逐点比较法圆弧插补原理
- 格式:ppt
- 大小:3.83 MB
- 文档页数:79
二、 逐点比较法圆弧插补加工一个圆弧,很容易联想到把加工点到圆心的距离和该圆的名义半径相比较来反映加工偏差。
这里,我们以第Ⅰ象限逆圆弧为例导出其偏差计算公式。
设要加工图2—3所示第Ⅰ象限逆时针走向的圆弧,半径为R ,以原点为圆心,起点坐标为A(00x ,y ),对于圆弧上任一加工点的坐标设为P( i j x ,y ),P 点与圆心的距离 P R 的平方为 222Pi j R =x +y ,现在讨论这一加工点的加工偏差。
图 2 - 2 圆 弧 差 补 过 程图2-3 圆弧插补过程点击进入动画观看逐点比较法圆弧插补若点P(i j x ,y )正好落在圆弧上,则下式成立:22222i j 00x +y =x +y =R若加工点P(i j x ,y )在圆弧外侧,则P R >R ,即:2222i j 00x +y >x +y若加工点P(i j x ,y )在圆弧内侧,则P R <R ,即:2222i j 00x +y >x +y将上面各式分别改写为下列形式:2222i 0j 0(x -x )+(y -y )=0(加工点在圆弧上) 2222i 0j 0(x -x )+(y -y )>0(加工点在圆弧外侧)2222i 0j 0(x -x )+(y -y )<0(加工点在圆弧内侧)取加工偏差判别式为:2222ij i 0j 0F =(x -x )+(y -y )运用上述法则,利用偏差判别式,即获得图2—2折线所示的近似圆弧。
若P(i j x ,y )在圆弧外或圆弧上,即满足 ij F ≥0的条件时,应向x 轴发出一个负向运动的进给脉冲(—Δx),即向圆内走一步。
若P(i j x ,y )在圆弧内侧,即满足ij F <0的条件,则向y 轴发出一个正向运动的进给脉冲(+Δy),即向圆弧外走一步。
为了简化偏差判别式的运算,仍用递推法来推算下一步新的加工偏差。
设加工点P(i j x ,y )在圆弧外侧或圆弧上,则加工偏差为2222ij i 0j 0F =(x -x )+(y -y )0≥x 坐标需向负方向进给一步(—Δx),移到新的加工点P(i+1j x ,y )位置,此时新加工点的x 坐标值为i x -1,y 坐标值仍为 i y ,新加工点P( i+1j x ,y )的加工偏差为:22222i+1,j i 0j 0F =(x -1)-x +y -y经展开并整理,得:i +1,j i j F =F 21i x -+(2-3)设加工点P(i j x ,y )在圆弧的内侧,则:ij F <0那么,y 坐标需向正方向进给一步(+Δy),移到新加工点P( i j+1x ,y ),此时新加工点的x 坐标值仍为i x ,y 坐标值则改为 j y 1+,新加工点P( i j+1x ,y )的加工偏差为:2222i,j+1i 0j 0F =x -x +(y +1)y -,展开上式,并整理得:i,j+1ij F =F 21i y ++综上所述可知:当ij F ≥0时,应走—Δx ,新偏差为 i+1,j ij F =F 21i x -+,动点(加工点)坐标为i+1i x =x -1, j j y y =;当 ij F <0时,应走+Δy ,新偏差为 i,j+1ij F =F 21i y ++,动点坐标为 j j y y =, i+1i =y +1y 。
逐点比较法圆弧插补逐点比较法圆弧插补过程与直线插补过程类似,每进给一步也都要完成四个工作节拍:偏差判别、坐标进给、偏差计算、终点判别。
但是,逐点比较法圆弧插补以加工点距圆心的距离大于还是小于圆弧半径来作为偏差判别的依据。
