高一数学人教a版必修一 习题 第三章 函数的应用 3.1.1 含答案
- 格式:doc
- 大小:151.00 KB
- 文档页数:7
专题5:人教A 版第三章函数的应用基础测试题(解析版)一、单选题1.已知函数()2f x ax bx c =++满足()20f <且()30f >,则()f x 在()2,3上的零点( ). A .至多有一个 B .有1个或2个 C .有且仅有一个 D .一个也没有1.C 【分析】由零点存在定理可判定出结果. 【详解】由题意知:()f x 在R 上至多有两个零点.由零点存在定理知:若()()230f f ⋅<,则()f x 在()2,3上有且仅有一个零点. 故选:C .2.函数()ln 4f x x x =+-的零点所在的区间是( ) A .()1,2 B .()2,3C .()3,4D .()4,52.B 【分析】计算区间端点处的函数值,根据零点存在定理判断. 【详解】(1)30f =-<,(2)ln 220f =-<,(3)ln 310f =->,∴零点在区间(2,3)上. 故选:B .3.函数()6ln f x x x =-+的零点所在区间应是( ) A .()2,3 B .()3,4C .()4,5D .()5,63.C 【分析】分别计算()2f ,()3f ,()4f ,()5f ,()6f ,根据零点存在性定理,即可得出结果. 【详解】因为()6ln f x x x =-+,所以()226ln 24ln 20f =-+=-+<,()336ln33ln30f =-+=-+<,()446ln 422ln 20f =-+=-+<, ()556ln51ln50f =-+=-+>,()666ln6ln60f =-+=>,由零点存在性定理,可得函数()6ln f x x x =-+的零点所在区间应是()4,5, 即C 正确,ABD 错误. 故选:C.4.下列函数中,没有零点的是( )A .2()log 7f x x =-B .()1f xC .()1f x x= D .()2f x x x =+4.C 【分析】分别解函数对应的方程,逐项判断,即可得出结果. 【详解】A 选项,由2()log 70f x x =-=可得72x =,即函数2()log 7f x x =-有零点;B 选项,由()10f x =得1x =,即函数()1f x 有零点;C 选项,由()10f x x ==解得,x 不存在,即函数()1f x x=没有零点; D 选项,由()20f x x x =+=解得1x =-或0,即函数()2f x x x =+有零点. 故选:C.5.函数()228f x x x =--零点是( )A .2和4-B .2-和4C .()2,0和()4,0-D .()2,0-和()4,05.B 【分析】解方程()0f x =,即可得出函数()f x 的零点. 【详解】解方程()0f x =,即2280x x --=,解得2x =-或4x =.因此,函数()228f x x x =--的零点是2-和4.故选:B.6.为了求函数()237x f x x =+-的一个零点,某同学利用计算器得到自变量x 和函数()f x 的部分对应值,如表所示:x1.25 1.3125 1.375 1.4375 1.5 1.5625 ()f x-0.8716-0.5788-0.28130.21010.328430.64115则方程237x x +=的近似解(精确到0.1)可取为( ) A .1.2 B .1.3C .1.4D .1.56.C 【分析】根据二分法结合零点存在定理求解. 【详解】因为(1.375)0,(1.4375)0f f <>, 所以方程的解在区间()1.375,1.4375内, 又精确到0.1, 所以可取1.4 故选:C7.把函数2()log f x x =的图像向左平移1个单位,再向下平移2个单位后得到函数()g x 的图像,则函数()g x 的零点是( )A .3B .5C .34-D .547.A 【分析】根据平移变换得到()g x ,令()g x 0=,解方程可得结果. 【详解】依题意得2()log (1)2g x x =+-,由()0g x =得2log (1)2x +=,得14x +=,得3x =. 故选:A【点睛】关键点点睛:掌握函数零点的概念是本题解题关键.8.“道高一尺,魔高一丈”出于《西游记》第五十回“道高一尺魔高丈,性乱情昏错认家,可恨法身无坐位,当时行动念头差,”用来比喻取得一定成就后遇到的障碍会更大或正义终将战胜邪恶,若用下列函数中的一个来表示这句话的含义,则最合适的是( )A .10y x =,0x >B .110y x =,0x > C .10y x =+,0x > D .=9y x +,0x >8.A 【分析】根据一丈等于十尺,即可得出结果. 【详解】因为一丈等于十尺,所以“道高一尺魔高一丈”更适合用10y x =,0x >来表示; 故选:A.9.若32()22f x x x x =+--的一个正数零点附近的函数值用二分法逐次计算,数据如下表:那么方程32220x x x +--=的一个近似根(精确到0.1)为( ) A .1.2 B .1.3C .1.41D .1.59.C 【分析】利用零点存在性定理,判断根的较小区间,即可求得近似解. 【详解】因为(1.438)0.1650f =>,(1.4065)0.0520f =-<,(1.438)(1.4065)0f f ⨯<,所以方程的近似根在()1.4065,1.438,则近似根为1.41 故选:C10.已知函数()351f x x x =-+,则下列区间中一定包含()f x 零点的区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,210.C 【分析】计算出各端点的函数值,利用零点存在性定理即可判断. 【详解】()351f x x x =-+,()32252130f ∴-=-+⨯+=>,()31151150f -=-+⨯+=>,()010f => ()31151130f =-⨯+=-<,()32252110f =-⨯+=-<,根据零点存在性定理可得一定包含()f x 零点的区间是()0,1. 故选:C.11.已知函数()25xf x ex --=-的零点位于区间(),1m m +,m ∈Z 上,则42log m m +=( )A .14-B .14C .12D .3411.D 【分析】利用零点存在定理求得整数m 的值,进而可求得42log mm +的值. 