame model is subjected to analysis under multiple ground motions that are scaled to increasing amplitudes.For each ground motion,collapse is defined on the basis of the intensity (spectral acceleration at the first-mode period of the analysis model)of the input ground motion that results in structural collapse,as iden-tified in the analysis by excessive interstory drifts.The IDA is repeated for each record in a suite of 80ground motions,whose properties along with selection and scaling procedures are de-scribed by Haselton et al.(2011b ).The outcome of this assessment is a lognormal distribution (median,standard deviation)relating that structure ’s probability of collapse to the ground-motion inten-sity,representing a structural collapse fragility function.Uncer-tainty in prediction of the intensity at which collapse occurs,termed “record-to-record ”uncertainty (σln ;RTR ),is associated with variation in frequency content and other characteristics of ground-motion records.Although the nonlinear analysis model for RC frames can simulate sidesway collapse associated with strength and stiffness degradation in the flexural hinges of the beams andcolumnsFig.3.Pushover analysis of ductile and nonductile archetype 12-story RC perimeter frames:(a)force-displacement response;and (b)distri-bution of interstory drifts at the end of the analysis496/JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .and beam-column joint shear deformations,the analysis model does not directly capture column shear failure.The columns in the archetype buildings in this study are expected to yield first in flexure,followed by shear failure (Elwood and Moehle 2005)rather than direct shear failure,as may be experienced by short,squat nonductile RC columns.However,observed earthquake damage and laboratory studies have shown that shear failure and subsequent loss of gravity-load-bearing capacity in one column could lead to progressive collapse in nonductile RC frames.Column shear failure is not incorporated directly because of the difficulties in accurately simulating shear or flexure-shear failure and subsequent loss of axial load-carrying capacity (Elwood 2004).Collapse modes related to column shear failure are therefore detected by postprocessing dynamic analysis results using compo-nent limit state ponent limit state functions are devel-oped from experimental data on