如图5-7所示的圆弧AB,其圆心位于原点O(0,0),半径为R,令加工点的坐标为P(xi,yj),则逐点比较法圆弧插补的偏差判别函数为当F=0时,加工点在圆弧上;当F>0时,加工点在圆弧外;当F<0时,加工点在圆弧内。
同插补直线时一样,将Fi,j=0同Fi,j>0归于一类。
下面以第一象限圆弧为例,分别介绍顺时针圆弧和逆时针圆弧插补时的偏差计算和坐标进给情况。
1.插补第一象限逆圆弧1)当Fi,j≥0时,加工点P(xi,yj)在圆弧上或圆弧外,-X方向进给一个脉冲当量,即向趋近圆弧的圆内方向进给,到达新的加工点Pi-1,j,此时xi -1=xi-1,则新加工点Pi-1,j的偏差判别函数Fi-1,j为(2)当Fi,j<0时,加工点P(xi,yj)在圆弧内,+Y方向进给一个脉冲当量,即向趋近圆弧的圆外方向进给,到达新的加工点Pi,j+1,此时yj+1=yj+1,则新加工点Pi,j+1的偏差判别函数Fi,j+12.插补第一象限顺圆弧1)当Fi,j≥0时,加工点P(xi,yj)在圆弧上或圆弧外,-Y方向进给一个脉冲当量,即向趋近圆弧的圆内方向进给,到达新的加工点Pi,,j-1,此时yj-1=yj-1,则新加工点Pi,j-1的偏差判别函数Fi,j-1为2)当Fi,j<0时,加工点P(xi,yj)在圆弧内,+X方向进给一个脉冲当量,即向趋近圆弧的圆外方向进给,到达新的加工点Pi+1,j,此时xi+1=xi +1,则新加工点Pi+1,j的偏差判别函数为Fi+1,j由以上分析可知,新加工点的偏差是由前一个加工点的偏差Fi,j及前一点的坐标值xi、yj递推出来的,如果按式(5-6)、(5-7)、(5-8)、(5-9)计算偏差,则计算大为简化。
插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补
脉冲增量插补和数据采样插补是实现插补的两种不同方法。
脉冲增量插补是将连续的运动轨迹离散化,以一定的脉冲数来表示,通过控制脉冲信号的频率和方向来控制机床的运动方向和速度。
而数据采样插补则是将预先生成的轨迹数据存储在内存中,通过对数据进行采样来得到机床的控制指令。
脉冲增量插补的特点是运算简单,系统响应速度较快,适合于高速运动控制;但由于其离散化的特点,可能会引入累积误差。
数据采样插补的特点是能够精确控制机床的运动轨迹,减小累积误差,但需要占用较大的内存空间。
逐点比较法是一种用于校正控制系统误差的方法。
其基本原理是通过对实际运动轨迹数据和预期轨迹数据进行逐点比较,根据比较结果来调整机床的控制指令,使实际运动轨迹尽可能地与预期轨迹一致。
逐点比较法的关键是选择合适的比较误差补偿算法,以实现高效准确的校正。
直线插补是指在机床坐标系下,按照直线轨迹进行插补运动。
直线插补的计算相对简单,只需要对坐标进行线性插值即可。
圆弧插补是指在机床坐标系下,按照圆弧轨迹进行插补运动。
圆弧插补的计算相对复杂,需要考虑起点、终点和半径等参数,通过数学运算得出插补指令。
总之,插补是机床运动控制的基础,脉冲增量插补和数据采样插补是两种常见的实现方式,逐点比较法是一种用于校正误差的方法,直线插补和圆弧插补则是两种常见的插补方式。
3数控机床逐点比较法圆弧插补:与直线初步相似,圆弧插补加工是将加工点到圆心距离与被加工圆弧的名 义半径相比较,并根据偏差大小确定坐标进给方向,以 逼近被加工圆弧。
下面 以 第一象限逆圆弧为例,讨论圆弧的插补方法。
