燃烧学复习资料重要资料
- 格式:doc
- 大小:1.02 MB
- 文档页数:18
燃烧学复习题燃烧学复习题燃烧学是化学工程中的重要学科,涉及到燃烧反应的基本原理和过程。
燃烧学的掌握对于理解和优化燃烧过程以及防止燃烧事故具有重要意义。
本文将通过一些复习题来回顾和巩固燃烧学的知识。
1. 什么是燃烧?燃烧是指可燃物与氧气(或氧化剂)在适当条件下发生的化学反应,产生热、光和气体产物的过程。
它是一种氧化还原反应。
2. 燃烧反应的基本要素是什么?燃料、氧气(或氧化剂)和适当的点火源是燃烧反应的基本要素。
燃料是指可燃物质,可以是固体、液体或气体。
氧气是燃烧的氧化剂,点火源则提供了启动和维持燃烧反应所需的能量。
3. 燃烧反应的三个基本要素之间的关系是什么?燃料和氧气之间的摩尔比称为燃料与氧化剂的化学计量比。
当燃料与氧化剂的化学计量比不满足时,燃烧反应无法进行或进行不完全。
当燃料与氧化剂的化学计量比满足时,燃烧反应可以进行,并且反应完全。
4. 燃烧反应的热效应是什么?燃烧反应释放的能量称为热效应。
热效应可以是放热反应(放出能量)或吸热反应(吸收能量)。
燃料的热值是指单位质量燃料完全燃烧所释放的热量。
5. 燃烧反应的速率受哪些因素影响?燃烧反应的速率受燃料与氧化剂的接触面积、温度、压力和反应物浓度的影响。
较大的接触面积可以提高反应速率,较高的温度和压力也可以加快反应速率。
反应物浓度越高,反应速率越快。
6. 燃烧反应的产物有哪些?燃烧反应的产物主要包括热、光和气体产物。
燃烧过程中产生的热可以用来进行加热、发电等。
光产物则是燃烧反应中的明亮火焰。
气体产物包括二氧化碳、水蒸气、氮气等。
7. 什么是火焰?火焰是燃烧反应中可见的明亮气体体积。
火焰的颜色和形状取决于燃料的性质和燃烧条件。
火焰的内部温度较高,外部温度较低。
8. 燃烧反应的分类有哪些?燃烧反应可以分为完全燃烧和不完全燃烧。
完全燃烧是指燃料与氧化剂按照化学计量比进行反应,产生的产物只有二氧化碳和水。
不完全燃烧是指燃料与氧化剂的化学计量比不满足,产生的产物中可能还有一些碳氢化合物和一氧化碳。
工程燃烧学1.要使具有评价能力的普通分子变为具有能量超出一定值的活化分子所需的最小能量称为活化能,其量级在42000~420000kJ/kmol。
2.由反应物经一步反应直接生成产物的反应是简单反应。
3.煤气在空气中燃烧时的反应级数约等于2。
4. 悬浮燃烧与层状燃烧相比,煤粉与空气的接触面积大大增加,两者的混合得到了显著的改善,加快着火,燃烧非常剧烈。
5. 天然气的“干气”主要成分是CH4和C2H6。
6.电厂炉渣不属于城市生活垃圾。
7.拉瓦尔管高压油喷嘴是高压燃油燃烧器。
8.过渡燃烧区(扩散-动力燃烧区)的传质速度相当于化学反应速度。
9. 悬浮燃烧容易实现大型化。
10. 按燃烧过程中控制因素可将火焰分为:预混火焰和扩散火焰。
11. 确保良好雾化质量包括:燃油温度,雾化介质参数,油喷嘴的结构,燃油压力。
12. 煤的主要化学组成中包括碳(C)、氢(H)、氧(O)、氮(N)、硫(S) 。
13. 一般喷嘴的均匀性指数n为2~4,转杯喷嘴为8.14. 离子间进行化学反应,由于不需要破坏旧的连续,活化能趋近于015. H2的氧化反应机理,包括频率因子、温度指数、基元反应的活化能。
16. 湍流火焰的稳定性,主要是脱火问题17. 常用脉动燃烧器包括:四分之一波形脉动燃烧器,也叫施密特型脉动燃烧器,亥尔姆霍茨脉动燃烧器。
18.内燃机运行性能指标包括:冷起动性能、噪声和排气品质。
19. 可逆过程的中∆G与∆S的对应关系为∆S<0,∆G>0。
20. 用氧气或富氧空气助燃,大大减少了产物生成量,因而可以有效提高燃烧温度。
21. 煤的化学组成主要由碳、氢、氧、氮、硫等元素组成。
22. 为了更好地了解垃圾焚烧过程,将其依次分为干燥、热分解和燃烧三个阶段。
23.燃烧过程的三个步骤是:蒸发、混合、燃烧.24. 链式反应的基本过程:链的激发反应、链的传递、链的断裂。