nonductile beam-columns and predict the median column drift ratio (CDR)at which shear failure,and the subsequent loss of vertical-load-carrying capacity,will occur.Here,CDR is defined similarly to interstory drift ratio,but excludes the contribution of beam rotation and joint deforma-tion to the total drift because the functions are established on data from column component tests.Component fragility relationships for columns failing in flexure-shear developed by Aslani and Miranda (2005),building on work by Elwood (2004),are employed in this study.For columns with nonductile shear design and detailing in this study and axial load ratios of P =A g f 0c between 0.03and 0.35,Aslani and Miranda (2005)predict that shear failure occurs at a median CDR between 0.017and 0.032rad,depending on the properties of the column,and the deformation capacity decreases with increasing axial load.Sub-sequent loss of vertical-carrying capacity in a column is predicted to occur at a median CDR between 0.032and 0.10rad,again depending on the properties of the column.Since the loss of vertical-load-carrying capacity of a column may precipitate progressive structure collapse,this damage state is defined as collapse in this assessment.In postprocessing dynamic analysis results,the vertical collapse limit state is reached if,during the analysis,the drift in any column exceeds the median value of that column ’s component fragility function.If the vertical collapse mode is predicted to occur at a smaller ground-motion intensity than the sidesway collapse mode (for a particular record),then the collapse statistics are updated.This simplified approach can be shown to give comparable median results to convolving the probability distribution of column drifts experienced as a function of ground-motion intensity (engineering demands)with the com-ponent fragility curve (capacity).The total uncertainty in the col-lapse fragility is assumed to be similar in the sidesway-only case and the sidesway/axial collapse case,as it is driven by modeling and record-to-record uncertainties rather than uncertainty in the component fragilities.Incorporating this vertical collapse limit state has the effect of reducing the predicted collapse capacity of the structure.Fig.4illustrates the collapse fragility curves for the 8-story RC space frame,with and without consideration of shear failure