如图8-4所示,设要加工圆弧为第一象限逆圆弧 AB ,原点为圆心0,起点 y o ),终点为B (X e , y e )半径R ,瞬时加工点为P (X i ,y i ),点P 到圆<0 -<0‘—开始—若点P 正好在圆弧上,则有2 2 2 2X i +y j =R p =R即X i 2+y j 2-R 2=0若点P 在圆弧外则,则有2 2 2 2X i +y j =R p >R即X i 2+y j 2-R 2 > 0若点 P 在圆弧内则,则有2 2 2 2x i +y j =R p <R心距离为Rp------ X >0]+△*为 A (xo , <0* <7 F>0 ?*+X 走 一步 |] -y 走一y f1 FT -Ye ||FJF -Xe图8-2第一象限一象限直线插补轨迹图图8-3第一象限直线插补程序框图图初始化Xe , Ye ,JJ J J-1J =0 ?结束即x i2+y j2-R2 < 0显然,若令F i,j = x i2+y j2-R2( 8-4) 图8-4 逆圆弧插补则有:(1)F i,j= F i,j=0,则点P在圆弧上( 2 )F i,j >0 则点P 在圆弧外则( 3 )F i,j<0 则点P 在圆弧不则常将8-4称为圆弧插补偏差判别式。
当F i,j>时,为逼近圆弧,应向-x方向进给一步;当F i,j<0时,应向+y方向走一步。
这样就可以获得逼近圆弧的折线图。
与直线插补偏差计算相似,圆弧插补的偏差的计算也采用递推的方法以简化计算。
若加工点P (X i, y i)在圆弧外或者圆弧上,则有:F i,j=x i2+y j2-R2> 0为逼近该圆沿-X方向进给一步,移动到新加工点P( X i=1,y i),此时新加工点的坐标值为x i+1=x i-1 ,y i=y i新加工点的偏差为:F i+1,j= (x i-1) 2+y i2-R2=x i2-2x i+1+ y i2-R22 2 2= x i + y i -R +1F i+I,j= F i,j-2x i+1(8-5)若加工P (X i, y i)在圆弧内,则有F i,j=x i2+y j2-R2<0若逼近该圆需沿+y方向进给一步,移到新加工点P (X i, y i),此时新加工点的坐标值图8-5第一象限圆弧插补程序框图为新加工点的偏为:F i,j+i =X i2+(y i+1)2-R2=X i2+ y i2+1 -R22 2 2=X i + y i -R +1+2y iF i,j+i = F i,j -2y i+1 (8-6)从(8-5)和式(8-6)两式可知,递推偏差计算仅为加法(或者减法)运算,大大降低了计算的复杂程度。
基于FPGA的逐点比较圆弧插补算法设计摘要:随着数字化控制技术的发展,FPGA作为可编程逻辑设备,被广泛应用于了工业控制系统中。
本文通过分析圆弧插补算法的原理和特点,设计了一种基于FPGA的逐点比较圆弧插补算法,并进行了硬件实现。
通过实验验证,该算法可以准确地实现圆弧插补功能,并具有较高的计算速度和运行效率。
关键词:FPGA;圆弧插补;逐点比较算法1.引言在数控系统中,圆弧插补是一种常见的运动控制方式。
圆弧插补可以实现工件在空间中沿着预定的曲线轨迹移动,从而实现复杂的形状加工。
目前,圆弧插补算法主要有计算细分点的数学法和逐点比较法两种。
其中,逐点比较法是一种基于离散点的插值方式,具有较高的计算速度和运行效率。
本文将基于FPGA的逐点比较圆弧插补算法进行设计与实现。
2.圆弧插补算法原理圆弧插补是通过计算圆弧上一系列离散点的坐标,从而实现工件的平滑运动。
在逐点比较法中,圆弧插补算法主要包括以下几个步骤:(1)确定圆弧的起点、终点和中心点,并计算圆弧的半径;(2)根据离散点的间距,计算出圆弧的总点数;(3)计算圆弧上每个离散点的坐标,并保存在一个数据缓存区中;(4)将数据缓存区中的坐标输出。
