Juyoung Yoon-CC2009=-光素-银离子探针
- 格式:pdf
- 大小:704.99 KB
- 文档页数:3
常见的小分子荧光探针种类1.引言1.1 概述小分子荧光探针是一类被广泛应用于生物领域的化学工具,通过其具有的荧光性质,可以用于生物成像、药物传递、疾病诊断等方面。
小分子荧光探针具有分子结构简单、稳定性好、探测灵敏度高等特点,在生物学研究中起着重要的作用。
小分子荧光探针的种类繁多,根据其不同的结构和功能特点,可以分为许多不同的类别。
常见的小分子荧光探针包括有机荧光探针、金属配合物荧光探针、聚合物荧光探针等。
有机荧光探针是指由有机化合物构成的荧光探针,其分子结构多样,可以通过调整结构来实现特定的探测目标。
常见的有机荧光探针包括荧光染料、荧光蛋白等。
荧光染料具有较强的荧光强度和良好的化学稳定性,可以用于细胞成像、生物传感等领域。
荧光蛋白是一类来源于特定生物体的蛋白质,其具有自身天然的荧光性质,可以通过基因工程技术进行改造和调整,广泛应用于生物研究中。
金属配合物荧光探针是指由金属离子与配体形成的荧光探针,其具有较强的荧光性能和较长的寿命。
金属配合物荧光探针具有选择性较高的特点,可以用于特定金属离子的探测和诊断。
常见的金属配合物荧光探针包括铜离子、锌离子、铁离子等的配合物。
聚合物荧光探针是指由高分子聚合物构成的荧光探针,其具有较好的溶解性和稳定性。
聚合物荧光探针可以通过调整聚合物的结构和链长来实现特定的探测需求。
常见的聚合物荧光探针包括聚合物分子探针、聚合物纳米探针等。
总之,常见的小分子荧光探针种类繁多,具有不同的结构和功能特点,可以根据具体的研究需求选择适合的荧光探针进行应用。
这些小分子荧光探针为生物学研究提供了有力的工具,有助于深入理解生命的基本过程和疾病的发生机制。
未来,随着技术的不断发展和突破,相信小分子荧光探针在生物领域的应用会得到更广泛的推广和应用。
1.2文章结构1.2 文章结构本文主要围绕"常见的小分子荧光探针种类"展开讨论。
文章分为引言、正文和结论三个部分。
在引言部分,将进行概述、文章结构和目的的介绍。
《生物工程进展》2000,Vol.20,No.2荧光探针研究新进展章晓波 徐 洵(国家海洋局第三海洋研究所,厦门 361005)摘要 自从Southern(1975)首次进行DNA探针杂交后,至今核酸分子杂交已成为分子生物学的最基本方法。
Matthews和Kricka[1]总结了各种杂交方法,将其归为两大类:一是异相杂交(hetero2 geneous assay)即固相杂交,目的核酸结合于不溶性支持物上;二是同相杂交(homogeneous assay)即液相杂交,一般同时使用两个探针。
为了检测杂交,寡核苷酸探针需要标记,探针的标记物有放射性同位素和非放射性标记物。
固相杂交常使用放射性同位素,荧光素是一种非放射性标记物,它能检测到的DNA浓度比吸收减色测定方法所需DNA浓度低100-1000倍[2],在同相杂交中广泛用于探针的标记。
最近,荧光探针研究获得了新的进展,Tyagi和Krammer(1996)建立了一种新的荧光探针-分子信标探针,并得到许多应用,我们实验室也开展了这方面的研究。
本文拟对荧光探针的研究进展作一综述。
关键词 荧光探针 分子信标探针 荧光PCR1 常规荧光探针固相杂交中,探针非特异结合于支持物表面,降低了灵敏度。
Heller等(1982)以及Heller和Morri2 son(1985)[3]最早进行了同相杂交试验,同相杂交不需支持物,减少了固定目的DNA及除去未杂交探针等操作。
他们的试验中使用了两个探针,这两个探针分别与目标DNA的两个相邻区域互补,第1探针在3′末端标记,第2探针在5′末端标记,根据标记物的光谱特性,使第1标记物为第2标记物的能量供体。
当探针与目标DNA杂交时,二探针彼此靠近,光吸收或化学反应激发供体标记物,通过能量转移引起受体标记物的激发,这样,第1标记物发射光的减少以及(或)第2标记物发射光的增加标志着目标DNA的存在。
后来Morris on等[3]扩展了这一方法,他们使用的两个探针互补且相应于目标DNA上同一碱基序列,一个探针在5′末端标记荧光素,另一互补探针在3′末端标记荧光素发射的淬灭剂芘丁酸(pyrenebutyrate)或磺基若丹明101(sulforhodamine101)。
香豆素类荧光探针研究进展医药化工化工设计通讯Pharmaceutical and Chemical Chemical Engineering Design Communications ·204· 第44卷第6期2018年6月香豆素又名苯并-α-吡喃酮,广泛存在于自然界中,并且在许多植物中也存在大量的香豆素类衍生物[1]。