【详解】易知函数()f x 单调递减,又因为()2210f e -=->,()130f e -=-<,由零点存在定理可知,函数()f x 的零点在区间()2,1--内,则2m =-. 所以2441132log 2log 2424mm -+=+=+=. 故选:D. 【点睛】本题考查利用零点存在定理求参数值,同时也考查指数式与对数式的计算,考查计算能力,属于基础题.12.我们知道,人们对声音有不同的感觉,这与声音的强度有关系.声音的强度常用I (单位:瓦/米2,即2/m W )表示,但在实际测量时,声音的强度水平常用L (单位:分贝)表示,它们满足换算公式:010lgI L I =(0L ≥,其中1220110/m I W -=⨯是人们平均能听到的声音的最小强度).若使某小区内公共场所声音的强度水平降低10分贝,则声音的强度应变为原来的( ) A .15B .1100C .110D .12012.C 【分析】设该小区内公共场所声音的强度水平为1L ,2L ,相应声音的强度为1I ,2I ,代入可得选项. 【详解】设该小区内公共场所声音的强度水平为1L ,2L ,相应声音的强度为1I ,2I , 由题意,得1210L L -=,即120010lg 10lg 10I II I -=, 解得21110I I =. 故选:C. 【点睛】本题考查函数模型的应用,关键在于理解生活中的数据在数学应用中的表达,属于基础题.二、填空题13.函数()22f x x x =+-的零点为______________.13.2-和1 【分析】解方程220x x +-=,即可得出函数()y f x =的零点. 【详解】令()0f x =,得220x x +-=,解得1x =或2x =-. 因此,函数()22f x x x =+-的零点为2-和1.故答案为:2-和1.【点睛】本题考查函数零点的求解,熟悉函数零点的定义是解题的关键,考查运算求解能力,属于基础题.14.若二元一次方程37x y -=,231x y +=,9y kx =-有公共解,则实数k =_____________. 14.4 【分析】由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入9y kx =-中,求得k 的值. 【详解】解37231x y x y -=⎧⎨+=⎩得21x y =⎧⎨=-⎩,代入9y kx =-得129k -=-, 解得4k =. 故答案为:4 【点睛】本题主要考查解二元一次方程组,意在考查学生对该知识的理解掌握水平. 15.燕子每年秋天都要从北方飞向南方过冬,专家发现,两岁燕子的飞行速度可以表示为函数25log 10Ov =,单位是m/s ,其中O 表示燕子的耗氧量.则当燕子静止时的耗氧量是______个单位. 15.10 【分析】当燕子静止时,速度为0,由此列方程,解方程求得O 的值. 【详解】若燕子静止,则0v =,即25log 0,11010O O==,所以10O =. 故填:10. 【点睛】本小题主要考查阅读理解能力,考查已知函数值以及函数解析式求自变量的值,属于基础题.16.已知函数3,0()1,0x x x f x x a x x ⎧+≤⎪=⎨-->⎪⎩有4个不同的零点,则实数a 的取值范围为_______. 16.()2,+∞ 【分析】当0x ≤时,即()f x 恒有1个零点;当0x >时,得到相切时a 的值,即可求解。
专题6:人教A 版第三章函数的应用综合测试题(解析版)一、单选题1.设()ln 2f x x x =+-,则函数()f x 的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)1.B【分析】根据()f x 的单调性,结合零点存在性定理,即可得出结论.【详解】 ()ln 2f x x x =+-在(0,)+∞单调递增,且(1)10,(2)ln20f f =-<=>,根据零点存在性定理,得()f x 存在唯一的零点在区间(1,2)上.故选:B【点睛】本题考查判断函数零点所在区间,结合零点存在性定理的应用,属于基础题. 2.若一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,则燃烧剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图象表示为( )A .B .C .D . 2.B【解析】依题设可知,蜡烛高度h 与燃烧时间t 之间构成一次函数关系,又∵函数图象必过点(0,20)、(4,0)两点,且该图象应为一条线段.∴选B.3.利用二分法求方程3log 5x x =-的近似解,可以取得一个区间( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.D【分析】根据零点存在定理判断.【详解】设3()log 5f x x x =-+,则函数单调递增由于3(3)log 35310f =-+=-<,33(4)log 454log 410f =-+=->,∴()f x 在(3,4)上有零点.故选:D.【点睛】本题考查方程的解与函数零点问题.掌握零点存在定理是解题关键.4.若函数()27x f x x =+-的零点所在的区间为(,1)()k k k +∈Z ,则k =( )A .3B .4C .1D .24.D【分析】结合零点存在性定理和函数()f x 的单调性,求得k 的值.【详解】 ∵(2)4270,(3)8370,f f =+-<⎧⎨=+->⎩且()f x 单调递增,∴()f x 的零点所在的区间为(2,3),∴2k =. 故选:D【点睛】本小题主要考查零点存在性定理的运用,考查函数的单调性,属于基础题.5.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是( )A .x 1B .x 2C .x 3D .x 45.C【解析】 观察图象可知:点x 3的附近两旁的函数值都为负值,∴点x 3不能用二分法求,故选C.6.函数21()f x x x =+,(0,)x ∈+∞的零点个数是( ). A .0B .1C .2D .36.A【分析】 根据函数定义域,结合零点定义,即可容易判断和求解.【详解】由于20x >,10x>, 因此不存在(0,)x ∈+∞使得21()0f x x x=+=, 因此函数没有零点.故选:A .【点睛】本题考查函数零点的求解,属简单题. 7.