3.算法设计(1)数据输入模块:接收圆弧的起点、终点和中心点坐标,并计算圆弧的半径;(2)总点数计算模块:根据离散点的间距,计算出圆弧的总点数;(3)坐标计算模块:根据圆弧的起点、终点、中心点和总点数,计算出每个离散点的坐标,并保存在一个数据缓存区中;(4)数据输出模块:将数据缓存区中的坐标输出。
4.硬件实现本文采用Xilinx FPGA作为硬件开发平台,Verilog HDL作为硬件描述语言。
根据设计的算法原理和模块设计,完成了逐点比较圆弧插补算法的硬件实现。
5.实验结果与分析通过对比实验,验证了基于FPGA的逐点比较圆弧插补算法的正确性和有效性。
与传统的数学法相比,该算法具有更高的计算速度和运行效率,适用于高性能的工业控制系统。
(二)逐点比较法圆弧插补
逐点比较法圆弧插补是数控加工中常用的一种圆弧插补方法,其原理是通过逐点比较给定的圆弧路径与机床实际移动轨迹的差异,不断调整目标点的加工速度和轨迹实现精细的加工。
1.将给定的圆弧路径分割成若干个目标点,通常每隔一定距离取一个目标点。
2.根据目标点之间的距离和已知的转速,计算每个目标点的加工速度。
3.将目标点逐个输入数控系统,根据当前位置和目标点的位置计算运动轨迹和加工速度。
4.在运动过程中不断比较实际轨迹和目标轨迹之间的误差,根据误差大小调整加工速度,保证加工精度。
5.重复步骤3和4,直到完成整个圆弧的加工。
逐点比较法圆弧插补的优点是在加工过程中能够动态地调整加工速度,避免加工误差的累积。
同时,它对系统精度要求不高,能够适应各种数控系统。
不过,逐点比较法圆弧插补的缺点也是比较明显的。
由于每个目标点的加工速度独立计算,导致加工过程中产生了较大的速度变化,容易引起加工表面的纹路和不良的表面质量。
因此,在实际应用中,需要根据加工要求和机床精度选择合适的加工方法,并进行适当的加工优化。
****学院课程设计说明书设计题目:逐点比较法第一二象限的顺圆插补系部:机电工程系专业:自动化(数控技术)班级:姓名:学号:指导老师:起止时间:年月日至年月日共周年月日目录一、课程设计的目的 (3)二、课程设计的任务 (3)三、逐点比较法基本原理 (4)四、逐点比较法插补软件流程图 (8)五、算法描述(在VB中的具体实现) (9)六、编写算法程序清单 (9)七、软件运行仿真效果 (12)八、参考文献 (15)九、设计小结 (15)逐点比较法第一二象限的顺圆插补一、课程设计的目的1)了解连续轨迹控制数控系统的组成原理。
2) 掌握逐点比较法插补的基本原理。
3)掌握逐点比较法插补的软件实现方法。
二、课程设计的任务逐点比较法插补是最简单的脉冲增量式插补算法之一,其过程清晰,速度平稳,但一般只用于一个平面内两个坐标轴的插补运算。
其基本原理是在刀具按要求轨迹运动加工零件轮廓的过程中,不断比较刀具与被加工零件轮廓之间的相对位置,并根据比较结果决定下一步的进给方向,使刀具向减小偏差的方向进给,且只有一个方向的进给。
也就是说,逐点比较法每一步均要比较加工点瞬时坐标与规定零件轮廓之间的距离,依此决定下一步的走向。
如果加工点走到轮廓外面去了,则下一步要朝着轮廓内部走;如果加工点处在轮廓的内部,则下一步要向轮廓外面走,以缩小偏差,这样周而复始,直至全部结束,从而获得一个非常接近于数控加工程序规定轮廓的轨迹。
逐点比较法插补过程中的每进给一步都要经过偏差判别、坐标进给、偏差计算和终点判别四个节拍的处理,其工作流程图如图所示。
三、基本原理(1)逐点比较法I 象限顺圆插补基本原理在加工圆弧过程中,人们很容易联想到使用动点到圆心的距离与该圆弧的名义半径进行比较来反映加工偏差。