香豆素类化合物不仅在抗肿瘤药物的开发方面进行研究,并且以香豆素为骨架的基团也常作为荧光探针中最优的荧光团之一,其具有荧光强度高、溶解性与细胞渗透性好、易于合成与修饰、良好的荧光量子产率和好的光稳定性等特点。
本文通过以香豆素为骨架的荧光探针对待测物的选择性不同进行分类,对近几年报道的香豆素类荧光探针进行了概述。
1 二氧化硫衍生物荧光探针二氧化硫溶于水中,形成亚硫酸盐和亚硫酸氢盐之间的平衡[2]。
高浓度的亚硫酸盐会导致过敏反应、哮喘、胃肠疾病及皮肤过敏等疾病[3]。
因此,用荧光探针技术来检测细胞中HSO 3-/SO 32-具有重要意义。
Zhao 等将香豆素和苯并咪唑通过C —C 双键连接得到荧光探针1[2],亚硫酸盐与该探针的α,β-不饱和酮之间的发生迈克尔加成反应,导致π共轭被阻断,荧光发生改变。
该探针利用单光子荧光成像技术成功的实现了对活细胞中亚硫酸盐的检测。
Feng 课题组以氮杂香豆素-半花菁偶联物为母核,设计合成比率型近红外荧光探针2[4]。
该探针在条件温和的水溶液中对HSO 3-有好的选择性和高的灵敏度,成功应用于活细胞中内源性和外源性亚硫酸氢盐的荧光成像研究。
Li 课题组设计合成了以香豆素-丙二腈衍生物为骨架,以缺电子的C —C 双键为HSO 3-的反应位点的比率型荧光探针3[5]。
该探针对HSO 3-有高的选择性和敏感性,并且成功应用于对MCF-7细胞中HSO 3-荧光成像的研究。
2 活性氧荧光探针活性氧(Reactive Oxygen Species ,ROS )包括了超氧阴离子(O 2-)、过氧化氢(H 2O 2)、羟基自由基(·OH )、次氯酸(HOCl )以及一氧化氮等,这些物质的活性较高,在人类健康和疾病中有着重要的作用[6]。
钠离子荧光探针用于检测雪卡毒素的细胞毒性袁建辉;杨慧;唐焕文;黄薇;徐新云;刘建军;柯跃斌;程锦泉;庄志雄【摘要】Objective To establish a cell-based detection method of ciguatoxin using fluorescence assay. Methods Mouse neuroblastoma N-2A cells were exposed to ouabain and veratridine and different concentrations of standard ciguatoxin samples (P-CTX-1) to establish the curvilinear relationship between the toxin dosage and fluorescence intensity using the sodium fluorescence probe CoroNa? Green. The toxicity curvilinear relationship was also generated between the toxin dosage and cell survival using CCK-8 method. Based on these standard curves, the presence of ciguatoxin was detected in 33 samples of deep-sea coral fish. Results A correlation was found between the detection results of cell-based fluorescence assay and cytotoxicity assay, whose detection limit reached 10"13 g/ml and 10-12 g/ml, respectively. The cell-based fluorescent assay sensitivity showed a higher sensitivity than cytotoxicity assay with a 2-4 h reduction of the detection time. Conclusions The cell-based fluorescent assay can quickly and sensitively detect ciguatoxin and may serve as a good option for preliminary screening of the toxin.%目的研究和建立以细胞为基础的结合钠离子荧光探针检测雪卡毒素的方法,为快速、敏感检测雪卡毒素提供科学的实验依据.