用二分法求函数()f x 的一个正实数零点时,经计算:()()0.640,0.720f f <>,()0.680f <,()0.740f >,则函数()f x 的一个精确度为0.1的正实数零点的近似值为A .0.64B .0.8C .0.7D .0.67.C【分析】由题意根据函数零点的判定定理可得,函数零点所在的区间为(0.68,0.72),从而得出结论.【详解】因为()0.680f <,()0.720f >,即()()0.680.720f f ⋅<,所以函数()f x 的零点在区间()0.68,0.72内.又0.720.680.040.1-=<,观察各选项可知函数()f x 的一个精确度为0.1的正实数零点的近似值为0.7.故选C .【点睛】本题主要考查函数零点的判定定理的应用,属于基础题.8.已知函数()221,11,1x x f x log x x ⎧-=⎨+>⎩,则函数()f x 的零点为( )A .1,02B .2-,0C .12D .08.D【分析】函数()f x 的零点,即令()0f x =分段求解即可.【详解】函数221,1()1,1x x f x log x x ⎧-=⎨+>⎩当1x 时,令()210x f x =-=,解得0x =当1x >时,令2()1log 0f x x =+=,解得12x =(舍去) 综上函数的零点为0故选:D .【点睛】本题考查函数的零点个数,考查分段函数的知识,属于基础题.9.设f (x )=3x +3x –8,用二分法求方程3x +3x –8在x ∈(1,2)内方程的近似解,则方程的根落在区间(参考数据31.25≈3.95)A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定9.B【分析】显然函数单调递增,然后利用二分法求(1,2)的中间值f (1.5)0>,再将范围限制(1,1.5),再利用二分法继续下次知道和选项逼近即可【详解】显然函数单调递增,f (1)<0,f (2)>0,f (1.5)=31.5+3×1.5–8=323 4.58+-=4.58->4.580->,f (1.25)=31.25+3×1.25–8<0,∴f (1.25)•f (1.5)<0,∴方程的根落在区间(1.25,1.5),故选B .【点睛】利用二分法判断函数零点的区间,首先确保函数在所给区间内连续,然后利用二分法算出所给区间的中间值,进而一步步将区间范围缩小10.已知碳14是一种放射性元素,在放射过程中,质量会不断减少.已知1克碳14经过5730年,质量经过放射消耗到0.5克,则再经过多少年,质量可放射消耗到0.125克( ) A .5730B .11460C .17190D .22920 10.B【分析】根据由题意可知再经过2个半衰期可消耗到0.125克.【详解】由题意可得:碳14的半衰期为5730年,则再过5730年后,质量从0.5克消耗到0.25克,过11460年后,质量可消耗到0.125克.故选:B.【点睛】本题考查指数函数的应用,属于基础题.11.已知二次函数22()(5)6(0)f x ax a x a a =+-+-≠的图象与x 轴交于()1,0M x ,()2,0N x 两点,且12112x x -<<<<,则a 的取值范围是( )A .(2,1+B .()1C .()1++∞D .(,2-∞- 11.B【分析】讨论0a >、0a <,根据零点的范围,结合二次函数的性质列不等式组求解即可得a 的取值范围.【详解】若0a >,则(1)0(1)0(2)0f f f ->⎧⎪<⎨⎪>⎩,即2221021106160a a a a a ⎧->⎪+-<⎨⎪+->⎩,解得21a <<;若0a <,则(1)0(1)0(2)0f f f -<⎧⎪>⎨⎪<⎩,即2221021106160a a a a a ⎧-<⎪+->⎨⎪+-<⎩,不等式组无解.故a的取值范围是()1.故选:B 12.已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩若函数()()2y f x f x m =+--()m R ∈恰有2个零点,则m 的取值范围是( )A .()2,+∞B .7,24⎛⎫ ⎪⎝⎭C .()0,2D .(),2-∞12.A【分析】求得函数()()2y f x f x =+-的解析式,画出()()2y f x f x =+-的图象,由此求得m 的取值范围.【详解】 由()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩得()()()2,02,0x x f x x x ⎧≥⎪-=⎨<⎪⎩, 所以()()()()()222,022,0234,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩,所以函数()()2y f x f x m =+--恰有2个零点等价于函数y m =与函数()()2y f x f x =+-的图象有2个公共点,由图象可知2m >.故选:A二、填空题13.在平面直角坐标系xOy 中,若直线y a =与函数2y x a a =-+-的图象有且只有一个公共点,则实数a 的值为______.13.1【分析】在同一坐标系中作出函数y a =与函数2y x a a=-+-的图象,根据只有一个公共点,利用数形结合法求解.【详解】在同一坐标系中作出函数y a =与函数2y x a a =-+-的图象,如图所示:因为只有一个公共点,所以2a a -=,解得1a =.故答案为:114.已知函数()1,2,x x x a f x x a+≤⎧=⎨>⎩,若存在两个不相等的实数12,x x ,使得()()12f x f x =,则实数a 的取值范围是__________.14.01a <<【分析】根据1y x =+与2xy =交于(0,1)和(1,2)点,即可求解结论.【详解】解:因为存在两个不相等的实数1x ,2x ,使得12()()f x f x =,故函数不是单调函数,又因为1y x =+与2x y =交于(0,1)和(1,2)点,故须01a <<.故答案为:(0,1).15.方程243x x m -+-=有四个互不相等的实数根,则实数m 的取值范围为_________. 15.()3,1-【分析】 方程243x x m -+-=有四个互不相等的实数根即243y x x =-+与y m =-的图象有四个不同的交点,作出函数图象可得实数m 的取值范围.