异步电动机起动方法
- 格式:doc
- 大小:10.49 KB
- 文档页数:1
简述三相异步电动机的三种起动方法
三相异步电动机是最常用的工业电动机之一,它可以通过以下三种起动方法来启动:
1. 直接起动法:这是最简单和常见的起动方法,通过将电动机直接连接到电源,启动时电动机会受到额外的负载和电压上升的冲击。
直接起动法适用于小型电动机和负载较小的场景。
2. 自启动法:自启动法是通过给电动机的辅助绕组施加外部电源来实现的。
这个外部电源称为启动绕组,它可以产生额外的磁通,提供启动所需的转矩。
一旦电动机达到足够的速度,启动绕组会自动断开,电动机会在主绕组上正常运行。
自启动法适用于一些负载较大或起动时需求较大转矩的场景。
3. 变压器起动法:变压器起动法是通过将电动机的定子绕组和转子绕组连接到两个不同的变压器绕组上,实现控制启动。
控制系统可以通过调节变压器的绕组比例来调整转矩和电压,使电动机在起动过程中得到逐渐增加的电压和转矩。
变压器起动法适用于大型电动机和起动时需求较高转矩的场景,它可以实现平稳的加速和控制。
三相笼型异步电动机的降压启动笼型异步电动机常用的降压启动方法有:星-三角形降压启动、定子绕组串电阻降压启动、自耦变压器降压启动等。
1.星-三角形(Y-Δ)降压启动星-三角形(Y-Δ)降压启动用于正常工作时定子绕组作三角形连接的电动机。
在电动机启动时将定子绕组接成星形,实现降压启动。
此时加在电动机每相绕组上的电压为额定电压的 1/ 3,从而减小了启动电流。
待启动后过了预先设定的时间,电动机转速接近额定转速,将定子绕组接线方式由星形改接成三角形,使电动机在额定电压下运行。
它的优点是启动设备成本低、方法简单、容易操作,但启动转矩只有额定转矩的1/3,如图所示。
启动运行:按下启动按钮SB2,KM1、KT、KM Y线圈同时得电并自锁,即KM1、KM Y主触点闭合时,绕组接成星形,进行降压启动。
当电动机转速接近额定转速时,时间继电器KT常闭触头断开,KM Y线圈断电,同时时间继电器KT常开触头闭合,KM△线圈得电并自锁,电动机绕组接成三角形全压运行。
两种接线方式的切换要在很短的时间内完成,在控制电路中采用时间继电器定时自动切换。
KM Y、KM△常闭触头为互锁触头,以防同时接通造成电源短路。
停止运行:按下停止按钮SB1,KM1、KM△线圈失电,电动机停止运转。
2.定子绕组串电阻降压启动下图所示为定子绕组串接电阻降压启动控制线路。
在电动机启动时,在三相定子电路串接电阻,使电动机定子绕组电压降低,启动结束后再将电阻短接,电动机在额定电压下正常运行。
启动过程如下:按下启动按钮 SB2,接触器KM1与时间继电器KT的线圈同时通电,KM1主触点闭合,电动机定子绕组串电阻R启动。
时间继电器 KT 延时预定时间后,其延时闭合常开触点闭合,接触器KM2 线圈通电,KM2 主触点闭合,短接R,电动机投入正常运行;KM2常闭辅助触头断开,接触器KM1与时间继电器KT的线圈同时断电。
该电路结构简单、启动功率因数高,缺点是电阻上功率消耗大。
三相异步电机的启动方法三相异步电动机的起动方法主要有直接起动、传统减压启动和软启动三种启动方法。
下面就分别做详细介绍。
2.2.1直接起动直接起动,也叫全压起动。
起动时通过一些直接起动设备,将全部电源电压(即全压)直接加到异步电动机的定子绕组,使电动机在额定电压下进行起动。
一般情况下,直接起动时起动电流为额定电流的3〜8倍,起动转矩为额定转矩的1〜2倍。
根据对国产电动机实际测量,某些笼型异步电动机起动电流甚至可以达到8〜12倍。
直接起动的起动线路是最简单的,如图2-2所示。
然而这种起动方法有诸多不足。