方法采用雪卡毒素标准品(p-CTX-1)结合乌苯苷和黎芦定处理小鼠脑神经瘤细胞(N-2A),用钠离子荧光探针(CoroNaTM Green)标记细胞,利用多功能酶标仪检测荧光强度,建立雪卡毒素浓度与荧光强度的标准曲线关系式;同时,采用CCK-8法和酶标仪检测毒素处理组细胞的存活率,建立细胞毒性实验的标准曲线关系式;分析比较两种方法的灵敏度.以两种方法分别对采集的33份深海珊瑚鱼样品进行毒素检测,对检测结果作分析比较.结果以细胞为基础的荧光检测法检测样品中毒素的检出限为10-13g/ml,而细胞毒性试验检测法检测样品中毒素的检出限为10-12g/ml,其结果具有一定的相关性,且荧光检测法灵敏度比细胞毒性试验高;同时钠离子荧光探针检测法的实验终点比CCK-8法缩短2~4 h.结论以细胞为基础的结合钠离子荧光探针检测法能快速、敏感地检测雪卡毒素,可作为雪卡毒素检测初筛方法推广应用.【期刊名称】《南方医科大学学报》【年(卷),期】2011(031)004【总页数】3页(P653-655)【关键词】雪卡毒素;钠离子荧光探针;荧光检测;细胞毒性【作者】袁建辉;杨慧;唐焕文;黄薇;徐新云;刘建军;柯跃斌;程锦泉;庄志雄【作者单位】深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;广东医学院公共卫生学院,广东东莞523808;广东医学院公共卫生学院,广东东莞523808;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055【正文语种】中文【中图分类】R155.5雪卡毒素(Ciguatoxin,CTX)是一种危害比较大的赤潮藻毒素,由13~14个醚环连续连接成阶梯状的聚醚化合物,属于神经性毒素[1-2]。
《新型金属离子荧光探针的合成及性能和应用的研究》篇一一、引言随着科技的发展,金属离子在生物、环境、医药等领域的应用越来越广泛。
因此,对金属离子的检测和识别技术也提出了更高的要求。
其中,荧光探针技术因其高灵敏度、高选择性、非侵入性等优点,已成为金属离子检测的重要手段。
近年来,新型金属离子荧光探针的合成及其性能和应用的研究受到了广泛关注。
本文旨在研究新型金属离子荧光探针的合成方法、性能特点及其在生物医学和环境监测等领域的应用。
二、新型金属离子荧光探针的合成1. 材料与试剂本研究所用材料和试剂主要包括有机荧光染料、金属离子螯合剂、溶剂等。
所有试剂均为分析纯,购买自国内外知名化学试剂供应商。
2. 合成方法新型金属离子荧光探针的合成主要采用有机合成法。
首先,将有机荧光染料与金属离子螯合剂进行反应,生成具有特定功能的中间体。
然后,通过进一步的化学反应,将中间体与其它组分连接,形成具有特定结构和功能的荧光探针。
三、性能研究1. 光谱性质本研究所合成的金属离子荧光探针对特定金属离子具有较高的灵敏度和选择性。
在紫外-可见光区域内,探针分子具有明显的荧光激发和发射峰,且荧光强度与金属离子浓度呈线性关系。
此外,探针分子还具有较好的光稳定性,能够在连续激发下保持较长时间的荧光强度。
2. 生物相容性本研究的金属离子荧光探针具有良好的生物相容性,可在生物体内实现非侵入性检测。
此外,探针分子对生物体的毒性较低,具有良好的生物安全性。
四、应用研究1. 生物医学领域应用新型金属离子荧光探针在生物医学领域具有广泛的应用前景。
例如,可用于检测细胞内金属离子的浓度和分布,研究金属离子在生物体内的代谢过程和功能等。
此外,还可用于疾病诊断和治疗过程中金属离子的监测。
2. 环境监测领域应用新型金属离子荧光探针还可用于环境监测领域。
例如,可用于检测水体、土壤等环境中重金属离子的含量和分布,评估环境污染程度和生态风险等。
此外,还可用于工业废水处理过程中重金属离子的监测和控制。
目录第一章荧光的产生 (1)1.1 Jablonski图 (1)1.2 斯托克斯位移 (2)1.3 荧光猝灭(Fluorescence Quenching) (6)第二章荧光探针简介 (8)2.1 荧光探针定义 (8)2.2 荧光团分类 (9)2.3 荧光探针结构 (10)2.4 荧光探针必须具备的条件 (11)2.5 荧光检测的优缺点 (12)2.6 荧光探针用途 (12)2.6.1 生命科学领域 (12)2.6.2 非生命科学领域(荧光染料) (12)2.7 荧光成像 (13)第三章细胞器荧光探针 (16)3.1 溶酶体荧光探针 (16)3.1.1 溶酶体简介 (16)3.1.2 溶酶体荧光探针分类 (17)3.1.3 溶酶体荧光探针定位 (18)3.1.4 溶酶体荧光探针应用 (18)3.2 线粒体荧光探针 (20)3.2.1 线粒体简介 (20)3.2.2 线粒体荧光探针分类 (21)3.2.3 线粒体体荧光探针定位 (22)3.2.4 线粒体体荧光探针应用 (23)3.3 