【详解】 方程243x x m -+-=有四个互不相等的实数根即243y x x =-+与y m =-的图象有四个不同的交点 作出22243,04343,0x x x y x x x x x ⎧-+>=-+=⎨++≤⎩的函数图象如图所示:当2x =时,1y =-;0x =时,3y =,∴13m -<-<,()3,1m ∈-故答案为:()3,1-16.已知1x ,2x 是函数()()2221f x x k x k =-++的两个零点且一个大于1,一个小于1,则实数k 的取值范围是___________.16.02k <<【分析】根据二次函数的零点分布情况,得到()10f >,求解对应不等式,即可得出结果.【详解】因为1x ,2x 是函数()()2221f x x k x k =-++的两个零点且一个大于1,一个小于1, 二次函数()()2221f x x k x k =-++开口向上, 所以只需()()2211012f k k -++<=,即220k k -<, 解得02k <<.故答案为:02k <<.三、解答题17.已知函数32()2()3x f x x ax a R =--∈.(1)若()y f x =在()3,+∞上为增函数,求实数a 的取值范围; (2)若12a =-,设()ln(1)()g x x f x =-+,且方程3(1)(1)3xb g x x --=+有实根,求实数b 的最大值.17.(1)32a ≤(2)0 【解析】试题分析:(1)求导()'2220fx x x a =--≥在区间(3,+∞)上恒成立,从而转化为最值问题求解即可;(2)化简方程可得2ln b x x x x+-=,从而化为2(ln )b x x x x =+-在(0,+∞)上有解,从而讨论函数2()(ln )p x x x x x =+-的值域即可试题解析:(1)∵()f x 在区间()3,+∞上为增函数, ∴2'()220f x x x a =--≥即222a x x ≤-在区间()3,+∞上恒成立. ∵在()3,+∞内223x x -< ∴23a ≤即32a ≤(2)方程3(1)(1)3x b g x x --=+可化为2ln b x x x x +-=. ∴条件转化为2(ln )b x x x x =+-在()0,+∞上有解, 令2()(ln )p x x x x x =+-,∴即求函数2()(ln )p x x x x x =+-在()0,+∞上的值域. 令2()ln h x x x x =+-, 则1(21)(1)'()12x x h x x x x +-=+-=,∴当01x <<时'()0h x >,从而()h x 在()0,1上为增函数, 当1x >时'()0h x <,从而()h x 在()1,+∞上为减函数, 因此()(1)0h x h ≤=.又∵0x >,故()()0p x x h x =⋅≤,∴0b ≤因此当1x =时,b 取得最大值0.考点:根的存在性及根的个数判断;利用导数研究函数的单调性18.已知函数()lg f x kx =,()()lg 1g x x =+.(Ⅰ)当=1k 时,求函数()()y f x g x =+的单调区间;(Ⅱ)若方程()2()f x g x =仅有一个实根,求实数k 的取值集合.18.(1)单调递增区间为(0,)+∞,不存在单调递减区间;(2)0k <或4k =;【解析】试题分析:(1)由题可知,将=1k 代入,可得()()lg lg(1)lg (1)y f x g x x x x x =+=++=+,由于真数x (x+1)>0,可知x (x+1)在定义域上始终递增,外层对数函数始终递增,即单调递增区间为(0,)+∞,不存在单调递减区间;(2)由题可知,由()2()f x g x =,即lg 2lg(1)kx x =+,根据真数大于0,真数相等,可列出不等式组,对k 进行讨论,即可得出k 的取值; 试题解析:(Ⅰ)当=1k 时,()()lg lg(1)lg (1)y f x g x x x x x =+=++=+ (其中0x >),由复合函数单调性可知内层函数x (x+1)在定义域上始终递增,外层对数函数始终递增,所以,()()y f x g x =+的单调递增区间为(0,)+∞,不存在单调递减区间;(Ⅱ)由()2()f x g x =,即lg 2lg(1)kx x =+.该方程可化为不等式组 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩(1)若0k >时,则0x >,原问题即为:方程2(1)kx x =+在(0,)+∞上有根,解得4k =;(2)若0k <时,则10x -<<,原问题即为:方程2(1)kx x =+在(1,0)-上有根,解得0k <.综上可得0k <或4k =为所求.考点:①复合函数的单调性②对数函数单调性的应用19.已知函数221()11x m f x x x x x -=----- (Ⅰ)若函数()f x 无零点,求实数m 的取值范围;(Ⅱ)若函数()f x 在(2,2)-有且仅有一个零点,求实数m 的取值范围.19.(Ⅰ) 47|{<m m 或2}m =;(Ⅱ)7{|4m m =或48}m ≤<。
《方程的根和函数的零点》
知识梳理函数零点概念(归纳总结)
函数零点的概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)
的零点。
【思考】:
(1)零点是一个点吗?
(2)怎样理解“零点”概念双向性呢?
(3)请你说出问题2中3个函数的零点及个数?
(4)反思:函数y=f(x)的零点、方程f(x)=0的实数根、函数y=f(x)的图象与x
轴交点的横坐标,三者有什么关系?
方程f(x)=0有实数根Û(2)函数y=f(x)有零点
Û(3)函数y=f(x)的图象
与x轴有交点
零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一
条曲线,并且有f(a).f(b)<0,那么,函数y=f(x)在区间(a,b)内
有零点,即存在c,使得f(c)=0.这个c也就是方程f(x)=0的根。
【思考】
(1) 这个定理前提有几个条件?
(2)“有零点”是指有几个零点呢?只有一个吗?
(3)再加上什么条件就“有且仅有一个零点”呢?
(4)若函数y=f(x)在区间(a,b)内有零点,一定能得出f(a)·f(b)<0的结论吗?