and axial failure following shear.As shown,if one considers collapse to occur with column shear failure,then the collapse fragility can reduce considerably compared to the sidesway collapse mode.However,if one assumes that shear failure of one column does not constitute collapse and that collapse is instead associated with the loss in column axial capacity,then the resulting collapse capac-ity is only slightly less than calculations for sidesway alone.For the nonductile RC frame structures considered in this study,the limit state check for loss of vertical-carrying capacity reduces the median collapse capacity by 2%to 30%as compared to the sidesway collapse statistics that are computed without this check (Liel and Deierlein 2008).Table 3.Results of Collapse Performance Assessment for Archetype Nonductile and Ductile RC Frame Structures Structure ΩRDR ult Median Sa ðT 1Þ(g)Sa 2=50ðT 1Þ(g)Collapse marginλcollapse ×10À4IDR collapse RDR collapseNonductile 2S 1.90.0190.470.800.591090.0310.0172P 1.60.0350.680.790.85470.0400.0284S 1.40.0160.270.490.541070.0540.0284P 1.10.0130.310.470.661000.0370.0178S 1.60.0110.290.420.68640.0420.0118P 1.10.0070.230.310.751350.0340.00912S 1.90.0100.290.350.83500.0340.00612P 1.10.0050.240.420.561190.0310.0064S a 1.40.0160.350.490.72380.0560.0244S b 1.60.0180.290.490.60890.0610.02612S a 1.90.0120.330.350.93350.0390.00912S b 2.20.0120.460.351.32160.0560.012Ductile 2S 3.50.085 3.55 1.16 3.07 1.00.0970.0752P 1.80.0672.48 1.13 2.193.40.0750.0614S 2.70.047 2.220.87 2.56 1.70.0780.0504P 1.60.038 1.560.77 2.04 3.60.0850.0478S 2.30.028 1.230.54 2.29 2.40.0770.0338P 1.60.023 1.000.57 1.77 6.30.0680.02712S 2.10.0220.830.44 1.914.70.0550.01812P1.70.0260.850.471.845.20.0530.016a These design variants have better-than-average beam and column detailing.bThese design variants have better-than-average joint detailing.JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011/497D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .。
■橘郡(别墅)主题:缔造GRAND VILLA1 的颠峰时代01)至尊级别墅颠峰版人生激情接触因为数个世纪人性与建筑的贵族对话;因为对艺术与自然的敏感天性;因为绝不妥协的完美偏执在地中海296万平方公里与阳光舞蹈的蔚蓝海城,在西班牙燃烧激情的纯白城堡,在法兰西写意雍容的巴洛克宫廷,在意大利气宇轩昂的家族庄园,在加利福尼亚活力四射的首富海湾,从古罗马到路易王朝,从卡洛斯王子到奥纳西斯到比尔盖兹置身每一幢GRAND VILLA 私家尊邸,宛如凌立于世界之巅!在任何时代都有自己的贵族为风云变幻的世界舞台订立游戏规则,任何时代都有自己的经典豪宅匹配人类精英的绝代风华将日常生活演绎成一场场惹人惊羡的传奇!02)LUXURY2 自由、巨富与荣耀的盛典拥有实力,并懂得驾驽,是新豪宅主义的第一信条.真正顶级的建筑,从不用昂贵的材料和面积堆砌奢侈.真正懂得生活的人,从不试图用金钱定义豪华。