25. 影响汽油机性能的关键性指标主要是辛烷值和馏程。
一、燃烧热力学1.自由能吉布斯自由能又叫吉布斯函数,常用G表示,它的定义是:G = U − TS + pV = H – TS;G = U − TS + pV = H – TS热力学第二定律在闭口系统中表示为:(dG)T,P=d(H-TS)T,P≤0即:等温、等压过程总是向着G减少的方向进行。
热力学平衡的必要条件:(dG)T,P=0T=constP=const生成吉布斯自由能由稳定单质生成1mol的化合物的吉布斯自由能增量。
标准生成吉布斯自由能由标准状态下的稳定单质生成1mol标准状态下化合物的吉布斯自由能增量反应吉布斯自由能在几种化合物(或元素)相互反应形成1mol生成物时吉布斯自由能的增量标准反应吉布斯自由能标准状态下几种化合物(或元素)相互反应形成1mol标准状态生成物时吉布斯自由能的增量。
2.质量作用定律当温度不变时,某化学反应的反应速度与该瞬间各反应物浓度的乘积成正比例,如果该反应按照某化学反应方程式一步完成(简单,基元反应),则每种反应物浓度的方次即等于化学反应方程式中的反应比例常数。
(反映了反应物浓度与反应速度的关系)3.输运定律燃烧过程是物理与化学相互作用的过程。
其中质量、动量以及能量交换起着十分重要的作用。
质量、动量以及能量交换取决于燃烧过程中的浓度梯度、速度梯度以及温度梯热传导定律。
度,服从费克(Fick)扩散定律、牛顿(Newton)粘性定律以及傅立叶(Fourier)热传导定律费克扩散定律在双组分混合物中组分A的扩散通量的方向与该组分当地质量分数梯度方向相反,绝对值正比于该梯度值,比例系数称为扩散系数。
牛顿粘性定律二、燃烧动力学1.化学反应速度单位时间内由于化学反应而使反应物(燃料产物)浓度改变的速度。
(对于多相反应而言指单位时间内单位表面积上参加反应物质的数量)阿累尼乌斯定律(温度对化学反应速度的影响主要表现在反应常数上)简单化学反应(基元反应),或复杂化学反应中的每一步基元反应或有明确反应级数n和速度常数k的复杂反应k= k0 exp(-E/RT),其中K0:频率因子E:活化能反应级数化学反应速度表达式中浓度指数之和化学反应速度影响因素1. 温度 T 温度升高,反应速度加快;到一定温度(10000℃º)后,增加缓慢2. 活化能 E反应本身固有性质; E高,难于反应3. 反应物浓度 C浓度高,反应速度加快4. 反应物分压分压大即p浓度高,反应速度也加快5. 反应级数 n由化学反应本身决定2.碳的反应机理碳粒燃烧过程:扩散、吸附、反应、内扩散、气相反应、脱附用化学反应速度表示碳的反应速度:w = kCb用氧气的扩散速度表示碳的反应速度:w =αd (C0 -Cb )碳粒燃烧的动力区、扩散区和过渡区当温度低于900—1000℃时,碳粒燃烧处于动力区,此时提高燃烧速度的措施主要有:( 1)提高C0( 2)提高温度,k提高当温度高于1400℃时,碳粒燃烧处于扩散区,此时提高燃烧速度的措施主要有:( 1)提高C0( 2)提高扩散速度( 3)减小粒径碳粒燃烧处于过渡区时提高燃烧速度的措施主要有:( 1)提高C02)提高扩散速度( 3)减小粒径( 4)提高温度三、着火理论1.热力着火理论放热量大于散热量时内能增加,温度增大,当达到着火点时即可着火。
绪论、第一章1、从正负两方面论述研究燃烧的意义。
(P5)①研究如何提高燃烧效率,保证燃烧过程的稳定性和安全性,节约能源,并充分利用新能源;②如何防止抑制火灾及矿井瓦斯或具有粉尘工厂存在的爆炸危险性,减少有用燃烧过程中的工业污染问题。
2、不同的学科研究燃烧学各有什么侧重点?(P5)实验研究:对于生产中提出的燃烧技术问题主要还只能通过实验来解决。
并发展出诊断燃烧学。
理论分析:主要为各种燃烧过程的基本现象建立和提供一般性的物理概念,从物理本质上对各种影响因素做出定性分析,从而对实验研究和数据处理指出合理、正确的方向。