对于
每一个知
识点都做
一个小的
思考,即
为深入理
解概念,
让学生抓
住定理概
念的重点。
3.1.1 方程的根与函数的零点第二课一、教学目标:① 进一步巩固函数零点的概念,会求基本初等函数的零点;② 掌握方程的根与函数零点之间的等价关系,体会函数方程的转化思想; ③ 对函数零点,零点所在的区间及零点个数各题型有所思有所为。
二、课前预习:(务必课前总结)1、我们学习过的那些函数?它们的图像特点?①一次函数()0y kx b k =+≠:0k >时,是一条递增的直线;0k <时,是一条递减的直线。
b 是图像与y 轴交点的纵坐标,如0b =时,直线过原点。
②二次函数 ③指数函数 ④对数函数 ⑤幂函数2、默写函数零点定理与函数零点存在性定理三、教学过程探讨1:求函数()324f x x x =--+的零点。
探讨2:解决下列两个问题,并试图发现问题中的共性①确定正整数k 的值,使得函数()324f x x x =--+在区间(),1k k +上存在零点。
②试画出函数3y x =与24y x =-+的图像,并分析两个图像交点情况。
你所发现的共性:找出一个数0x 作为函数()324f x x x =--+零点的近似值。
(精度为0.1) 课堂练习:判断下列函数的零点个数①()22f x x x =-+②()lg 2f x x x =-+ ③()2log 2xf x x =+④()()2ln 23f x x x =-- ⑤()32221f x x x x =--+ 课后练习: 1.函数6)(2-+=x x x f 的零点为2.函数2)(+=ax x f 在区间)2,1(-上有零点,则a 的取值范围是3.函数11ln )(--=x x x f 的零点的个数是 ( )A .0个B .1个C .2个D .3个4.设函数3y x =与22xy -=的图象的交点为00()x y ,,则0x 所在的区间是 ( )A .(01),B .(12),C .(23),D .(34),5.根据表格中的数据,可以判定方程20x e x --=的一个零点所在的区间为))(1,(N k k k ∈+,则k 的值为 ;6、函数()11f x x =-的图像与函数()31y x =-的图像所有交点的横坐标之和等于 ( ) A. 2 B.4 C.6 D8.7、已知函数()21log 2xf x x ⎛⎫=- ⎪⎝⎭,且实数0a b c <<<满足()()()0f a f b f c <,若实数0x 是函数()y f x =的一个零点,那么下列不等式中不可能成立的是 ( ) A. 0x a < B. 0x c < C. 0x b > D. 0x c >8、确定正整数k 的值,使得函数()237xf x x =+-在区间(),1k k +上存在零点,并确定零点的一个近似值。
3.1.1 第2课时 函数的概念(二)基 础 练巩固新知 夯实基础1.下列函数与函数y =x 是同一函数的是( )A .y =|x |B .y =3t 3C .y =x 2D .y =v 2v 2. (多选)下列函数,值域为(0,+∞)的是( )A .y =x +1(x >-1)B .y =x 2C .y =1x (x >0)D .y =1x +13.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( )A.{-1,0,3}B.{0,1,2,3}C.{y |-1≤y ≤3}D.{y |0≤y ≤3}4.函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]5.已知函数f (x )=x +1x,则f (2)+f (-2)的值是( ) A .-1 B .0 C .1 D .26.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3 7.函数y =1x -2的定义域是A ,函数y =x 2+2x -3的值域是B ,则A ∩B =__________________(用区间表示).8.求下列函数值域。
(1)f (x )=3x -1,x ∈[-5,2);(2)y =5x -14x +2; (3)f (x )=4-x +x -2.能 力 练综合应用 核心素养9.函数y =5x +4x -1的值域是( ) A .(-∞,5)B .(5,+∞)C .(-∞,5)∪(5,+∞)D .(-∞,1)∪(1,+∞)10.下列各组函数中是同一函数的是( )A .y =x +1与y =x 2-1x -1B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 211.函数f (x )=x 2+1(0<x ≤2且x ∈N *)的值域是( )A .{x |x ≥1}B .{x |x >1}C .{2,3}D .{2,5}12.下列函数中,对于定义域内的任意x ,f (x +1)=f (x )+1恒成立的为( )A .f (x )=x +1B .f (x )=-x 2C .f (x )=1xD .y =|x | 13.若f (x )=11-x 2,则f (3)=_____,f (f (-2))=_____. 14.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),则a +b 的值为__92__. 15.若函数y =ax 2+2ax +3的值域为[0,+∞),则a 的取值范围是________.16.已知函数f (x )=x 21+x 2. (1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值. (2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值.(3)求f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019的值.【参考答案】1.B 解析 选项A 和选项C 中,函数的值域都是[0,+∞);选项D 中,函数的定义域是(-∞,0)∪(0,+∞);选项B 中函数的定义域和值域都和函数y =x 相同,对应关系也等价,因此选B.2.AC 解析 y =x +1(x >-1)的值域为(0,+∞);y =x 2的值域为[0,+∞);y =1x (x >0)的值域为(0,+∞);y =1x +1的值域为(-∞,0)∪(0,+∞),3.A 解析 由对应关系y =x 2-2x 得,0→0,1→-1,2→0,3→3,所以值域为{-1,0,3}.4.B 解析 由于x +1≥0,所以函数y =x +1的值域为[0,+∞).5. B 解析 f (2)+f (-2)=2+12-2-12=0. 6.B 解析 A 、C 、D 的定义域均不同.7. [0,2)∪(2,+∞) 解析要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =x 2+2x -3=(x +1)2-4≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2或x >2}.8.解:(1)∵x ∈[-5,2),∴-15≤3x <6,∴-16≤3x -1<5,∴函数f (x )=3x -1,x ∈[-5,2)的值域是[-16,5).(2)y =5x -14x +2=544x +2-1-1044x +2=544x +2-1444x +2=54-724x +2. ∵724x +2≠0,∴y ≠54, ∴函数y =5x -14x +2的值域为{y ∈R |y ≠54}. (3)由题意可得,x ∈[2,4],因为f 2(x )=2+24-x x -2=2+2-x -32+1,所以f 2(x )∈[2,4],故函数f (x )的值域为[2,2].9.C 解析∵y =5x +4x -1=5(x -1)+9x -1=5+9x -1,且9x -1≠0,∴y ≠5,即函数的值域为(-∞,5)∪(5,+∞). 