一支Cohiba雪茄,一瓶208盎斯的法国香槟,一张1883年的LP黑胶木唱片,一辆1959年绝版“甲克虫",波尔多翡翠般晶莹的葡萄园,南加洲百尺高崖上的海湾度假别墅……每一次相遇和拥有,都是对人类历史、智慧与情趣的至高结晶品的玩味,而不是一种花钱的途径。
对拥有足够实力的人而言,财富,说到底不过是生活飨宴中一味精美绝伦的佐料。
而豪华则是品味的标签,懂得鉴赏,才懂得沉醉。
自由的胸襟,富有的身价,尊荣的气质,与多彩的生命活力,是当代新首富一族烙刻在骨子里的“豪华ego(自我意识)”,面对一切美好的事物,血脉中总澎湃着不可抑制的深深共鸣,想要挥霍的,始终是生活着、热爱着、骄傲着的心情。
03)量身定制,才能与你的感官与灵魂丝丝契合手工,是都市丛林中一种濒危的豪华。
手工时代,在历史的回忆中留存着很贵族的味道。
6个月为一位顾客订制一双皮靴,5个工匠花两年时间编结一块土耳其丝毯,历经三年80余道工序,纯手工卷制的极品麦克组杜雪茄,手工切削、刨整、磨光的北美古董松木五斗柜……那些生活中的艺术大师,在每件作品中留下不可复制的刻痕.充满故事的神秘岁月,更将其淬炼成绝无仅有的个性珍品。
[SACD-ISO] 百利唱片- 《长江迷思之万家灯火》[SACD-ISO] 百利唱片-《长江迷思之万家灯火》[百度]唱片标题:长江迷思之《万家灯火》唱片编号:百利唱片BCDS07012 SACD音乐类别:中国长江沿岸各地民谣改编的轻音乐资源格式:SONY PS3-RIP-SACD/ISO採样率:1bits/DSD 2.8224 MHz比特率:5645kbps声道:2声道编码:DSD64RIP:SACD ISO(2.48GB)曲目内容:凤阳花鼓、万家灯火、康定情歌、大眼睛、牧羊女的悲伤、下四川、弦子舞曲、小河淌水、酒礼歌、弥渡山歌、缅桂开十里香、篝火晚会、跳月歌演出者:小提琴组15人,大提琴3人、低音大提琴1人,另加排簫、双簧管、竹笛、笙、管子、哨吶、巴乌、塤、二胡、板胡、三弦、琵琶、柳琴、中阮、古箏、敲击、长笛、双簧管、小号、钢琴、合成、MIDI组成的乐团,配合上海音乐学院女声合唱团/ 指挥:周成龙、龚国泰製作时期:2007年北京中央人民广播电台录音室、上海电视台录音室评介:百利唱片是香港一个歷史悠久的品牌,以录製中国音乐為主,近年将这品牌重新包装。
在内地结合作曲家、编曲家、器乐演奏家、声乐家及电声学家,并应用最先进的器材和最新的混音技术,将中国各地民谣及优秀的音乐作品,重新改编配合现代化的包装技巧,成功建立一个高品质全新的形象,令人耳目一新。
对向外国音乐爱好者及平时少接触中国音乐的各地同胞推介,作出很大的贡献!这是「长江迷恋」系列以《万家灯火》為题新製作的一辑轻音乐化的中国著名民谣,首首动听,编曲者均為享有盛誉的中国名家,包括:顾冠仁、周成龙、邹野、杨青、马友道、陆建华、王直、徐景新、吕簧及霍永刚等,他们都能熟练地掌握中、西乐器与电子合成器混合的配器技巧,音效优美具有无比的吸引力,听来令人心境祥和愉快。
这系列CD包装精美,所附印的长江摄影,幅幅均為沙龙杰作,带来额外的视觉享受。
这是SACD/CD的双层混合版,音响高度传真,悦耳动听,属理想的消闲音乐!曲目Track List:01. 凤阳花鼓02. 万家灯火03. 康定情歌04. 大眼睛05. 牧羊女的悲伤06. 下四川07. 弦子舞曲08. 小河淌水09. 酒礼歌10. 弥渡山歌11. 缅桂花开十里香12. 篝火晚会13. 跳月歌百度网盘下载本资源只限书馆内好友可见下载交流学习特别说明:本栏目的高品质无损音乐均采用正版原盘抓轨!下载仅限试听,请支持正版,严禁商用,下载试听24小时后请予删除,否则后果自负!感谢所有的原创者!下载链接如过期或不能下载请留言,可以补档!烟雨徐行2015/09/02。
扎哈·哈迪德,1950年出生于巴格达,伊拉克裔英国女建筑师,2004年普利兹克建筑奖获奖者。
她在黎巴嫩就读过数学系,1972年进入伦敦的建筑联盟学院学习建筑学,1977年毕业,获得建筑联盟学院本科学位。
扎哈·哈迪德的作品包括米兰的170米玻璃塔,蒙彼利埃摩天大厦以及迪拜舞蹈大厦。
扎哈在中国的第一个作品是广州大剧院,北京银河SOHO建筑群、南京青奥中心、和香港理工大学建筑楼等也都出自她手。
Zaha Hadid, born in Baghdad in 1950, is an Iraqi-born British female architect, winner of the 2004 Pritzker Architec-ture Prize. She studied mathematics in Lebanon, entered architecture at the Architectural Association School of Architec-ture in London in 1972, and graduated from here in 1977 with an undergraduate degree of Architectural Association School of Architecture.Zaha Hadid’s architectural works include the 170-meter Glass Tower in Milan, the Skyscraper in Montpellier and the Dancing Towers in Dubai. Zaha’s first architectural work in China is the Guangzhou Opera House; moreover, Beijing Galaxy SOHO Architectural Complex, Nanjing International Youth Cultural Centre, and the buildings of Hong Kong Polytechnic University, etc. are also designed by her.。