3、从化学观点看,燃烧反应具有的特征是什么?(物质能量总体是下降的)(P6)氧化剂和燃料的分子间进行着激烈的快速化学反应,原来的分子结构被破坏,原子的外层电子重新组合,经过一系列中间产物的变化,最后生成最终燃烧产物。
这一过程,物质总的热量是降低的,降低的能量大都以热和光的形式释放而形成火焰。
4、燃烧过程的外部特征是什么?①剧烈的氧化还原反应②放出大量的热③发光5、化学爆炸与火灾的关系?(PPT)1)紧密联系,相伴发生2)某些物质的火灾和爆炸具有相同的本质,都是可燃物与氧化剂的化学反应。
3)主要区别:燃烧是稳定的和连续进行的,能量的释放比较缓慢,而爆炸是瞬时完成的,可在瞬间突然释放大量能量。
4)同一物质在一种条件下可以燃烧,在另一种条件下可以爆炸。
(煤块燃烧与煤粉爆炸)5)在存放有易燃易爆物品较多的场合和某些生产过程中,可发生火灾爆炸的连锁反应,先爆炸后燃烧、先燃烧后爆炸。
6、按化学反应和物理过程之间的关系,燃烧包括哪三种类型?(P5)1)动力燃烧(动力火焰):主要受燃烧过程中的化学动力因素所控制,如着火、爆炸;2)扩散燃烧(扩散火焰):主要受流动、扩散和物理混合等因素控制,如液体燃料滴、碳粒、蜡烛;3)预混燃烧(预混火焰):此时化学动力因素和物理混合因素差不多起同样重要的作用,如汽油发动机、家用煤气炉。
燃烧学复习资料第六章1.固体的阴燃⑴阴燃:可燃固体在堆捆或空气不足的条件下,发生的只冒烟而无火焰的燃烧现象。
在规定的试验条件下,可燃固体发生的持续、有烟、无焰的燃烧现象。
(材料燃烧性能实验定义)⑵阴燃发生条件①内部条件:受热后能产生刚性结构的、多孔性物质(如碳)的可燃固体,具备多孔蓄热和大面积吸附氧。
②引起阴燃的热源:ⅰ自燃热源;ⅱ先阴燃热源;ⅲ有焰燃烧熄火后阴燃;ⅳ物质内部热点或外部热流。
⑶阴燃的结构区域I:热解区。
在该区内温度急剧上升,并且从原始材料中挥发出烟。
相同的固体材料,在阴燃中产生的烟与在有焰燃烧中产生的烟大不相同,因阴燃通常不发生明显的氧化,其烟中含有可燃性气体,冷凝成悬浮粒子的高沸点液体和焦油等。
区域II:炭化区。
在该区中,炭的表面发生氧化并放热,温度升高到最大值。
在静止空气中,纤维素材料阴燃在这个区域的典型温度为600~750℃。
该区产生的热量一部分通过传导进入原始材料,使其温度上升并发生热解,热解产物(烟)挥发后就剩下炭。
对于多数有机材料,完成这种分解、炭化过程,要求温度大于250~300℃。
区域III:残余灰/炭区。
在该区中,灼热燃烧不再进行,温度缓慢下降。
⑷阴燃传播速度的影响因素①颗粒大小;②湿度;③粉尘厚度;④外加气流;⑤外加剂。
⑸阴燃向有焰燃烧的转变(一)阴燃从材料堆垛内部传播到外部时转变为有焰燃烧(二)加热温度提高,阴燃转变为有焰燃烧(三)密闭空间内材料的阴燃转变为有焰燃烧2.固体的燃烧形式(一)蒸发式燃烧火源加热——熔融蒸发——着火燃烧(关键阶段)火源加热——升华——着火燃烧(二)表面燃烧:在可燃固体表面上由氧和物质直接作用而发生的燃烧现象。
(三)分解燃烧火源加热——热解——着火燃烧(关键阶段)(四)熏烟燃烧(阴燃):某些物质在堆积或空气不足的条件下发生的只冒烟而无火焰的燃烧现象。
(五)轰燃:可燃固体析出的可燃挥发分在空气中的爆炸式燃烧。
异相(非均相)燃烧:可燃物与氧化剂处于固、气两种不同状态时的燃烧现象。
消防工程—《消防燃烧学》—对应“考试院”指定用书考点类别—考试大纲—识记、领会、基础应用、综合应用重点说明—重点标注—对应具体教材页数—重要知识例题绪论气体、液体,固体物质,体系的着火过程都应满足:热释放速率大于热损失速率消防燃烧学在消防学科中的地位和作用(容易考)消防燃烧学基本理论是消防安全管理的基础消防燃烧学基本理论是火灾扑救的基础消防燃烧学基本理论是火灾原因鉴定的基础消防燃烧学基本理论是消防技术开发与应用的基础消防燃烧学基本理论是消防工程设计与评估的基础消防燃烧学的特点(了解)研究对象很广泛、实践性很强、交叉性很强、发展性很强、古老而年轻。
当今消防科技的根本变革:是火灾认识的科学化和火灾防治的工程化。