对于需要频繁起动的电动机,过大的起动电流会造成电动机的发热,缩短电动机的使用寿命;同时电动机绕组在电动力的作用下,会发生变形,可能引起短路进而烧毁电动机;另外过大的起动电流,会使线路电压降增大,造成电网电压的显著下降,从而影响同一电网的其他设备的正常工作,有时甚至使它们停下来或无法带负载起动。
这是因为Ts及Tm均与电网电压的平方成正比,电网电压的显著下降,可使Ts及Tm均下降到低于Tz0一般情况下,异步电动机的功率小于7.5kW时允许直接起动。
如果功率大于7.5kW,而电源总容量较大,能符合下式要求的话,电动机也可允许直接起动。
I1st1:电源总容量(kv八)1K3I1N4起动电动总功率(kw)如果不能满足上式的要求,则必须采用减压启动的方法,通过减压,把启动电流Ist限制到允许的数值。
图2-2直接启动原理图2.2.2传统减压起动减压起动是在起动时先降低定子绕组上的电压,待起动后,再把电压恢复到额定值。
减压起动虽然可以减小起动电流,但是同时起动转矩也会减小。
因此,减压起动方法一般只适用于轻载或空载情况。
传统减压起动的具体方法很多,这里介绍以下三种减压起动的方法:(1)定子用接电阻或电抗起动定子绕组用电阻或电抗相当于降低定子绕组的外加电压。
由三相异步电动机的等效电路可知:起动电流正比于定子绕组的电压,因而定子绕组用电阻或电抗可以达到减小起动电流的目的。
绕线式异步电动机启动方法绕线式异步电动机?那可是个厉害的家伙!启动方法咱得好好唠唠。
先说说频敏变阻器启动吧。
把频敏变阻器串在转子回路里,这就像给电动机加了个缓冲垫。
启动时,电流通过频敏变阻器,它会自动根据电流变化调整电阻值。
嘿,这不就像个智能小助手嘛!步骤呢,简单得很。
接好线路,一按启动按钮,电动机就慢慢转起来啦。
注意事项可不少哦!得选对合适的频敏变阻器型号,不然就像小马拉大车,使不上劲。
安装的时候也得仔细,接错线可就麻烦啦。
安全性咋样?放心吧!频敏变阻器能限制启动电流,减少对电网的冲击,安全得很。
稳定性也不错,能让电动机平稳启动。
这种启动方法适用于那些需要平稳启动、对启动电流有要求的场合,比如起重机、提升机啥的。
优势嘛,明显得很!成本不高,操作简单,还能保护设备。
就拿起重机来说吧,用频敏变阻器启动,启动平稳,不会晃来晃去,多靠谱!再说说转子串电阻启动。
这就像给电动机加了几个不同的挡位。
启动时,逐步切除电阻,电动机的转速就慢慢上去了。
步骤嘛,先把电阻接好,然后按顺序切除。
可得注意电阻的大小和切除的时机,不然就像开车换挡不及时,会卡顿。
安全性也有保障,能限制电流,保护电机。
稳定性也不赖,能让电动机逐步加速。
这种启动方法适用于那些需要调速的场合,比如矿山设备、轧钢机等。
优势就是可以实现调速,满足不同的工作需求。
想象一下,就像骑自行车,可以根据路况随时调整挡位,多方便!绕线式异步电动机的启动方法各有千秋,选对了方法,就能让电动机高效、安全地运行。
咱可得根据实际情况,好好选择适合的启动方法,让电动机发挥出最大的作用。
三相异步电动机各种启动方法及优化摘要:三相异步电动机是工业中常用的驱动装置,启动方法与效率对其运行质量具有重要影响。
本文将介绍三种常见的启动方法:直接起动、自耦起动和星三角启动,并探讨了它们各自的优缺点以及可能优化的方案。
通过对相应的电路图及工作原理的阐述,本文能够为工程师们的实际操作提供理论指导。
关键词:三相异步电动机;启动方法;优化正文:一、引言三相异步电动机广泛应用于工业制造、交通运输和家用电器等领域中,因其结构简单、维护方便和低成本,而备受青睐。
电机启动时会产生较大的启动电流,这可能对电网、电动机以及其客户端造成损害。
因此,引进恰当的启动方法以及优化方案非常必要。
二、直接起动方法直接起动法是特别适用低功率的三相异步电动机,因此操作简单且成本低。