细胞核(核酸/DNA)荧光探针 (27)3.3.1 细胞核简介 (27)3.3.2 核酸/DNA荧光探针分类 (28)3.3.3 核酸/DNA荧光探针定位 (29)3.3.4 核酸/DNA荧光探针应用 (31)3.4 内质网荧光探针 (32)3.4.1 内质网简介 (32)3.4.2内质网荧光探针分类 (33)3.4.3内质网探针定位原理 (35)3.4.4内质网探针应用 (35)3.5 细胞膜荧光探针 (35)3.5.1 细胞膜简介 (35)3.5.2 膜荧光探针分类 (36)3.5.3 膜探针定位 (39)3.5.4 膜探针应用 (40)3.6 纤维状肌动蛋白(filamentous actin, F-Actin)探针非细胞器探针 (40)3.6.1 F-肌动蛋白简介 (40)3.6.2 F-肌动蛋白探针分类 (41)3.6.3 F-肌动蛋白探针定位 (45)3.6.4 F-肌动蛋白探针应用 (45)第四章活性氧和活性氮荧光探针 (45)4.1 活性氧荧光探针 (45)4.1.1 活性氧(Reactive oxygen species,ROS)简介 (45)4.1.2 活性氧荧光探针 (46)4.1.3 活性氧荧光探针检测原理 (47)4.1.4 活性氧荧光探针应用 (48)4.2 活性氮荧光探针 (48)4.2.1 活性氮(Reactive nitrogen species,RNS)简介 (48)4.2.2 活性氮荧光探针检测原理 (49)4.2.3 活性氮荧光探针应用 (50)参考文献 (51)第一章荧光的产生荧光是处于单线激发态的荧光物质辐射衰变回基态时所发射的光。
1.Fluo-3 AM (钙离子荧光探针)原理 Fluo-3 AM是一种可以穿透细胞膜的荧光染料。
Fluo-3 AM的荧光非常弱,进入细胞后可以被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离的钙离子结合,结合钙离子后可以产生较强的荧光。
生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度激发波长506nm 发射波长 526nm (绿色)备注推荐使用2.Mag-fura-2 AM(钙离子荧光探针)原理Fura-2 AM是一种可以穿透细胞膜的荧光染料。
Fura-2 AM进入细胞后可以被细胞内的酯酶剪切形成Fura-2,从而被滞留在细胞内。
Fura-2可以和钙离子结合,结合钙离子后在330-350nm激发光下可以产生较强的荧光,而在380nm激发光下则会导致荧光减弱。
这样就可以使用340nm和380nm这两个荧光的比值来检测细胞内的钙离子浓度,可以消除不同细胞样品间荧光探针装载效率的差异,荧光探针的渗漏,细胞厚度差异等一些误差因素。
生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度激发波长为340nm和380nm 发射波长 510nm (蓝色)备注仪器滤光片不适用3 Fluo-4-AM (钙离子荧光探针)原理Fluo 4 是一种将Fluo 3结构中的Cl替换成F的钙荧光探针。
由于将Cl替换成了电子吸引力更强的F,它的最大激发波长会向短波长处偏离10 nm左右。
所以用氩激光器激发时,Fluo 4的荧光强度比Fluo 3强1倍。
由于Fluo 4与钙离子的亲和力和Fluo 3近似,所以使用上和Fluo 3也基本相同生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度激发波长494nm 发射波长516nm (绿色)备注用激光器激发时荧光强度强,因此不推荐4.DCFH-DA (活性氧荧光探针)原理DCFH-DA本身没有荧光,可以自由穿过细胞膜,进入细胞内后,被细胞内的酯酶水解生成DCFH。
钠离子荧光探针用于检测雪卡毒素的细胞毒性袁建辉;杨慧;唐焕文;黄薇;徐新云;刘建军;柯跃斌;程锦泉;庄志雄【期刊名称】《南方医科大学学报》【年(卷),期】2011(31)4【摘要】Objective To establish a cell-based detection method of ciguatoxin using fluorescence assay. Methods Mouse neuroblastoma N-2A cells were exposed to ouabain and veratridine and different concentrations of standard ciguatoxin samples (P-CTX-1) to establish the curvilinear relationship between the