第一章火灾燃烧基础知识1.识记:火灾燃烧的定义(P25)(容易考)(1)火灾:是指在时间或空间上失去控制的燃烧所造成的灾害。
(2)燃烧:是可燃物与助燃物相互作用发生的强烈放热化学反应,通常伴有火焰、发光和(或)发烟现象。
2.领会:燃烧的过程(P25)(1)燃烧的本质:氧化还原反应;(2)燃烧反应的实质:游离基的链式反应,光和热是燃烧过程中的物理现象。
3.简单应用:燃烧条件在消防中的应用(P26-27)(容易考)(1)燃烧的3个必要条件:可燃物+助燃物+点火源(2)具备以上3个条件也不一定会发生燃烧,所以燃烧4个充要条件:一定的可燃物浓度+一定的助燃物浓度或氧含量+一定的点火能量+相互作用①可燃物:凡是能与空气中的氧或其他氧化剂起燃烧反应的物质,均称为可燃物。
②助燃物:凡是与可燃物结合能导致和支持燃烧的物质,都叫做助燃物;一定要注意助燃物不一定是氧气。
③点火源:凡是能引起物质燃烧的点燃能源统称为点火源。
(3)持续燃烧的4个必要条件:可燃物+助燃物+点火源+游离基(自由基)在燃烧区域必须存在适当种类和数量的游离基(自由基)“中间体”。
游离基又叫自由基:它是由单质或化合物的均裂而产生的带有未成对电子的原子或基团。
燃烧与爆炸理论复习提纲及知识点一、燃烧理论基础1.燃烧概念及特征:燃烧是指可燃物质与氧气(或含氧体)在一定条件下放出热、光以及大量的有害气体等物质,产生火焰、产生明亮或红外线的光亮、产生热、产生烟雾和气体等。
2.燃烧产物及其特点:燃烧产物主要有热、光、火焰、烟雾和气体等,其中烟雾和气体是有害的,会对人体以及环境造成危害。
3.燃烧过程及要素:燃烧过程由以下三个要素组成:燃料、助燃剂和氧气。
燃料是产生热的物质,助燃剂是加速燃烧的物质,氧气是燃烧的供给气体。
4.燃烧反应方程式:燃烧反应方程式描述了燃料和氧气在一定条件下发生燃烧的化学反应过程,可以通过方程式来推算燃烧的产物以及释放的能量。
5.燃烧的传热方式:燃烧的传热方式包括辐射、传导和对流。
辐射是指燃烧产生的热通过空气中的电磁波辐射传递;传导是指热通过物体固体材料内部的分子传递;对流是指热通过流体内部的对流传递。
二、燃烧过程和制止燃烧方法1.燃烧过程:燃烧过程包括燃烧启动、燃烧加速和燃烧自维持三个阶段。
燃烧启动是指燃料和氧气开始发生化学反应;燃烧加速是指燃料和氧气的化学反应速率逐渐加快;燃烧自维持是指燃料和氧气的化学反应维持在一定的速率,不再需要外界能量提供。
2.燃烧过程中的火焰结构:火焰由三个区域组成:燃料区、氧化区和冷却区。
燃料区是燃料、助燃剂和部分未反应的氧气混合的区域,发生燃烧反应;氧化区是氧气与燃料在火焰中反应的区域;冷却区是接近火焰外围的空气。
3.制止燃烧的方法:制止燃烧的方法主要有断燃剂、隔离、升温、窒息和抑制等。
断燃剂是指切断燃料与氧气接触的方法;隔离是指将燃料与氧气分开的方法;升温是指提高燃烧温度,使燃料燃烧困难;窒息是指排除氧气的方法;抑制是指使用抑制剂抑制火焰的方法。
三、爆炸理论基础1.爆炸概念及特征:爆炸是指可燃物质在一定条件下短时间内快速氧化或分解,产生大量高温、高压气体释放的现象。
爆炸特征包括爆炸压力、爆炸温度和爆炸速度等。
消防燃烧学燃烧学基础知识复习重点题库在消防工作中,燃烧学是一门非常重要的学科。
消防员必须掌握燃烧学的基本知识和常识,才能更好地处理各种火灾事故。
下面是燃烧学基础知识复习重点题库,每个题目都有详细的答案解释。
一、基本概念与定义1. 什么是燃烧?答:燃烧是一种物质与氧气在一定条件下发生的剧烈氧化反应,释放出大量热和光,同时产生气体、水和固体产物。
2. 烈性物质和常温物质的区别是什么?答:烈性物质指在常压、常温下易于挥发、易于燃烧的物质,如酒精、汽油、天然气等;常温物质指在常压、常温下不易挥发、不易燃烧的物质,如水、石墨、金属等。
3. 火焰是什么?答:火焰是一种可见的燃烧现象,是由燃料在氧气中的氧化反应所产生的,火焰是由燃烧产生的高温气体发光而成。
二、燃烧的主要条件4. 燃烧的主要条件有哪些?答:燃烧的主要条件有:燃料、氧气和热源三个因素。