但是,恰当安排三相电源接口是该方式启动限制之一,因为大电动机会产生几乎很高的启动电流,这对电网及客户端造成损害。
此方法仅适用于小功率电动机如家庭用电器等。
三、自耦起动法自耦器是采用更大功率的三相部分上一次起动,减少整体启动冲击。
自耦起动器可以减少电网冲击和均输入电压,同时也确保电压峰值的下降之前,能帮助控制电动机绕组的热量释放。
这种启动法适用范围较大,但调试成本相较高。
四、星三角启动法与自耦起动类似,星三角启动是通过更大功率的方法推进三相异步电动机启动,更适合功率较大的情况。
该方法优点是将电机起动电流减少了,对起动有了更好的掌控能力。
然而与前两种方法不同的是,这种方法需要大量的额外元器件才能发挥其优点。
五、选择合适的启动方法选择合适的三相异步电动机启动方法取决于需要考虑的多方面条件必须经过正确的操纵。
唯有经过实际运作和比较,方可实现其他优化和清晰设置。
六、优化方案三相异步电动机启动后应及时切换到正常运行状态,否则可能会导致电动机极端的高热量功耗,乃至电动机损坏。
为降低这种损坏,我们应设计合理的保护回路,如过压保护回路、断路保护回路等。
此外,可以采用高效电机控制器,如全数字型或模拟型,以控制三相异步电动机的启动、减速、恒速等整体过程。
异步电动机的启动方法异步电动机是一种常见的三相交流电动机,广泛应用于工业、农业和家庭领域。
在使用异步电动机之前,我们需要采取一些启动方法,以确保电机能够正常启动和运行。
以下是几种常见的异步电动机启动方法:1. 直接启动法:直接启动法是最简单的一种启动方法,通过将三相电源直接连接到电动机的定子绕组上,实现电机的启动。
这种方法适用于小功率电机,但对于大功率电机来说,因电流过大可能对电网造成冲击,并且电机启动时的启动冲击会导致电机和负载的机械压力增大。
2. 延时启动法:延时启动法通过在电机启动前加入延时元件,延迟一段时间后再使电机启动。
这种方法可以减小电机启动时的启动冲击,缓解对电网的冲击。
常用的延时元件有延时继电器和延时电路等。
3. Delta-Start(星角启动)法:星角启动法是利用三角形运行方式和星形运行方式之间的切换来实现电动机的启动。
首先电路接法为星型,电动机启动后运行一段时间后,再切换为三角接法。
这样可以减小启动时的起动电流,减少对电网的冲击。
4. 自耦变压器启动法:自耦变压器启动法是通过改变电机的起动电压和起动电流,实现对电机的启动。
电机起动时,先将其连接到自耦变压器的低压侧,起动后逐步切换到高压侧,实现电机的启动。
这种方法可以减小电网上的启动电流,减少对电网的压力。
5. 变频器启动法:变频器启动法是使用变频器调整电源的频率和电压,控制电机的启动和运行。
变频器通过调整电源频率,使电机在低频率下启动,然后逐步提高频率和电压,实现电机的平稳启动。
这种方法对电网的冲击很小,并且可以实现对电机的精确控制。
总结起来,异步电动机的启动方法有直接启动法、延时启动法、星角启动法、自耦变压器启动法和变频器启动法等。
不同的启动方法适用于不同功率的电机,可以根据具体需求选择合适的启动方法。
除了启动方法外,还需要考虑电动机的负载情况、电网的供电能力以及安全措施等因素,以确保电动机能够安全、平稳地启动和运行。
直接启动、自耦启动、软启动的方式及区别直接启动就是接通电源直接启动自耦起动这种方式在起动时电机接于低压侧,电流较小,能减小线路压降,减小对其它设备的影响。
软起动是一种集电机软起动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。
运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。