toxin dosage and fluorescence intensity using the sodium fluorescence probe CoroNa? Green. The toxicity curvilinear relationship was also generated between the toxin dosage and cell survival using CCK-8 method. Based on these standard curves, the presence of ciguatoxin was detected in 33 samples of deep-sea coral fish. Results A correlation was found between the detection results of cell-based fluorescence assay and cytotoxicity assay, whose detection limit reached 10"13 g/ml and 10-12 g/ml, respectively. The cell-based fluorescent assay sensitivity showed a higher sensitivity than cytotoxicity assay with a 2-4 h reduction of the detection time. Conclusions The cell-based fluorescent assay can quickly and sensitively detect ciguatoxin and may serve as a good option for preliminary screening of the toxin.%目的研究和建立以细胞为基础的结合钠离子荧光探针检测雪卡毒素的方法,为快速、敏感检测雪卡毒素提供科学的实验依据.方法采用雪卡毒素标准品(p-CTX-1)结合乌苯苷和黎芦定处理小鼠脑神经瘤细胞(N-2A),用钠离子荧光探针(CoroNaTM Green)标记细胞,利用多功能酶标仪检测荧光强度,建立雪卡毒素浓度与荧光强度的标准曲线关系式;同时,采用CCK-8法和酶标仪检测毒素处理组细胞的存活率,建立细胞毒性实验的标准曲线关系式;分析比较两种方法的灵敏度.以两种方法分别对采集的33份深海珊瑚鱼样品进行毒素检测,对检测结果作分析比较.结果以细胞为基础的荧光检测法检测样品中毒素的检出限为10-13g/ml,而细胞毒性试验检测法检测样品中毒素的检出限为10-12g/ml,其结果具有一定的相关性,且荧光检测法灵敏度比细胞毒性试验高;同时钠离子荧光探针检测法的实验终点比CCK-8法缩短2~4 h.结论以细胞为基础的结合钠离子荧光探针检测法能快速、敏感地检测雪卡毒素,可作为雪卡毒素检测初筛方法推广应用.【总页数】3页(P653-655)【作者】袁建辉;杨慧;唐焕文;黄薇;徐新云;刘建军;柯跃斌;程锦泉;庄志雄【作者单位】深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;广东医学院公共卫生学院,广东东莞523808;广东医学院公共卫生学院,广东东莞523808;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055;深圳市疾病预防控制中心/深圳市现代毒理学重点实验室,广东深圳518055【正文语种】中文【中图分类】R155.5【相关文献】1.液相色谱-串联质谱检测鱼类及海鲜类调味品中的雪卡毒素 [J], 周嘉明;姚建华;赵华锋;赵峰;李超;周德庆2.ASE-SPE-HPLC/MS/MS检测鱼体内的雪卡毒素 [J], 周秀锦;周向阳;邵宏宏;颜建波;傅谧妮3.雪卡毒素快速检测方法研究 [J], 毛晋阳;张晓辉;孔蕾;杜伟4.雪卡毒素中毒的诊断与检测 [J], 袁建辉;王秀;谢妮;霍丽萍;刘建军;赵肃清;黄薇5.雪卡毒素检测分析研究进展 [J], 袁建辉;赵昆山;庄志雄因版权原因,仅展示原文概要,查看原文内容请购买。