缺一不可。
其中,燃料和氧气是燃烧的基本条件,热源是促进燃烧的必要条件。
5. 什么是自燃?答:自燃是指物质在无外界能量及外部热源影响下发生的自身燃烧现象,如油棕榈、纸张、木材等。
6. 什么是闪点?答:闪点是指液体燃料在一定条件下,达到一定温度时,会产生可燃性蒸汽,这些蒸汽与空气中的氧气混合可以燃烧,这个温度就是闪点。
三、燃烧的种类7. 根据燃料状态,燃烧可以分为哪几种类型?答:根据燃料状态,燃烧可以分为固体燃烧、液体燃烧和气体燃烧。
8. 什么是气体燃烧?答:气体燃烧是指气体在氧气或氧气和其他气体的作用下发生氧化反应,耗散能量,释放光线和热能的过程。
9. 火焰可以分为哪几种类型?答:火焰可以分为大火焰、小火焰和蓝焰、黄焰、红焰等不同颜色的火焰。
四、火灾与灭火10. 什么是火灾?答:火灾是指物质在热源、氧气和可燃物质的条件下,发生氧化反应,放出热和光,并持续蔓延的事件。
11. 灭火的原则是什么?答:灭火的原则是战略性灭火优先,战术性灭火实施。
12. 灭火剂的种类有哪些?答:灭火剂可以分为干粉灭火剂、二氧化碳灭火剂、泡沫灭火剂、水喷雾灭火剂、滤沙灭火剂等多种类型。
1.阿仑尼乌斯定律:在化学反应的反应物浓度相等的条件下,化学反应速率常数随时间变化的关系。
2.质量作用定律:在一定温度下,基元反应在任何瞬间的反应速率与该瞬间参与反应的反应物浓度幂的乘积成正比。
3.盖斯定律:在条件不变的情况下,化学反应的热效应只与起始和终了状态有关,而与变化途径无关。
4.着火延迟期;在混合气体已达到着火条件下,由初始状态到温度聚升的瞬间所需的时间。
5.层流火焰传播速度:在层流预混可燃气体的燃烧过程中焰面沿其法线方向移动的速度称为层流火焰传播速度(火焰面移动速度:指当预混可燃气体在管中燃烧,产生的火焰不稳定时火焰面沿管轴线移动的速度。
火焰面移动速度反映了火焰不稳定时火焰面移动的快慢)6.折算薄膜:把边界层的传热传质近似看作通过球对称的边界层薄膜传热传质阻力。
7.淬熄距离:刚刚能够维持火焰传播的最小管道尺寸。
8.绝热火焰温度:燃料和空气的初始状态一定,绝热过程燃烧产物能达到的温度。
9.雾化角:喷嘴出口到喷雾炬外包络线的两条切线之间的夹角,也称为喷雾锥角。
10.斯蒂芬流:在燃烧问题中,在相分界面处存在着法向的流动,多组分流体在一定的条件下在表面处将形成一定的浓度梯度,因而可能形成各组分法向的扩散物质流。
如果相分界面上有物理或化学过程存在,那么这种物理或化学过程也会产生或消耗一定的质量流。
于是,在物理或化学过程作用下,表面处又会产生一个与扩散物质流有关的法向总物质流,称为斯蒂芬流。
11.预混火焰和扩散火焰:预混火焰是燃料和氧化剂充分混合后的燃烧火焰。
火焰温度很高,没有黑烟,火焰短而强。
扩散火焰是燃料燃烧所需的空气全部由外界提供,靠可燃气体与空气中的氧相互扩散来完成燃烧过程的火焰。
燃烧过程较长,火焰温度低,燃料不易燃尽,一般有碳烟,火焰很长。
12.盖斯定律:化学反应的反应热只与反应体系的始态和终态有关,而与反应的途径无关13.缓燃与爆燃:缓燃(正常传播):火焰锋面以导热和对流的方式下传热给可燃混合物引起的火焰传播,也可能有辐射(如煤粉燃烧时的火焰传播可能以辐射为主,也有可能为对流和辐射并重)。
燃烧知识点总结大全一、燃烧的定义燃烧是指可燃物质与氧气或其他氧化剂接触时,发生氧化反应并释放出热能的过程。
燃烧通常伴随着火焰、烟雾和熔化现象,是一种放热反应。
在自然界中,燃烧是生物生长和生命活动的重要能量来源,也是地球上大多数生物产生的主要能源。
二、燃烧的基本过程燃烧的基本过程包括点火、燃烧和熄灭三个阶段。
1. 点火阶段:在点火条件下,可燃物质与氧气或其他氧化剂接触后,发生氧化反应并释放出大量热能。
点火条件通常包括点火源、可燃物质和氧气三个要素。
2. 燃烧阶段:在点火后,可燃物质与氧气继续反应,并持续释放热能和光能。
燃烧过程中,可燃物质逐渐燃尽,氧气逐渐减少,热能和光能持续释放。