直接启动就是接通电源设备直接启动自耦起动是一种常见的降压起动方式,但存在明显缺点,即起动过程中出现二次冲击电流。
运用串接于电源与被控电机之间的软起动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加。
软起动一般有下面几种起动方式。
a斜坡升压软起动。
这种起动方式最简单,不具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定函数关系增加。
其缺点是,由于不限流,在电机起动过程中,有时要产生较大的冲击电流使晶闸管损坏,对电网影响较大,实际很少应用。
b斜坡恒流软起动。
这种起动方式是在电动机起动的初始阶段起动电流逐渐增加,当电流达到预先所设定的值后保持恒定(t1至t2阶段),直至起动完毕。
起动过程中,电流上升变化的速率是可以根据电动机负载调整设定。
电流上升速率大,则起动转矩大,起动时间短。
该起动方式是应用最多的起动方式,尤其适用于风机、泵类负载的起动。
c阶跃起动。
开机,即以最短时间,使起动电流迅速达到设定值,即为阶跃起动。
通过调节起动电流设定值,可以达到快速起动效果。
d脉冲冲击起动。
在起动开始阶段,让晶闸管在级短时间内,以较大电流导通一段时间后回落,再按原设定值线性上升,连入恒流起动。
该起动方法,在一般负载中较少应用,适用于重载并需克服较大静摩擦的起动场合。
再说一下软起动与传统减压起动方式的不同之处:笼型电机传统的减压起动方式有星三角起动、自耦减压起动、电抗器起动等。
三相异步电动机的两种启动方式三相异步电动机如何操作作电动机运行的三相异步电机。
三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生电动势和电流,并与磁场相互作用产生电磁转矩作电动机运行的三相异步电机。
三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。
三相异步电动机有直接起动和降压起动两种。
1)直接起动即在额定电压下起动。
这种方法的起动电流很大,可达到额定电流的4~7倍。
依据规定单台电动机的起动功率,不宜超过配电变压器容量的30%。
2)降压起动利用起动设备将电压降低后,再加到电动机上,当电动机转速升到确定值时,再转接到额定电压下运行。
这种方法虽可减小起动电流,但电动机的转矩与电压的平方成正比,电动机的起动转矩也因此而减小,所以只适用于笼型电动机空载或轻载起动的场合。
一般常用的降压起动方法有以下几种:(1)星三角降压起动:起动时将定子三相绕组作星形连接,以限制起动电流,待转速接近额定转速时再换接成三角形,使电动机全压运行。
接受这种起动方法,起动电流较小,起动转矩也较小,所以一般适用于正常运行为三角形接法的、容量较小的电动机作空载或轻载起动。
也可频繁起动。
(2)自耦变压器降压起动:将自耦变压器高压侧接电网,低压侧接电动机。
起动时,利用自耦变压器分接头来降低电动机的电压,待转速升到确定值时,自耦变压器自动切除,电动机与电源相接,在全压下正常运行。
这种起动方法,可选择自耦变压器的分接头位置来调整电动机的端电压,而起动转矩比星三角降压起动大。
但自耦变压器投资大,且不允许频繁起动。
它仅适用于星形或三角形连接的、容量较大的电动机。
(3)延边三角形降压起动:起动时,定子绕组接成延边三角形,以减小起动电流,待电动机起动后,再换接成三角形,使电动机在全压下运行。
这种起动方法,可通过调整定子绕组的抽头比,来取得不同数值的起动转矩,从而克服了星三角降压起动电压偏低、起动转矩较小的缺点。
三相异步电动机的6种启动方法选择与比较1、直接启动直接启动的优点是所需设备少,启动方式简单,成本低。