“亚洲建筑之⽗”杰弗⾥·巴⽡GeoffreyBawa—11个经典作品合集打开今⽇头条,查看更多图⽚当⼀个⼈像我⼀样从设计⼀个建筑和将其建成中获得这么多的愉快时就能理解为什么我觉得⽆法以分析或规则来精确地描述每⼀个步骤我⾮常确信根本不可能⽤语⾔来描述建筑我⼀直很享受参观建筑但不喜欢阅读有关它们的解释建筑⽆法被完整地解释,必须被体验——杰弗⾥·巴⽡杰弗⾥·巴⽡Geoffrey Bawa巴⽡是个⼤器晚成的建筑师,1919年出⽣于斯⾥兰卡,年轻时曾经就读于英国剑桥⼤学法学院,毕业后原应和⽗亲⼀样成为⼈⼈称羡的律师。
然⽽,在他27岁独⾃踏上为期⼀年半的世界旅⾏之后,突然有了想要创作属于⾃⼰的建筑的欲望,于是在将近30岁时,重新前往英国学习建筑。
在巴⽡38岁(1957)时终于有了他的第⼀个作品,从此以后,他开启了其迟到的建筑创作⽣涯,直到2003年84岁过世为⽌。
巴⽡之所以被称为⼤师,完全取决于其作品的典范性和持续性,他关注斯⾥兰卡独特的环境和作为环境整体中的建筑,充分发掘当地资源的潜⼒,强调环境的整体性,哪怕在今天,他的理念与设计仍然⾸屈⼀指。
四⼗余年的实践,巴⽡成功地为祖国斯⾥兰卡创建了⼀系列⾰命性的建筑原型,并影响了整个亚洲建筑的发展,因此也被称为“亚洲建筑之⽗”。
正如马来西亚建筑师杨经⽂所⾔:“对我们许多亚裔建筑师⽽⾔,杰弗⾥·巴⽡将始终在我们的⼼⽬中占有特殊地位,他是我们⾸位英雄,也是我们⾸位宗师。
” ⽽我们仰慕⼤师可以从巴⽡的11个经典作品开始。
01、坎达拉玛酒店Heritance Kandalama Hotel坎达拉玛酒店坐落于斯⾥兰卡丹布拉,临绝壁⽽俯瞰⼤⽔库,建筑本⾝并不喧宾夺⽽是主掩没在丛林之中。
酒店由于坐享著名的“⽂化三⾓”地区多个世界⽂化遗产资源,故⼜名遗产酒店;它是斯⾥兰卡国宝级建筑⼤师杰弗⾥·巴⽡获奖最多、影响最⼤的设计作品,开创了酒店获得LEED奖绿⾊建筑认证的先例,因为设计理念的先进和建成实景的经典,它本⾝也成为⼀个著名的旅游资源。
——厦门大学2012中文有戏演出季节目单指导单位:厦门大学党委宣传部厦门大学团委厦门大学教务处厦门大学人文学院厦门大学戏剧影视与艺术学研究中心主办单位:厦门大学人文学院中文系厦门大学戏剧影视艺术学研究生教育创新基地制作单位:厦门大学人文学院中文系戏剧影视文学专业简介厦门大学人文学院中文系在教授专业理论知识的同时,一直积极培养学生实践能力,引导学生将专业知识、创作才华与实际运作相结合。
中文系自2004年开设戏剧影视文学专业后,更是掀起了一股学生创作热潮。
2010年5月21日至31日,第一届“中文有戏”演出季举办,集合了6台以中文系学生为主创作的大戏,在厦大校园里和社会上掀起了一股“看戏、赏戏、评戏”的热潮,并引起了国家、省级和地方媒体的极大的关注,中央电视台《中国新闻》栏目对此次演出季进行了全方位的专题报道,各大媒体对我校校园文化建设均给予了高度的评价。
继成功举办2010、2011“中文有戏”演出季后,第三届“中文有戏”演出季将由话剧、戏曲曲艺、影视作品三大板块组成,其中重要突破是推出了厦门大学首部毕业电影《厦大,我爱你》。
2012“中文有戏”演出季将以更丰富的作品,更全面地展示厦门大学培育学生多方面才华的实绩!“中文有戏”,既是表现中文系每年产出大量的戏剧影视作品,也表示中文是一个有前途的专业,而在一个更高的层面上表达的是,有如此之多热爱艺术的人们投身艺术创作,为发扬中华文化不遗余力,中华文化在全世界一定“有戏”!2012年5月19日至6月3日,十六天十二台大戏,“中文有戏演出季”为所有的市民朋友和厦大师生呈现一场场戏剧影视盛宴。
诚邀您莅2临现场观看我们的每一场精彩演出!3《群氓时代》(原创)中文系2008级戏剧影视文学专业毕业大戏道德的藩篱圈住了正直与良心,虚伪的面孔掩藏了自私与贪婪。
真实的自我,是否被禁锢在道德的疯人院里?当内心的炽热与周围的环境发生矛盾时,你愿成为赤裸裸行走于人前的疯子?还是被伪道德层层包裹的正常人?虚拟的欧洲小镇,两个阵营激烈的交锋,荒诞、戏谑、百无禁忌。
Alfred Doblin and his Die drei Sprünge des Wang
Lun
作者: 李昌珂[1];景菁[2]
作者机构: [1]北京大学外国语学院,北京100871;[2]慕尼黑大学文学院,德国慕尼黑80799出版物刊名: 河北师范大学学报:哲学社会科学版
页码: 80-85页
年卷期: 2018年 第3期
主题词: “王伦三跳”;“无为”;“事实想象”;高低端审美混合
摘要:在还很少有哪位作家向中国题材投去兴趣一瞥的时候,德布林发表了《王伦三跳》这部"中国小说"。
作为这样一部小说,小说自身审美特征独有,一是将我国道家哲学的"无为"思想引入,二是依赖"事实想象"展开,有着多个层面的"中国"描写,展示了德国文学有史以来之"中国小说"这一叙述向度的前所未有的专注和开阔。
REM KOOLHAAS大师作品分析Villa Dall’AvaREM KOOLHAAS作者:02建筑 王维 周吟指导老师:王小红 崔鹏飞建筑简介建址为巴黎塞纳河畔一高地,远可眺望巴黎全景,近有树林围绕。
邻近房屋均为19世纪的老屋,是富人们的度假住所。