3. 熄灭阶段:当可燃物质燃尽或氧气耗尽时,燃烧过程结束,热能和光能不再释放。
熄灭通常伴随着烟雾和灰烬的产生,是燃烧过程的结束阶段。
三、燃烧的热力学原理燃烧是一种放热反应,其热力学原理主要包括燃烧热、燃烧温度和燃烧速率三个方面。
1. 燃烧热:燃烧热是指单位质量燃料完全燃烧时所释放的热能。
燃烧热是衡量燃料能量含量的重要指标,也是评价燃料燃烧效率的重要参考。
2. 燃烧温度:燃烧温度是指燃烧过程中产生的火焰温度。
燃烧温度取决于燃料的燃烧热和氧化剂的供应量,也受到燃料种类、点火条件和其他因素的影响。
3. 燃烧速率:燃烧速率是指单位时间内燃料燃烧的速度。
燃烧速率受到燃烧热、燃烧温度和氧化剂供应量的影响,也取决于燃料的物理性质和化学性质。
四、燃烧产物燃烧过程中产生的主要产物包括热能、光能、二氧化碳、水蒸气和一氧化碳等:1. 热能:燃烧过程中产生的主要能量形式,可用于供暖、烹饪和工业生产等领域。
2. 光能:燃烧过程中产生的可见光和红外辐射,是火焰和火光的来源,也是照明和信号传输的重要能源。
3. 二氧化碳:燃烧过程中产生的主要气体产物,是地球上重要的温室气体,也是植物光合作用的原料。
4. 水蒸气:燃烧过程中产生的主要气体产物,是大气中的重要成分,也是降水和云雾的来源。
第三章 着火和灭火理论一、谢苗诺夫自燃理论 1. 基本思想:某一反应体系在初始条件下,进行缓慢的氧化还原反应,反应产生的热量,同时向环境散热,当产生的热量大于散热时,体系的温度升高,化学反应速度加快,产生更多的热量,反应体系的温度进一步升高,直至着火燃烧。
2.着火的临界条件:放、散热曲线相切于C 点。
3.∆T=ER 20B T T T ≈-① 改变散热条件 ②增加放热二、区别弗兰克-卡门涅茨基热自燃理论与谢苗诺夫热自燃理论的异同点1.谢苗诺夫热自燃理论适用范围:适用于气体混合物,可以认为体系内部温度均一;对于比渥数 Bi 较小的堆积固体物质,也可认为物体内部温度大致相等; 不适用于比渥数Bi 大的固体。
2.弗兰克-卡门涅茨基热自燃理论:适用于比渥数Bi 大的固体(物质内部温度分布的不均匀性 ); 以体系最终是否能得到稳态温度分布作为自燃着火的判断准则 ;Tq αT自燃临界准则参数 δcr 取决于体系的几何形状。
三、链锁自然理论 1.反应速率与时间的关系 2.运用链锁自燃理论解释着火半岛现象 在第一、二极限之间的爆炸区内有一点P(1)保持系统温度不变而降低压力,P 点则向下垂直移动自由基器壁消毁速度加快,当压力下降到某一数值后,f < g, φ < 0 ----------------------第一极限(2)保持系统温度不变而升高压力,P 点则向上垂直移动自由基气相消毁速度加快,当压力身高到某一数值后,f < g, φ < 0 ----------------------第二极限(3)压力再增高,又会发生新的链锁反应导致自由基增长速度增大,于是又能发生爆炸。
3.基于f (链传递过程中链分支引起的自由基增长速率)和g (链终止过程中自由基的消毁速率 )分析链锁自燃着火条件w 0w 123M HO M O H +→++⋅22⋅⋅+→+OH O H H HO 222a.在低温时, f 较小(受温度影响较大),相比而言,g 显得较大,故:这表明,在 的情况下,自由基数目不能积累,反应速率不会自动加速,反应速率随着时间的增加只能趋势某一微小的定值,因此,f<g 系统不会着火。
b.随着系统温度升高,f 增大,g 不变,在 时 因此,随着时间的增加,反应速率呈指数级加速,系统会发生着火 C.在 时, 反应速率随时间增加呈线性加速,系统处于临界状态四、强迫着火1.最小点火能:能在给定的可燃混气中引起着火的最小火花能2.电极熄火距离定义:不能引燃混合气的电极间的最大距离成为电极熄火距离。
五.灭火措施(注意两者差别) 1.基于热理论的灭火措施(1)降低系统氧或者可燃气浓度; (2)降低系统环境温度;(3)改善系统的散热条件,使系统的热量更容易散发出去。
2.灭火措施总结1. 降低系统着火温度。