10.B 解析对于选项A ,前者定义域为R ,后者定义域为{x |x ≠1},不是同一函数;对于选项B ,虽然变量不同,但定义域和对应关系均相同,是同一函数;对于选项C ,虽然对应关系相同,但定义域不同,不是同一函数;对于选项D ,虽然定义域相同,但对应关系不同,不是同一函数.11.D 解析:∵0<x ≤2且x ∈N *,∴x =1或x =2.∴f (1)=2,f (2)=5,故函数的值域为{2,5}.12.A 解析 对于A 选项,f (x +1)=(x +1)+1=f (x )+1,成立.对于B 选项,f (x +1)=-(x +1)2≠f (x )+1,不成立.对于C 选项,f (x +1)=1x +1,f (x )+1=1x +1,不成立.对于D 选项,f (x +1)=|x +1|,f (x )+1=|x |+1,不成立.13.-18 98 解析 f (3)=11-9=-18,f (f (-2))=f ⎝⎛⎭⎫-13=98.14. 92 解析 ∵f (x )=12x 2-x +a =12(x -1)2+a -12,∴当x ∈[1,b ]时,f (x )min =f (1)=a -12,f (x )max =f (b )=12b 2-b +a .又f (x )在[1,b ]上的值域为[1,b ],∴⎩⎨⎧ a -12=1,12b 2-b +a =b ,解得⎩⎪⎨⎪⎧ a =32,b =1舍去或b =3. ∴a +b =32+3=92. 15. [3,+∞) 解析 函数y =ax 2+2ax +3的值域为[0,+∞),则函数f (x )=ax 2+2ax +3的值域要包括0,即最小值要小于等于0.则{ a >0,Δ=4a 2-12a ≥0,解得a ≥3.所以a 的取值范围是[3,+∞).16. 解 (1)因为f (x )=x 21+x 2,所以f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1,f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1,所以f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1,…,f (2019)+f ⎝⎛⎭⎫12019=1. 所以f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019=2018.。
3.1.2 函数的表示法最新课程标准:(1)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用.(2)通过具体实例,了解简单的分段函数,并能简单应用.知识点一 函数的表示法状元随笔 1.解析法是表示函数的一种重要方法,这种表示方法从“数”的方面简明、全面地概括了变量之间的数量关系.2.由列表法和图象法的概念可知:函数也可以说就是一张表或一张图,根据这张表或这张图,由自变量x 的值可查找到和它对应的唯一的函数值y.知识点二 分段函数在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.状元随笔 1.分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.2.分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎪⎨⎪⎧1,-2≤x≤0,x ,0<x≤3,其“段”是不等长的.[教材解难]教材P 68思考(1)三种表示方法的优缺点比较优点 缺点解析法一是简明、全面地概括了变量间的关系;二是可以通过用解析式求出任意一个自不够形象、直观,而且并不是所有的函数都可以用解析式表示=⎩⎪⎨⎪⎧0,x ∈Q ,1,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段).[基础自测]1.购买某种饮料x 听,所需钱数为y 元,若每听2元,用解析法将y 表示成x (x ∈{1,2,3,4})的函数为( )A .y =2xB .y =2x (x ∈R )C .y =2x (x ∈{1,2,3,…}) D.y =2x (x ∈{1,2,3,4}) 解析:题中已给出自变量的取值范围,x ∈{1,2,3,4},故选D. 答案:D2.已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <-1,x -1,x >1,则f (2)等于( )A .0 B.13C .1D .2解析:f (2)=2-1=1. 答案:C3.已知函数f (2x +1)=6x +5,则f (x )的解析式是( ) A .3x +2 B .3x +1 C .3x -1 D .3x +4解析:方法一 令2x +1=t ,则x =t -12.∴f (t )=6×t -12+5=3t +2.∴f (x )=3x +2.方法二 ∵f (2x +1)=3(2x +1)+2.∴f(x)=3x+2.答案:A4.已知函数f(x),g(x)分别由下表给出.x 12 3f(x)21 1x 12 3g(x)32 1则f(g(1))的值为________.当g(f(x))=2时,x=________.解析:由于函数关系是用表格形式给出的,知g(1)=3,∴f(g(1))=f(3)=1.由于g(2)=2,∴f(x)=2,∴x=1.答案:1 1题型一函数的表示方法[经典例题]例 1 (1)某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )(2)已知函数f(x)按下表给出,满足f(f(x))>f(3)的x的值为________.x 12 3f(x)23 1【解析】(1)所以开始曲线比较陡峭,后来曲线比较平缓,又纵轴表示离校的距离,所以开始时距离最大,最后距离为0.【答案】(1)D由题意找到出发时间与离校距离的关系及变化规律【解析】(2)由表格可知f(3)=1,故f(f(x))>f(3)即为f(f(x))>1.∴f(x)=1或f(x)=2,∴x=3或1.【答案】(2)3或1观察表格,先求出f(1)、f(2)、f(3),进而求出f(f(x))的值,再与f(3)比较.方法归纳理解函数的表示法应关注三点(1)列表法、图象法、解析法均是函数的表示方法,无论用哪种方式表示函数,都必须满足函数的概念.(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义.(3)函数的三种表示方法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.跟踪训练1 某商场新进了10台彩电,每台售价3 000元,试求售出台数x(x为正整数)与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来.解析:(1)列表法:x/台12345678910y/元 3 000 6 0009 00012000150001800021000240002700030000(3)解析法:y=3 000x,x∈{1,2,3,…,10}.状元随笔本题中函数的定义域是不连续的,作图时应注意函数图象是一些点,而不是直线.另外,函数的解析式应注明定义域.题型二求函数的解析式[经典例题]例2 根据下列条件,求函数的解析式:(1)已知f ⎝ ⎛⎭⎪⎫1x =x 1-x 2,求f (x );(2)f (x )是二次函数,且f (2)=-3,f (-2)=-7,f (0)=-3,求f (x ).