(图1-1)不远处还有两幢柯布西耶(Le Corbusier)的别墅。
业主不甘逊色,要求其住宅不仅仅是一幢房屋,还要是一件艺术品。
男主人想要一座玻璃房子,女主人要求屋顶要有游泳池。
场地很狭窄,库哈斯提供了一个尽小占地面积的尽量大的空间:悬于玻璃层上的两个金属“盒子”。
两个金属“盒子”一红一灰,分别为主人夫妇及其女儿的卧室,混凝土结构的泳池置于其间。
理论上可在游泳时一瞥EIFFEL铁塔远景。
(图1-2)父母及女儿的卧室相对独立,各自有独立的楼梯直通。
卧室的带状窗提供了眺望远景的足够视野。
在这栋别墅中,库哈斯融合了近代建筑史上各式各样的构件与元素。
他的做法并非直接挪用,而是将来源不同的设计工具结合在一起。
例如“自由楼面设计”、“自由正面设计”、类似密斯清楚排列的镶嵌玻璃、与地心引力的对抗……(图1-3)库哈斯提供了那三个重量不菲的“盒子”的支撑结构的解决方案:位於纵轴上的一排独立柱支撑中部的泳池,悬空的女儿房由一系列倾斜交错的细杆支撑,夫妇房的支撑结构由工程师提议:一个形状奇特的大型悬挑梁置于其下。
库哈斯的独特之处在於:他将那排支柱用木橱围住,具有隔墙及壁橱的双重功能,木橱并不全封闭,保留南北方向的通透性。
底层大部分置于地下,安置了设备间及入口空间。
地面为自然的图1-3图1-1图1-1图1-2草木。
房屋北侧为铺沥青的道路,通往车库,车库亦置于草地之下。
(图1-4)中间层几乎全通透,其构思为此住宅的精华所在。
起居室置于西侧,可滑动的玻璃落地窗提供了尽可能亲近的内外联系。
库哈斯还别出心裁地安排了一扇可滑动的竹排置于玻璃窗外侧,随意滑动到某一位置,投下别致的光影效果,想象一下,在有月光的夜晚,夏虫在园中鸣,丝帘随晚风轻摆,躺在清爽的床上,捧一本沁心的书... ...女儿卧室的支撑结构。
沃尔夫《莫里克歌曲集》两首艺术歌曲的分析与演唱沃尔夫(Hugo Wolf)是19世纪末奥地利著名作曲家和歌曲家,他的歌曲被认为是德国艺术歌曲中的峰峰之作。
莫里克《莫里克歌曲集》(Mörike Lieder)是沃尔夫在1891-1892年期间创作的26首歌曲,其中包括了一些具有深刻内涵和情感的艺术歌曲。
本文将分析并演唱其中的两首艺术歌曲。
一、选曲解析本次演唱的两首选曲分别是《幽暗的洞穴里》(In der Frühe)和《贝尔考尔领主之歌》(Der Tambour)。
《幽暗的洞穴里》是莫里克的一首优美的自然描写性诗篇,描述了一位诗人在清晨时行走于山林间的景象。
这篇诗表现了作者对自然的极度敏感和细腻感受,抒发了对自然美景的深深赞叹和美好祝愿。
《贝尔考尔领主之歌》讲述的是一位年轻的鼓手,因为热爱音乐而怀揣梦想。
他不断地打鼓,磨炼技巧,期盼着被旅行乐团选中为首席鼓手。
歌曲的主题是奋斗和追梦,表现了年轻人对未来充满信心和憧憬。
二、歌曲演唱1. 《幽暗的洞穴里》演唱者应力求还原诗人走过山林,感受大自然的情景。
从音乐元素上来看,这首歌曲特点较为明显,首先是借助特殊的和声手法呈现自然丰富的多样性,通过和声的层次来表现自然景象的多种表现和因素,和声厚重而饱满,色彩丰富多样,旋律则随着歌词的情感起伏呈现出了自然的复杂性。
在演唱时,要运用技巧把握好节奏,打造出绵长自然流淌的歌声。
此外,在演唱过程中,应根据歌词情感的变化,适时地调整音调、音色和响度,以达到情感全面表现的目的。
2. 《贝尔考尔领主之歌》演唱者应尽可能地把握这首歌曲中对于音乐、生命和梦想等要素的表达。
这首歌曲的最大亮点是其高度概括和表达的深度,以及其音乐元素的复杂性。
旋律和节奏都要利用技巧表现出强烈的节奏感和激情。
演唱者应该尽可能地展现这首歌曲中表现出来的年轻人们的热情、自信和梦想的追求。
在演唱过程中,应尽可能地准确把握音调和情感,并用声音表现出歌曲中表达的追求精神,同时发挥出对于其他音乐要素的深度掌握,使得这首歌曲能被尽可能完整地呈现出来。
低调奢华悄然经典 HBA设计事务所两个中国酒店项目佚名
【期刊名称】《《室内设计与装修》》
【年(卷),期】2008(000)004
【摘要】作为世界领先的酒店和室内设计顾问公司,HBA引领时尚,为全球众多顶级酒店呈现创新设计。
他们将位置、建筑和客户的理念熔于一炉,营造一种不断演化的独特功能化艺术形式,而这些从他们所做的北京丽晶酒店和上海威斯汀外滩大饭店这两个设计方案之中便可窥见一斑。
北京丽晶酒店HBA为于2007年4月正式开业的北京丽晶酒店进行的创新灵感设计深受业界好评。
【总页数】6页(P)
【正文语种】中文
【中图分类】TU247
【相关文献】
1.五星级创意文化酒店低调奢华的穿越之旅平江府 [J], 萸风
2.低碳酒店——绿色的奢华,低调的时尚 [J], 《低碳世界》编辑部
3.澳门文华东方酒店:低调,在心,奢华 [J], 陈敏娜
4.低调奢华悄然经典HBA 设计事务所两个中国酒店项目 [J],
5.上海精品酒店:低调奢华重新定义 [J], 黄晴晴;秀玲;Amanda;余佳祯
因版权原因,仅展示原文概要,查看原文内容请购买。
理查德·迈耶理查德·迈耶美国建筑师,现代建筑中白色派的重要代表。
1935年,理查德·迈耶出生于美国新泽西东北部的城市纽华克,曾就学于纽约州伊萨卡城康奈尔大学。
早年曾在纽约的建筑事务所和布劳耶事务所任职,并兼任过许多大学的教职。
理查德·迈耶理查德·迈耶,美国建筑师,现代建筑中的重要代表。
1935年,理查德·麦耶出生于美国新泽西东北部的城市纽华克,曾就学于纽约州伊萨卡城康奈尔大学。
早年曾在纽约的建筑事务所和布劳耶事务所任职,并兼任过许多大学的教职,1963年自行开业。
大学毕业后,麦耶在马塞尔·布劳耶(Marcel Breuer)等建筑师的指导下继续学习和工作,他还是“建筑界5巨头”之一。