假设被加工零件的轮廓为第Ⅰ象限顺走向圆弧SE ,,圆心在O (0,0),半径为R ,起点为S (X S ,Y S ),终点为E (X e ,Y e ),圆弧上任意加工动点为N (X i ,Y i )。
逐点比较法第一象限直线,圆弧插补编程逐点比较法是以折线来逼近给定的轨迹,就是每走一步控制系统都要将加工点与给定的图形轨迹相比较,以决定下一步进给的方向,使之逼近加工轨迹。
逐点比较法以折线来逼近直线或圆弧,其最大的偏差不超过一个最小设定单位。
只要将脉冲当量取得足够小,就可以达到精度要求。
逐点比较插补法在脉冲当量为0.01mm,系统进给速度小于3000mm/min时,能很好的满足要求。
一、逐点比较法直线插补如下图所示设直线 oA 为第一象限的直线,起点为坐标原点o (0 , 0) ,终点坐标为, A( ) , P() 为加工点。
若 P 点正好处在直线 oA 上,由相似三角形关系则有即点在直线 oA 上方 ( 严格为直线 oA 与 y 轴正向所包围的区域 ) ,则有即若 P 点在直线 oA 下方 ( 严格为直线 oA 与 x 轴正向所包围的区域 ) ,则有图 3 — 1 逐点比较法第一象限直线插补即令则有:①如,则点 P 在直线 oA 上,既可向 +x 方向进给一步,也可向 +y 方向进给一步;②如,则点 P 在直线 oA 上方,应向 +x 方向进给一步,以逼近oA 直线;③如,则点 P 在直线 oA 下方,应向 +y 方向进给一步,以逼近 oA 直线一般将及视为一类情况,即时,都向 +x 方向进给一步。
当两方向所走的步数与终点坐标相等时,停止插补。
这即逐点比较法直线插补的原理。
对第一象限直线 oA 从起点 ( 即坐标原点 ) 出发,当 F 时, +x 向走一步;当 F<0 时,y 向走一步。
特点:每一步都需计算偏差,这样的计算比较麻烦。
递推的方法计算偏差:每走一步后新的加工点的偏差用前一点的加工偏差递推出来。
采用递推方法,必须知道开始加工点的偏差,而开始加工点正是直线的起点,故。
下面推导其递推公式。
设在加工点 P( ) 处,,则应沿 +x 方向进给一步,此时新加工点的坐标值为新加工点的偏差为即若在加工点 P( ) 处,,则应沿 +y 方向进给一步,此时新加工点的坐标值为,新加工点的偏差为即综上所述,逐点比较法直线插补每走一步都要完成四个步骤 ( 节拍 ) ,即:(1) 位置判别根据偏差值大于零、等于零、小于零确定当前加工点的位置。
逐点比较法圆弧插补原理逐点比较法的基本原理是,在刀具按要求轨迹运动加工零件轮廓的过程中,不断比较刀具与被加工零件轮廓之间的相对位置,并根据比较结果决定下一步的进给方向,使刀具向减小偏差的方向进给(始终只有一个方向)。
一般地,逐点比较法插补过程有四个处理节拍,如图4-1:(1)偏差判别。
判别刀具当前位置相对于给定轮廓的偏差状况;(2)坐标进给。
根据偏差状况,控制相应坐标轴进给一步,使加工点向被加工轮廓靠拢;(3)重新计算偏差。
刀具进给一步后,坐标点位置发生了变化,应按偏差计算公式计算新位置的偏差值;(4)终点判别。
若已经插补到终点,则返回监控,否则重复以上过程。
图4-1处理节拍圆弧插补图4-4为第一象限逆圆,现分析其插补规律。
刀尖点位置不外乎3种情况:轮廓线外面(点A),轮廓线上(B点),轮廓线里面(点C)。
显然,在点A处,为使刀尖点向轮廓圆弧靠拢,应-X向走一步;C点处,应+Y向走一步;至于B点,看来两个方向均可以,但考虑汇编编程时的方便,现规定往-X向走一步。