【解析】 (1)设t =1x ,则x =1t (t ≠0),代入f ⎝ ⎛⎭⎪⎫1x =x 1-x 2,得f (t )=1t 1-⎝ ⎛⎭⎪⎫1t 2=t t 2-1, 故f (x )=xx 2-1(x ≠0且x ≠±1).(2)设f (x )=ax 2+bx +c (a ≠0).因为f (2)=-3,f (-2)=-7,f (0)=-3. 所以⎩⎪⎨⎪⎧4a +2b +c =-3,4a -2b +c =-7,c =-3.解得⎩⎪⎨⎪⎧a =-12,b =1,c =-3.所以f (x )=-12x 2+x -3.(1)换元法:设1x=t ,注意新元的范围.(2)待定系数法:设二次函数的一般式f(x)=ax 2+bx +c.跟踪训练2 (1)已知f (x 2+2)=x 4+4x 2,则f (x )的解析式为________; (2)已知f (x )是一次函数,且f (f (x ))=4x -1,则f (x )=________. 解析:(1)因为f (x 2+2)=x 4+4x 2=(x 2+2)2-4,令t =x 2+2(t ≥2),则f (t )=t 2-4(t ≥2),所以f (x )=x 2-4(x ≥2). (2)因为f (x )是一次函数,设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a (ax +b )+b =a 2x +ab +b . 又因为f (f (x ))=4x -1,所以a 2x +ab +b =4x -1.所以⎩⎪⎨⎪⎧a 2=4,ab +b =-1,解得⎩⎪⎨⎪⎧a =2,b =-13或⎩⎪⎨⎪⎧a =-2,b =1.所以f (x )=2x -13或f (x )=-2x +1.答案:(1)f (x )=x 2-4(x ≥2) (2)2x -13或-2x +1(1)换元法 设x 2+2=t. (2)待定系数法 设f(x)=ax +b.题型三 求分段函数的函数值 [经典例题] 例3 (1)设f (x )=⎩⎪⎨⎪⎧|x -1|-2(|x |≤1),11+x 2(|x |>1),则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=( )A.12B.413 C .-95 D.2541(2)已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f (f (n +5)),n <10,则f (8)=________.【解析】 (1)∵f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-2=-32, ∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-32=11+94=413,故选B.判断自变量的取值范围,代入相应的解析式求解. (2)因为8<10,所以代入f (n )=f (f (n +5))中, 即f (8)=f (f (13)).因为13>10,所以代入f (n )=n -3中,得f (13)=10, 故f (8)=f (10)=10-3=7. 【答案】 (1)B (2)7 方法归纳(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求得. (2)像本题中含有多层“f ”的问题,要按照“由里到外”的顺序,层层处理. (3)已知函数值求相应的自变量值时,应在各段中分别求解.跟踪训练3 已知f (x )=⎩⎪⎨⎪⎧x +1 (x >0),π (x =0),0 (x <0),求f (-1),f (f (-1)),f (f (f (-1))).解析:∵-1<0,∴f (-1)=0,∴f (f (-1))=f (0)=π,∴f (f (f (-1)))=f (π)=π+1. 根据不同的取值代入不同的解析式.题型四 函数图象[教材P 68例6]例4 给定函数f (x )=x +1,g (x )=(x +1)2,x ∈R , (1)在同一直角坐标系中画出函数f (x ),g (x )的图象;(2)∀x ∈R ,用M (x )表示f (x ),g (x )中的较大者,记为M (x )=max{f (x ),g (x )}. 例如,当x =2时,M (2)=max{f (2),g (2)}=max{3,9}=9. 请分别用图象法和解析法表示函数M (x ).【解析】 (1)在同一直角坐标系中画出函数f (x ),g (x )的图象(图1).(2)由图1中函数取值的情况,结合函数M (x )的定义,可得函数M (x )的图象(图2). 由(x +1)2=x +1,得x (x +1)=0.解得x =-1,或x =0. 结合图2,得出函数M (x )的解析式为 M (x )=⎩⎪⎨⎪⎧(x +1)2,x ≤-1,x +1,-1<x ≤0,(x +1)2,x >0.状元随笔 1.先在同一坐标系中画出f(x)、g(x); 2.结合图象,图象在上方的为较大者; 3.写出M(x). 教材反思(1)画一次函数图象时,只需取两点,两点定直线.(2)画二次函数y =ax 2+bx +c 的图象时,先用配方法化成y =a (x -h )2+k 的形式⎝⎛⎭⎪⎫其中h =-b 2a ,k =4ac -b 24a ,确定抛物线的开口方向(a >0开口向上,a <0开口向下)、对称轴(x =h )和顶点坐标(h ,k ),在对称轴两侧分别取点,按列表、描点、连线的步骤画出抛物线.(3)求两个函数较大者,观察图象,图象在上方的为较大者.跟踪训练4 作出下列函数的图象: (1)y =-x +1,x ∈Z ; (2)y =2x 2-4x -3,0≤x <3; (3)y =|1-x |.解析:(1)函数y =-x +1,x ∈Z 的图象是直线y =-x +1上所有横坐标为整数的点,如图(a)所示.(2)由于0≤x <3,故函数的图象是抛物线y =2x 2-4x -3介于0≤x <3之间的部分,如图(b).(3)因为y =|1-x |=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1,故其图象是由两条射线组成的折线,如图(c).(2)先求对称轴及顶点,再注意x 的取值(部分图象).(3)关键是根据x 的取值去绝对值.解题思想方法 数形结合利用图象求分段函数的最值 例 求函数y =|x +1|+|x -1|的最小值. 【解析】 y =|x +1|+|x -1|=⎩⎪⎨⎪⎧-2x ,x ≤-1,2,-1<x ≤1,2x ,x >1.作出函数图象如图所示:由图象可知,x ∈[-1,1]时,y min =2.【反思与感悟】 (1)分段函数是一个函数,其定义域是各段“定义域”的并集,其值域是各段“值域”的并集.写定义域时,区间的端点需不重不漏.(2)求分段函数的函数值时,自变量的取值属于哪一段,就用哪一段的解析式. (3)研究分段函数时,应根据“先分后合”的原则,尤其是作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象.一、选择题1.如图是反映某市某一天的温度随时间变化情况的图象.由图象可知,下列说法中错误的是( )A .这天15时的温度最高B .这天3时的温度最低C .这天的最高温度与最低温度相差13 ℃D .这天21时的温度是30 ℃解析:这天的最高温度与最低温度相差为36-22=14 ℃,故C 错. 答案:C2.