由于受到(Le Corbusier)的影响,其大部分早期的作品都体现出了勒·柯布西耶的风格。
1963年,麦耶在纽约组建了自己的工作室,其独创能力逐渐展现在家具、玻璃器皿、时钟、瓷器、框架以及烛台等方面。
麦耶设计的产品都颇为简练,既包括居家设计也包括商用设计。
他设计的作品最大的特点是永远有自己的特性而不是在风格上受别人的影响而迷惑。
由于其大胆的风格和值得称颂的忠诚,麦耶创造出颇为独特的粗壮风格。
为了在展示方面做得更好,他将斜格、正面以及明暗差别强烈的外形等方面和谐地融合在一起。
这种强健的设计呈立方体状,似在召唤一种超现实主义的高科技仙境,其中包含着纯洁、宁静的简单结构。
建筑的视觉感相当强大,也暗指所包括的空间。
麦耶注重立体主义构图和光影的变化,强调面的穿插,讲究纯净的建筑空间和体量。
在对比例和尺度的理解上,他扩大了尺度和等级的空间特征。
麦耶着手的是简单的结构,这种结构将室内外空间和体积完全融合在一起。
通过对空间、格局以及光线等方面的控制,麦耶创造出全新的现代化模式的建筑。
他曾经说:“我会熟练地运用光线、尺度和景物的变化以及运动与静止之间的关系。
SWA事务所作品(共145项)北京金融街项目、2010年亚运村项目、巨人集团总部、上海古北金街项目、贵阳温泉项目、杭州湖滨项目、昆明生态园、罗湖站项目、南海市市民广场和1000彩灯公园、湖南新城村、宁波东新城市生态廊道、北外滩项目、水秀项目、保利国际广场、青浦项目、深圳湾项目、顺德桂攀江滨江项目、顺德新城、成都赛门提克、吴淞江滨江项目、珠海横琴岛项目、中邦城市别墅、敏捷社区规划、安吉龙广场、安宁河总规、安宁河一期、百惠滨河项目、万科宝山项目总规、北京山坡住宅总规、北京保利广场、北京通州住宅总规、北京握邦国际高尔夫俱乐部、北京温榆河总规、长沙芙蓉生态城、长沙月亮岛项目、国贸中心、深圳大梅沙城市中心总规、大连百斯特城市规划、大连华业玫瑰居住区规划、青浦东都项目、东洲岛概念规划、东山公园规划、生态科技城中心公园、富阳东大街西半岛项目(总规和设计)、全照湖项目总规、富阳滨河总规、福州万科永泰项目、西安花园城市项目、巨人集团校园项目、广州新城南中轴一期(二期)、海沧新城、海沧公园、杭州湖滨商业和旅游区、杭州湖滨商业街一期、哈瓦那项目、和顺滨河项目、黄埔滨河项目、吉利健康娱乐休闲综合体项目、金锭新城、济宁大运河北湖项目、嘉里静安中心、长木湾国际旅游度假城市、沈阳乐天主题公园、罗湖口岸和火车站规划、马玉山谷总规、绵阳咸海谷项目、南海金融广场、南海玫瑰园一期二期、南湖新农村规划、南京中航科技城、南京会展中心、南京绿地国际商业中心、南京河西地区发展规划、南京河西青年奥林匹克公园、南京空间项目、南京凤凰城、南京世界贸易中心、宁波东新城市中央公园城中港、宁波东新城生态区、宁波东新城政府中心、宁波国际会展中心、宁波万科城、农夫山泉项目、北外滩滨江项目、北外滩白玉兰大厦、崇明岛北湖区项目、北湖湿地公园、OCT 成都198项目二期、OCT青岛旅游发展规划、珍珠河大厦、浦东文化公园、浦东金融广场、浦东滨水区、浦东古北公园、前海湾项目、青岛世界园艺博览会、青岛资源中心、SIP行政中心、SIP商业中心-时代广场、三亚红塘湾总规、三亚奥林匹克湾总规、橙色IRUP的香味项目、上海大办公楼、上海绿城玫瑰园会所、上海绿城玫瑰园一期、上海嘉定湿地公园、上海松江综合体、上海大厦、蛇口远景规划、沈阳浦河景观框架规划、深圳湾海岸生态公园、深圳CATIC公司规划、深圳龙岗玫瑰城堡、世贸蛇山公园、双大七仙岭雨林资源项目、国际广场二期、Sunyoung陶渊明商业项目、Sunyoung陶渊明别墅和酒店项目、苏州中心、苏州新区开放空间项目、苏州科学文化和艺术中心、TEDA中心广场、天津滨海公园项目、铜鼓岭发现海岸项目总规、万科青山湖西岸总规、万科东丽湖西岸总规、万科仙境社区、万科中粮金沙滩蓝色海湾、同景国际城、武汉花园城市项目、武隆山大生态体育公园、吴淞滨江项目、戏曲中心、西凉塘总规、西安三河地区、香水湾酒店综合体、信阳索河全面提高规划设计、西双版纳旅游娱乐规划、长江濒危物种研究中心、城子森林公园高尔夫社区、郑州镇东龙湖滨水郊区设计、中山国际展览中心、珠江新城中轴线规划、竹园公园。
贝尔高林(共112项)杭州·凯悦大酒店、杭州·绿城桂花城、杭州·滨江金色海岸、南京·万科金色家园、南京·银城·西堤国际、苏州·都市花园#3-4号地、上海·华丽家族古北花园、上海·西郊檀香别墅小区、上海·东方曼克顿、上海·漓江上水花园、上海·中海磬园、安徽·合肥新华学府花园、上海·鹏利海景花园、南京·星雨华府、南京·自然天城、宁波·九龙湖畔一期、宁波·绿城-桂花园、杭州·滨江千岛湖湖滨花园、杭州滨江万家花城、临海星伟靖江花城、临海伟星阳光花城、舟山绿城舟山大酒店、徐州迎宾馆二期、山西晋祠宾馆、福州大名城、厦门翠湖维也纳庄园、福州日出东方、长沙绿城桂花城、南昌恒茂国际华城、南昌恒茂国际都会、郑州绿城百合公寓、泉州富临天下小区2004-02地块、北京星河湾富华园、大连隆泉华庭、长春我的家园、青岛新天地一期、烟台东上海赋、北京御水苑、北京运河岸上的院子、北京绿城百合公寓、北京优山美地、澳门文华东方酒店、广州富力顺意花园、广州南湖半岛花园、广州盈翠华庭、广州番禺星河湾、东莞东城金月湾花园、东莞塘厦三正半山酒店、深圳鸿瑞花园、深圳黄埔雅苑、深圳中海华庭、深圳桂芳园五-六期、深圳鸿翔花园、深圳星河购物公园COCO