电动机直接启动的电流理论上来说,只要向电动机提供电源的线路和变压器容是正常运行的 5 倍左右,量年夜于电动机容量的 5 倍以上的,都可以直接启动。
这一要求关于小容量的电动机容易实现,所以小容量的电机绝大部分都是直接启动的,不需要降压启动。
关于年夜容量的电动机来说,一方面是提供电源的线路和变压器容量很难满足电动机直接启动的条件,另一方面强年夜的启动电流冲击电网和电动机,影响电动机的使用寿命,对电网不利,所以年夜容量的电动机和不能直接启动的电动机都要采用降压启动。
直接启动可掖棵胶木开关、铁壳开关、空气开关(断路器)等实现电动机的近距离操作、点动控制,速度控制、正反转控制等,也可掖棵限位开关、交流接触器、时间继电器等实现电动机的远距离操作、点动控制、速度控制、正反转控制、自动控制等。
2、用自偶变压器降压启动采用自耦变压器降压启动,电动机的启动电流及启动转矩与其端电压的平方成比例降低,相同的启动电流的情况下能获得较大的启动转。
如启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。
自耦变压器降压启动的优点是可以直接人工操作控制,也可掖棵交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛应用。
缺陷是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。
3、Y-△降压启动定子绕组为△连接的电动机,启动时接成Y,速度接近额定转速时转为△运行,采用这种方式启动时,每相定子绕组降低到电源电压的58%,启动电流为直接启动时的33%,启动转矩为直接启动时的33%。
启动电流小,启动转矩小。
Y-△降压启动的优点是不需要添置启动设备,有启动开关或交流接触器等控制设备就可以实现,缺陷是只能用于△连接的电动机,x大型异步电机不能重载启动。
实验一三相异步电动机启停控制实验
目的:
通过实验掌握三相异步电动机的启停控制方法,加深对三相异步电动机的理解和认识。
仪器设备:
三相异步电动机、交流调速器、控制电路板、开关、电缆等。
实验原理:
三相异步电动机的启动方法有直接启动、自动扭矩启动、降压启动、星角启动等,其中直接启动和星角启动比较常用。
直接启动:将电动机的三个线圈接在三相电源上,通过空气开关将电动机接通电源即可启动。
直接启动方法适用于功率较小、负载较轻的电动机。
星角启动:将电动机的三个线圈接在星角切换器上,先通过星形接法将电动机启动,当电动机加速至大约70%时,切换为
三角接法,以保证电动机有足够的启动转矩。
实验步骤:
1.将三相异步电动机、控制电路板、交流调速器、开关等准备好。
2.将电动机的三个线圈按照星形接法接在星角切换器上。
3.将星角切换器的三个三角连接接在控制电路板上。
4.将交流调速器的输出电缆连接到电动机的电缆上。
5.将开关连接在电源和控制电路板之间,使其能够控制电动机的启停。
6.按照星形接法将电动机启动,当电动机加速至70%左右时,切换为三角接法,电动机将正常运行。
7.通过开关控制电动机的启停,实现对电动机的控制。
注意事项:
1.操作时需要注意安全,禁止用湿手操作。
2.请按照步骤操作,不得倒序或遗漏步骤。
3.操作时,需保证设备间的接线正确、牢固。
4.实验结束后,需切断电源,将设备清理干净,归位。
简述三相异步电动机的三种启动方法
三相异步电动机的三种启动方法分别是:直接启动、星角启动和自动转子电阻启动。
1. 直接启动:直接将电动机连接到电源上启动。
这种方法简单直接,适用于小型和中型的异步电动机。
但是,由于启动时电机会产生较大的启动电流,容易造成电网电压的变化,对电网和电动机产生不利影响。
2. 星角启动:将电动机的定子线圈首先连接成星形,启动后再切换为三角形连接。