已知f (x -1)=1x +1,则f (x )的解析式为( ) A .f (x )=11+x B .f (x )=1+xxC .f (x )=1x +2D .f (x )=1+x 解析:令x -1=t ,则x =t +1,∴f (t )=1t +1+1=12+t,∴f (x )=1x +2. 答案:C3.函数y =x 2|x |的图象的大致形状是( )解析:因为y =x 2|x |=⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,所以函数的图象为选项A.答案:A4.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,且f (a )+f (1)=0,则a 等于( )A .-3B .-1C .1D .3解析:当a >0时,f (a )+f (1)=2a +2=0⇒a =-1,与a >0矛盾;当a ≤0时,f (a )+f (1)=a +1+2=0⇒a =-3,符合题意.答案:A 二、填空题5.f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,1]2-x ,x ∈(1,2]的定义域为______,值域为______.解析:函数定义域为[0,1]∪(1,2]=[0,2].当x ∈(1,2]时,f (x )∈[0,1),故函数值域为[0,1)∪[0,1]=[0,1]. 答案:[0,2] [0,1]6.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,a =73.答案:737.若f (x )-12f (-x )=2x (x ∈R ),则f (2)=________.解析:∵f (x )-12f (-x )=2x ,∴⎩⎪⎨⎪⎧f (2)-12f (-2)=4,f (-2)-12f (2)=-4,得⎩⎪⎨⎪⎧2f (2)-f (-2)=8,f (-2)-12f (2)=-4,相加得32f (2)=4,f (2)=83.答案:83三、解答题8.某同学购买x (x ∈{1,2,3,4,5})张价格为20元的科技馆门票,需要y 元.试用函数的三种表示方法将y 表示成x 的函数.解析:(1)列表法x /张 1 2 3 4 5y /元 20 40 60 80 100(2)(3)解析法:y =20x ,x ∈{1,2,3,4,5}.9.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x );(2)已知f (x +1)=x 2+4x +1,求f (x )的解析式.解析:(1)由题意,设函数为f (x )=ax +b (a ≠0),∵3f (x +1)-f (x )=2x +9,∴3a (x +1)+3b -ax -b =2x +9,即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9, ∴a =1,b =3.∴所求函数解析式为f (x )=x +3.(2)设x +1=t ,则x =t -1,f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.[尖子生题库]10.画出下列函数的图象:(1)f (x )=[x ]([x ]表示不大于x 的最大整数);(2)f (x )=|x +2|.解析:(1)f (x )=[x ]=⎩⎪⎨⎪⎧ …-2,-2≤x <-1,-1,-1≤x <0,0,0≤x <1,1,1≤x <2,2,2≤x <3,…函数图象如图1所示.图1 图2(2)f (x )=|x +2|=⎩⎪⎨⎪⎧ x +2,x ≥-2,-x -2,x <-2.画出y =x +2的图象,取[-2,+∞)上的一段;画出y =-x -2的图象,取(-∞,-2)上的一段,如图2所示.。
(本栏目内容,在学生用书中以独立形式分册装订!)
一、选择题(每小题5分,共20分)
1.函数f(x)=x+1x的零点的个数为( )
A.0 B.1
C.2 D.3
解析: 函数f(x)的定义域为{x|x≠0},
当x>0时,f(x)>0;
当x<0时,f(x)<0,
但此函数在定义域内的图象不连续,
所以函数没有零点,故选A.
答案: A
2.函数f(x)=x+ln x的零点所在的区间为( )
A.(-1,0) B.(0,1)
C.(1,2) D.(1,e)
解析: 法一:因为x>0,所以A错.又因为f(x)=x+ln x在(0,+∞)上为
增函数,f(1)=1>0,所以f(x)=x+ln x在(1,2),(1,e)上均有f(x)>0,故C、D
错.
法二:取x=1e∈(0,1),因为f1e=1e-1<0,f(1)=1>0,所以f(x)=x+ln x的
零点所在的区间为(0,1).
答案: B
3.函数f(x)=ln x-(x2-4x+4)的零点个数为( )
A.0 B.1
C.2 D.3
解析: 函数f(x)=ln x-(x2-4x+4)的零点个数等价于g(x)=x2-4x+4与
φ(x)=ln x的交点个数.作出两个函数的图象,利用数形结合思想求解.
g(x)=x2-4x+4=(x-2)2,在同一平面直角坐标系内画出函数φ(x)=ln x与
g(x)=(x-2)2的图象(如图).由图可得两个函数的图象有2个交点.
答案: C
4.函数f(x)=ax2+bx+c,若f(1)>0,f(2)<0,则f(x)在(1,2)上零点的个数为
( )
A.至多有一个 B.有一个或两个
C.有且仅有一个 D.一个也没有
解析: 若a=0,则f(x)=bx+c是一次函数,由f(1)·f(2)<0得零点只有一
个;若a≠0,则f(x)=ax2+bx+c为二次函数,若f(x)在(1,2)上有两个零点,则
必有f(1)·f(2)>0,与已知矛盾.故f(x)在(1,2)上有且仅有一个零点.
答案: C
二、填空题(每小题5分,共15分)
5.已知三个函数f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零点依次为a,
b,c,则a,b,c的大小关系为________.
解析: 由于f(-1)=12-1=-12<0,f(0)=1>0,
故f(x)=2x+x的零点a∈(-1,0);
因为g(2)=0,故g(x)的零点b=2;
h12=-1+12=-12<0,h(1)=1>0,
故h(x)的零点c∈12,1,因此a
的零点是________.
解析: 由 22-2a-b=0,32-3a-b=0,得 a=5,b=-6,
∴g(x)=-6x2-5x-1的零点是-12,-13.
答案: -12,-13
7.若函数f(x)=2ax2-x-1在(0,1)上恰有一个零点,则a的取值范围是
________.
解析: ∵f(x)=0在(0,1)上恰有一个解,有下面两种情况:
①f(0)·f(1)<0或② a≠0,Δ=0,且其解在(0,1)上,
由①得(-1)(2a-2)<0,∴a>1,
由②得1+8a=0,即a=-18,
∴方程-14x2-x-1=0,
∴x2+4x+4=0,
即x=-2∉(0,1)应舍去,综上得a>1.
答案: a>1
三、解答题(每小题10分,共20分)
8.求下列函数的零点:
(1)f(x)=2x+b;
(2)f(x)=-x2+2x+3;
(3)f(x)=log3(x+2);
(4)f(x)=2x-2.
解析: (1)令2x+b=0,解得x=-b2,即函数f(x)=2x+b的零点是x=-b2.
(2)令-x2+2x+3=0,解得x=-1或x=3,即函数f(x)=-x2+2x+3的零
点是x1=-1,x2=3.
(3)令log3(x+2)=0,解得x=-1,即函数f(x)=log3(x+2)的零点是x=-1.
(4)令2x-2=0,解得x=1,即函数f(x)=2x-2的零点是x=1.