PARK、中山奕翠园、珠海海怡湾畔、海南三亚悦榕庄、深圳华润中心二期、深圳香蜜湖熙园、深圳龙岗花半里花园、深圳深国投广场、佛山天湖俪都、深圳观澜湖高尔夫球会别墅区、东莞凤岗三正半山豪苑、东莞中信森林湖、海南三亚亚龙湾高尔夫别墅、海南陵水县土福湾、重庆龙湖蓝湖郡一期、重庆龙湖花园、重庆大都会广场、昆明银海海埂路-银海山水间、昆明银海绿茵豪苑二期-银海森林、成都中海名城、成都金林半岛、成都天合凯旋城、成都蔚蓝卡地亚一期、成都鹭鸟国际社区二期、成都温江区万春镇500亩旧城改造、重庆龙湖香樟林别墅、重庆爱加丽都、香港薄扶林数码港、香港礼顿山、香港四季酒店、香港深湾游艇会、香港长江公园、香港涤涛山、香港上环新纪元广场、香港会议展览中心、香港京士柏山、香港异悦居、香港维景湾畔、香港太古广场、香港逸桦园、香港海逸豪园、香港中环中心、香港海怡半岛、香港迪士尼乐园酒店、香港旺角朗豪坊、香港荃湾伦景新城、香港九龙海怡君卓酒店、香港祥龙湾、香港涟山、香港将军澳日出康城、香港W酒店、香港港铁九龙站、杭州千岛湖开元度假村、香港银湖天峰、福州融信大卫城、绍兴玉兰花园、成都牧马山壹号、杭州阳光海岸、香港誉港湾。
奥雅景观规划设计事务所(共140项)中信红树湾、北京泰禾“运河岸上的院子”、广州帝景山庄、新疆克拉玛依东湖公园、深圳南澳月亮湾海岸带改造、珠海中邦城市花园景观设计、无锡中邦城市花园景观设计、杭州广宇上东臻品景观设计、南阳李宁体育公园景观设计、成都龙湖世纪城景观设计、南通一居先锋镇别墅景观设计、南京中铁江佑铂庭景观设计、上海江湾萃璟墅景观设计、君地英伦风情样板区景观设计、芜湖市滨江公园(三期)规划方案设计、福州泰禾城市广场景观方案设计、天津凯德置地国际贸易中心景观设计、深圳宝安高发西岸花园三期景观设计、三亚会所超五星酒店景观设计、芜湖市盲人学校景观设计、珠海南福锦园景观设计、上海北方城投佘山玺樾示范区景观设计、泉州鲤景湾售楼处及2#地块景观设计、惠州金海湾红树林酒吧街景观设计、深圳鹏广达中心景观设计、河南郑州裕鸿富豪酒店景观设计、武汉世茂锦绣长江希尔顿酒店及售楼处景观设计、深圳盐田港集团翡翠岛景观设计、固安国宾温泉中式会所景观设计、合肥国际科技创新成果展示馆、北京中海苏黎世家景观设计、武汉硚口金三角项目C区示范区景观设计、株洲大汉希尔顿国际酒店景观设计、九寨沟万豪、万怡酒店景观设计方案、南京朗诗绿色街区景观设计、成都龙湖北城天街、南通一居罗福宫景观设计、苏州中海国际社区235地块景观设计、东莞金众金域半山景观设计、红旗渠迎宾馆景观设计、北京钱学森纪念园、成都中粮御岭湾别墅三期、无锡弘阳三万顷二期、惠州保利山水城、无锡协和双语学校景观设计、北京万通天竺新新家园景观设计、上海龙湖好望山别墅景观设计、长沙创远湘江壹号别墅景观设计、深圳华来利圣莫丽斯景观设计、成都置信香颐丽都景观设计、深圳中信红树湾景观设计、北京保利东郡景观设计、南宁·德利东盟国际文化广场、襄阳高新区连山湖公园景观设计、长沙梅溪湖片区肖河滨水景观设计、长沙梅溪湖体育公园、上海复地新都国际景观设计、苏州中海独墅湖二期C区景观设计、无锡九龙仓时代上河景观设计、上海世茂佘山艾美酒店国际会议中心、三亚凤凰水城B区酒店景观设计、南京世茂外滩新城希尔顿酒店景观设计、威海光威集团企业会所规划(建筑、景观方案设计)、江西前湖迎宾馆景观设计、常州侨裕香格里拉酒店景观设计、漳州市碧湖市民生态公园景观设计、深圳市南澳月亮湾广场景观设计改造、深圳市宝安区海滨广场与滨海休闲公园景观设计方案、芜湖中央文化公园、合肥市政务文化新区中心湖区概念规划、长沙梅溪湖梅岭公园景观设计、无锡清名桥南长街历史文化街区、扬州证大教场秦淮坊、天津天安数码城城市综合体、新加坡杭州腾飞科技园一期、无锡中邦MOHO、沈阳华新国际锦绣山庄别墅景观设计、深圳中信岸芷汀兰景观设计、北京宽沟招待所郊野公园设计、福建平潭竹屿湖环湖景观设计、宁波杭州湾新区东入口景观设计、成都龙湖北城天街综合体项目、烟台绿叶五彩文化广场城市综合体、苏州中新生态科技城、济南鲁商国奥城、深圳安联大厦、广州珠江新城西塔、昆山中邦MOHO、深圳歌力思厚裕工业园景观设计、厦门信和城鑫广场景观设计、青岛联泰板桥镇秧歌广场、深圳市南山区欧洲城购物广场整体景观设计、重庆儿童公园景观设计、天津世茂生态城超五星级酒店景观设计、青岛海泉湾度假酒店景观设计、海口鲁能“海蓝椰风”度假村景观设计、上海安亭皇冠假日酒店景观设计、上海万科提香别墅景观设计、上海金地格林世界森林公馆景观设计、苏州中海独墅湖别墅景观设计、深圳龙岗十二橡树庄园别墅景观设计、苏州中海半岛华府别墅景观设计、深圳市福田区华强北国际风情街市容环境提升工程、北京中海九号公馆别墅景观设计、杭州欣苏州朗诗国际街区景观设计、盛东方郡景观设计、上海嘉华上海建国西路景观设计、杭州朗诗国际街区景观设计、常熟绿地老街景观设计、成都博锐优品道景观设计、重庆中冶北麓原景观设计、临沂开元上城景观设计、上海大华锦绣华城公园景观设计、重庆总部基地公园景观设计、南京奥体清竹园景观设计、北京亿城西山华府别墅景观设计、南宁海茵国际度假村景观设计、南通景瑞18号综合社区景观设计、无锡市蠡湖惠山景区景观设计、长沙梅溪湖桃花岭山体公园、深圳万科东海岸三期景观设计、武汉金色港湾大型湖滨社区景观设计、成都华润二十四城景观设计、上海嘉华严家宅嘉天汇景观设计、昆山世茂蝶湖湾景观设计、成都毗河湿地公园景观设计、重庆市天安数码城总体景观概念设计、佛山中信保利达南海山语湖别墅景观设计、福州泰禾城市广场景观方案设计、芜湖市滨江公园(三期)规划方案设计、君地英伦风情样板区景观设计、上海江湾萃璟墅景观设计、南京中铁江佑铂庭景观设计、南通一居先锋镇别墅景观设计、成都龙湖世纪城景观设计、南阳李宁体育公园景观设计、杭州广宇上东臻品景观设计、无锡中邦城市花园景观设计、珠海中邦城市花园景观设计。