2. 断绝可燃物。
3. 稀释空气中的氧浓度。
4. 抑制着火区内的链锁反应。
第四章 :可燃气体的燃烧1.解释缓燃与爆震(预混气两种火焰传播形式)火焰传播机理缓燃(正常火焰传播)火焰传播机理:依靠导热和分子扩散使未燃混合气温度升高,并进入反应区而引起化学反应,导致火焰传播爆震(爆轰)火焰传播机理:传播不是通过传热、传质发生的,它是依靠激波的压缩作用使未燃混合气的温度不断升高而引起化学反应的,从而使燃烧波不断向未燃混合气中推进。
2.缓燃与爆震的特点在爆震区经过燃烧后气体压力增加、燃烧后气体密度增加、燃烧以超音速传播(M ∞>1)在缓燃区经过燃烧后气体压力减小或接近不变、气体密度减小、燃烧以亚音速进行(M ∞<1) 3.火焰前沿的定义火焰前沿(前锋、波前):一层一层的混合气依次着火,薄薄的化学反应区开始由点燃的地方向未燃混合气传播,它使已燃区与未燃区之间形成了明显的分界线,称这层薄薄的化学反应发光区为火焰前沿(锋面)。
4.火焰位移速度及火焰法向传播速度火焰位移速度是火焰前沿在未燃混合气中相对于静止坐标系的前进速度,其前沿的法向指向未燃气体。
火焰法向传播速度是指火焰相对于无穷远处的未燃混合气在其法线方向上的速度。
f g ϕ=-<0f g ϕ=-<f g >0f g ϕ=->f g =0ϕ=5.可燃混气爆炸压力的计算 爆炸前:n1、T1、P1、V1,爆炸后:n2、T2、P2、V2(=V1) 则有:P1V1=n1RT1,P2V1=n2RT2 两式相除得: 以乙醚为例:C4H10O +6 (O2+3.76N2) = 4CO2 + 5H2O + 6×3.76N2 n1 = 29.6 n2 = 31.6爆炸时的升压速度P —瞬时压力,Pa ;Sl —火焰传播速度,cm/s ;Kd —系数;K —系数,Cp/Cv=1.4;t —时间,s例:某容器中装有甲烷和空气预混气,体积为9L ,甲烷的体积浓度为9.5%,爆炸前初温T1=298K ,初始压力P1=1.01325×105 Pa ,爆炸时温度为T2=2300K ,最大爆炸压力P2=8.0756×105 Pa ,甲烷火焰传播速度为Sl=34.7 cm/s ,热容比K=1.4,求甲烷爆炸时平均升压速度。
解:甲烷燃烧反应式为: CH4+2O2+7.5N2 CO2+2H2O+7.5N2 n1=n2=10.5 (kmol)由 得:9MPa 9.0)25273(6.29)2500273(6.311.0112212=+⨯+⨯⨯==T n T n P P 11331P V t S P K P l d +=K T n T n T n T n K d ⋅⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎭⎫ ⎝⎛=134112221122π(Pa/s)12t P P v -=86.23454.112985.1023005.102985.1023005.1014.3341342112221122=⨯⎪⎭⎫ ⎝⎛-⨯⨯•⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⋅⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎭⎫ ⎝⎛=KT n T n T n T n K dπ11331P V t S P K P l d +=)(086.07.341001325.186.23459000)1001325.1100756.8(11)1(3355533s S P K V P P t ld ≈⨯⨯⨯⨯⨯-⨯=••-=平均升压速度为第四章 爆炸极限的影响因素 (1)初始温度爆炸性混合物的初始温度越高,则爆炸极限范围越大,即爆炸下限降低而爆炸上限增高(2)初始压力一般压力增大,爆炸极限扩大 ;压力降低,则爆炸极限范围缩小 待压力降至某值时,其下限与上限重合,将此时的最低压力称为爆炸的临界压力。