A(X,Y)点处有:X2 2 X2+Y2-R2>0B(X,Y)点处有:X2 2 X2+Y2-R2=0C(X,Y)点处有:X2+Y2<X2+Y2-R2<0原始的偏差计算公式为:F=X2+Y2-R2(X,Y为当前插补点动态坐标)。
图4-4第一象限逆圆插补规律图4-5逐点比较法第一象限逆圆插补软件框图显然,F<0时,须+Y向走一步;F≥0时,须-X向走一步。
为方便汇编编程和提高计算速度,对偏差F的计算公式加以简化:插补点位于A、B点时,走完下一步(-X):动态坐标变为(X=X-1,Y=Y),新偏差变为F=(X-1)2+Y2-R2=F-2X+1。
它比公式F=X2+Y2-R2计算要方便很多。
插补点位于C点时,走完下一步(+Y):动态坐标变为(X=X,Y=Y+1),新偏差变为F=X2+(Y+1)2-R2=F+2Y+1。
因此,走完-X后:偏差计算公式为F=F-2X+1,动态坐标修正为X=X-1;走完+Y后:偏差计算公式为F=F+2Y+1,动态坐标修正为Y=Y+1。
数控技术课程讲课方案 / 讲稿逐点比较法圆弧插补教师姓名:杨丽梅学院(部、中心):机电工程学院教研室∕实验室:机电教研室联系电话:2009年7月长春工业大学课程教案∕讲稿用纸讲授内容讲课方案∕备注逐点比较法圆弧插补重点内容:掌握什么是逐点比较法及逐点比较法在圆弧插补中的应用。
难点内容:逐点比较法插补在顺圆弧和逆圆弧插补中的差异。
讲课内容共分为四部分:一、逐点比较法1、逐点比较法的基根源理:每次仅向一个坐标轴输出一个进给脉冲,而每走一步都要经过误差函数计算,判断误差点的瞬时坐标同规定加工轨迹之间的误差,今后决定下一步的进给方向。
逐点比较法又称为代数运算法或醉步法,是我国早期数控机床中广泛采用的一种方法。
2、逐点比较法的应用:可用于直线插补、圆弧插补和其他曲线的插补。
3、逐点比较法的特点:运算直观、插补误差不大于一个脉冲当量,脉冲输出均匀,调治方便。
二、逐点比较法圆弧插补1、加工点与圆弧之间的关系(1)点在圆弧上;(2)点位于圆弧外;(3)点位于圆弧内。
图 1 加工点与圆弧的关系加工点与圆弧的关系如图 1 所示。
2、误差函数构造如图 1 所示,若加工半径为R 的圆弧 AB ,将坐标原点定在圆心上,如右图所示。
对于任意加工点P i ( X i ,Y i ) ,其误差函数 F i可表示为:F i X i2Y i2R2(1)(1)若F i0 ,表示加工点位于圆上;(2)若(3)若F i0 ,表示加工点位于圆内;F i0 ,表示加工点位于圆外;3、误差函数的递推计算为了对( 1)式进行简化计算,需采用递推式(或迭代式)。
以第一象限圆弧为例,对误差函数进行推导。
第一象限的圆弧分为顺圆弧和逆圆弧,即有顺圆弧和逆圆弧插补两种方式。
(1)逆圆弧插补若 F i0 ,规定向X 方向走一步,有X i1X i1(2)F i 1 ( X i 1) 2Y i2R2F i 2 X i 1若 F i 0,规定向Y方向走一步,有Y i 1 Y i1(3)Fi 1X2(Y 1)2R2Fi2Y 1i i i(2)顺圆弧插补若 F i0 ,规定向Y 方向走一步,有Y i1Y i 1(4)F i 1 X i2(Y i1)2R2F i 2Y i 1若 F i 0,规定向X方向走一步,有X i1X i1(5)Fi 1( Xi1) 2Y2R2Fi2 Xi1i4、终点鉴识终点鉴识可采用以下两种方法:(1)判断插补或进给的总步数:N X a X b Y a Y b(6)(2)分别判断各坐标轴的进給步数:N x X a X b(7)N Y Y a Y b三、逐点比较法圆弧插补举例已知第一象限内的圆弧AB ,起点 A(4,0) ,终点 B(0,4) ,如图2所示。