这种方法能够在启动时减小电动机的启动电流,减轻对电网的影响。
但是,由于切换连接需要时间,并且需要特殊的切换装置,所以适用范围相对较窄。
3. 自动转子电阻启动:在电动机的转子回路中串联一个可调节的外接电阻,启动时将电阻接入,起到减小起动电流的作用。
当电动机达到正常运行转速后,可以逐渐减小电阻,使得电动机回路无电阻连接。
这种方法能够实现较平稳的启动过程,减小对电网的冲击。
但是,由于需要外接电阻,因此需要特殊的启动装置和技术支持。
鼠笼式三相异步电动机的启动方法一、引言鼠笼式三相异步电动机是工业生产中常用的电动机之一,其启动方法是影响其性能和寿命的关键因素之一。
本文将介绍鼠笼式三相异步电动机的启动方法,包括直接启动、星角变压器启动和自耦变压器启动。
二、直接启动直接启动是最简单的鼠笼式三相异步电动机启动方法。
该方法通过将电源直接连接到电动机的三个绕组上来实现电机的起动。
具体步骤如下:1.检查电源线路是否正确连接,并确保电源开关处于关闭状态;2.检查鼠笼式三相异步电动机是否正常运行,并确保风扇无阻碍;3.打开电源开关,让电流通过绕组,使鼠笼式三相异步电动机开始运转。
该方法简单易行,但对于大功率的鼠笼式三相异步电动机来说,会导致起始时冲击大、起始时过载等问题。
三、星角变压器启动星角变压器启动是一种常见的鼠笼式三相异步电動機啟動方式。
该方法通过降低起始时刻的冲击电流和过载电流,从而保护电机的正常运行。
具体步骤如下:1.检查电源线路是否正确连接,并确保电源开关处于关闭状态;2.将星角变压器接到鼠笼式三相异步电动机上;3.调整星角变压器的绕组,使其与电动机相连;4.打开电源开关,让电流通过绕组,使鼠笼式三相异步电动机开始运转。
该方法需要使用星角变压器,其价格较贵,但可以有效地保护鼠笼式三相异步电动机。
四、自耦变压器启动自耦变压器启动是一种经济实用的鼠笼式三相异步电動機啟動方式。
该方法通过降低起始时刻的冲击电流和过载电流,从而保护电机的正常运行。
具体步骤如下:1.检查电源线路是否正确连接,并确保电源开关处于关闭状态;2.将自耦变压器接到鼠笼式三相异步電動機上;3.调整自耦变压器的绕组,使其与電動機相连;4.打开電源開關,讓電流通過繞組,使鼠笼式三相异步电动机开始运转。
该方法需要使用自耦变压器,其价格较便宜,但需要注意的是,自耦变压器的绕组比较复杂,需要专业人员进行调试和安装。
五、总结以上介绍了鼠笼式三相异步电動機的三种启动方式:直接启动、星角变压器启动和自耦变压器启动。
三相笼型异步电动机各种降压启动方法的优缺点
1、Y-△启动:Y-△启动适用与定子绕组为△连接的电动机,采用这种方式启动时,可使每相定子绕组降低到电源电压的58%,启动电流为直接启动时的33%,启动转矩为直接启动时的33%。
启动电流小,启动转矩小。
3、三相电阻降压启动:电阻减压启动一般用于轻载启动的笼型电动机,且由于其缺点明显而很少采用。
定子回路接入对称电阻,这种启动方式的启动电流较大而启动转矩较小。
如启动电压降至额定电压的65%,其启动电流为全压启动电流的65%,而启动转矩仅为全压启动转矩的42%,且启动过程中消耗的电能较大。
3、自耦变压器降压启动:这种方式通常用于要求启动转矩较大而启动电流较小的场合,采用自耦变压器降压启动,电动机的启动电流及启动转矩与其端电压的平方成比例降低,相同的启动电流的情况下能获得较大的启动转矩。
如启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,而启动转矩仅为全压启动转矩的42%。
4、软启动器降压启动:其特点是启动平稳,对电网冲击少;不必考虑对被启动电动机的加强设计;启动装置功率适度,一般只为被启动电动机功率的5~25%;允许启动的次数较高;但目前设备造价昂贵;主要用于大型机组及重要场所。