若压力降至临界压力以下,系统便成为不爆炸 (3)惰性介质即杂质 若混合物中含惰性气体的百分数增加,爆炸极限的范围缩小,惰性气体的浓度提高到某一数值,可使混合物不爆炸 (4)容器容器管子直径越小、爆炸极限范围越小。
(5)点火能源 火花的能量、热表面的面积、火源与混合物的接触时间等,对爆炸极限均有影响 7.莱—夏特尔公式的证明与应用 莱—夏特尔公式的证明如下: 指导思想:将可燃混合气体中的各种可燃气与空气组成一组,其组成符合爆炸下限时的比例,可燃混气与空气组成的总的混合气体为各组之和。
4.设各种可燃气体积为:V1,V2,V3,……,Vi 。
则总的可燃气体积为V =V1+V2+V3+……+Vi2)设各组可燃气—空气在爆炸下限时的体积为: V ’1,V ’2,V ’3,……,V ’I则总的可燃混气—空气体积为 V ′= V ’1+V ’2+V ’3,……,V ’I 3)设各种可燃气爆炸下限为:x1下,x2下,x3下,…xi 下。
则 4)(4)设总的可燃混气的爆炸下限为x 下。
则有)/(12.8286.01001325.1100756.855s Pa v =⨯-⨯=100V'V ⨯iii x =下100V'V 333⨯=下x 100V'V 111⨯=下x 100V 'V 222⨯=下x 100x V V'i ii ⨯下=100x VV'111⨯下=100x V V'222⨯下=100x V V'333⨯下=%100/100/100/100/100332211⨯+⋯+⨯+⨯+⨯=下下下下i i x V V x V V x V V x V V 100%'V x V ⨯下=(5)设 证毕例 题1.可燃气体含C2H6 40%,C4H10 60%,取1m3该燃气与19m3空气混合。
该混合气体遇明火是否有爆炸危险?(C2H6和C4H10在空气中的爆炸上限分别为12.5%、8.5%,下限为3.0%、1.6%)五、含有惰性气体的可燃混气爆炸极限的计算方法如果可燃混气中含有惰性气体,如N2、CO2等,计算其爆炸极限时,仍然利用莱—夏特尔公式,但需将每种惰性气体与一种可燃气编为一组,将该组气体看成一种可燃气体成分。
比如:H2+N2, CO+CO2, CH4该组在混合气体中的体积百分含量为该组中惰性气体和可燃气体体积百分含量之和。
而该组气体的爆炸极限可先列出该组惰性气体与可燃气的组合比值,再从图中查出该组气体的爆炸极限,然后代入莱—夏特尔公式进行计算。
%x P x P x P x P 100i i332211下下下下下=+⋯+++x 100V V ⨯i i P =100V V 11⨯=P 100V V 22⨯=P 100V V 33⨯=P %0.2%1.660340100=+=下x %9.7%8.56012.540100=+=上x 混合气中可燃气浓度:1/(1+19)=5% 2.0% < 5% < 9.7% 故,该混合气体遇火爆炸。
解: 乙烷:P1=40% 丁烷:P2=60% 图4-25 氢、一氧化碳、甲烷与氮、二氧化碳混合气体在空气中的爆炸极限例4-1 求煤气的爆炸极限。
煤气组成为:H2一12.4%;CO 一27.3%;CO2一6.2%;O2一0%;CH4一0.7%;N2一53.4%。
解: 分组:CO2+H2;N2+CO ;CH4CO2+H2: 6.2%+12.4%=18.6%;N2+CO :27.3%+53.4%=80.7%; CH4:0.77%。
从图4-25查得:H2+CO2组的爆炸极限为:6.0%~70%; CO +N2组的爆炸极限为:40%~73%。
CH4的爆炸极限为:5%~15%8. F-S-I 体系爆炸浓度极限图 以可燃气—氧气—氮气体系为例5.04.122.6H CO 22=%%=96.13.274.53CO N 2=%%=%=下19%0.57.0407.800.66.18100++=x %=上53.70%157.030.77.80706.18100++=x例题:已知乙烯在氧气中的爆炸浓度极限为3~80%,氮气惰化时的爆炸临界点为(氧气10%,氮气87%,乙烯3%)。