三相异步电动机降压启动的方法
1. 自耦变压器法:利用自耦变压器将电动机的起动电流降低。
在启动过程中,先通过自耦变压器给电动机施加较低的电压,然后逐渐增加电压直至达到额定电压。
2. 物理弹抑制法:通过在电动机的两个绕组之间连接一个物理弹簧,并在启动时阻碍电动机短路,降低电动机的起动电流。
4. 延时启动法:通过在电动机启动时加入一个延时装置,使电动机在启动过程中逐渐达到额定电压,从而降低起动电流。
9. 基尔霍夫电压增加法:通过在电动机启动时,利用基尔霍夫定律,在电源电压上添加一个增加电流的电阻,从而使电动机的起动电流降低。
10. 双绕组法:将电动机的起动绕组和工作绕组连接在一起,在电动机启动时通过起动电阻控制电动机的起动电流,当电动机达到额定转速后,切断起动绕组。
三相异步电机的启动方法三相异步电动机的起动方法主要有直接起动、传统减压启动和软启动三种启动方法。
下面就分别做详细介绍。
2.2.1直接起动直接起动,也叫全压起动。
起动时通过一些直接起动设备,将全部电源电压(即全压)直接加到异步电动机的定子绕组,使电动机在额定电压下进行起动。
一般情况下,直接起动时起动电流为额定电流的3〜8倍,起动转矩为额定转矩的1〜2倍。
根据对国产电动机实际测量,某些笼型异步电动机起动电流甚至可以达到8〜12倍。
直接起动的起动线路是最简单的,如图2-2所示。
然而这种起动方法有诸多不足。
对于需要频繁起动的电动机,过大的起动电流会造成电动机的发热,缩短电动机的使用寿命;同时电动机绕组在电动力的作用下,会发生变形,可能引起短路进而烧毁电动机;另外过大的起动电流,会使线路电压降增大,造成电网电压的显著下降,从而影响同一电网的其他设备的正常工作,有时甚至使它们停下来或无法带负载起动。
这是因为Ts及Tm均与电网电压的平方成正比,电网电压的显著下降,可使Ts及Tm均下降到低于Tz0一般情况下,异步电动机的功率小于7.5kW时允许直接起动。
如果功率大于7.5kW,而电源总容量较大,能符合下式要求的话,电动机也可允许直接起动。
I1st1:电源总容量(kv八)1K3I1N4起动电动总功率(kw)如果不能满足上式的要求,则必须采用减压启动的方法,通过减压,把启动电流Ist限制到允许的数值。
图2-2直接启动原理图2.2.2传统减压起动减压起动是在起动时先降低定子绕组上的电压,待起动后,再把电压恢复到额定值。
减压起动虽然可以减小起动电流,但是同时起动转矩也会减小。
因此,减压起动方法一般只适用于轻载或空载情况。
传统减压起动的具体方法很多,这里介绍以下三种减压起动的方法:(1)定子用接电阻或电抗起动定子绕组用电阻或电抗相当于降低定子绕组的外加电压。
由三相异步电动机的等效电路可知:起动电流正比于定子绕组的电压,因而定子绕组用电阻或电抗可以达到减小起动电流的目的。
异步电动机起动方法
异步电动机起动方法有以下几种:
1. 直接启动:即直接将电动机连接到电源上,通过直接启动电机的方式来实现起动。
这种方法成本低,但起动时的电流冲击大,对电网的影响较大。
2. 降压启动:通过降低电压的方式来减小起动时的电流冲击,使电机能够平稳起动。
常见的方法有星三角启动和自耦启动。
3. 变频启动:通过变频器控制电机的电源频率和电压,实现电机的平稳起动。
这种方法起动过程中的电流冲击较小,对电网的影响较小,可以实现精确的起动控制。
4. 软启动:通过安装软启动器来实现电机的平稳起动。
软启动器可以通过逐渐增加电压或电流的方式来起动电机,避免了起动时的电流冲击,并且可以实现起动过程的精确控制。
这些起动方法各有优缺点,选择哪种方法要根据具体的应用需求来决定。