Manipulation offluorescent and colorimetric changes offluorescein derivatives and applications for sensing silver ions w zK.M.K.Swamy,y ab Ha Na Kim,y a Jung Huyn Soh,y a Youngmee Kim,a Sung-Jin Kim aand Juyoung Yoon*acReceived(in Cambridge,UK)3rd November2008,Accepted10th December2008First published as an Advance Article on the web13th January2009DOI:10.1039/b819538bThree structurally similar compounds,1–3,bearing a fluorescence chromophore to which are appended morpholine, thiomorpholine and methylpiperazine substituents,display oppositefluorescence responses to pH changes,in contrast to that observed forfluorescein;1and2have extremely high binding selectivity towards Ag+ions and show completely differentfluorescent and colorimetric changes upon addition of Ag+,and the differences are proposed to be associated with different binding modes of1and2to this metal ion.Sensors based on ion-induced changes influorescence intensities are particularly attractive owing to their potential simplicity and the high detection sensitivities that can be achieved.1 Among the variousfluorophores,those present influorescein derivatives have been extensively utilized in the design of fluorescent sensors for pH,2metal ions,3anions,4activity of enzymes5as well as redox events.6The enormous activity in this area is attributable to several unique advantages offluorescein derivatives,such as high water solubility,long wavelengths for excitation and emission,highfluorescence quantum efficiencies, and availability via short synthetic routes.Thefluorescence and colorimetric changes that take place withfluorescein in different pH regions is attributed to the interconversion of different prototropic forms.The absorption changes offluorescein were recently utilized for molecular logic gates.2a,b,7Even though a fewfluorescein derivatives bearing benzylic amine moieties have been utilized recently as metal ion3and anion sensors,4the colorimetric andfluorescent changes promoted by binding of these substances with metal ions is not well characterized and mechanisms associated with bind-ing have not been well defined.Fluorescein derivatives can display colorimetric andfluorescent changes that are induced by(1)spirolactone ring opening,(2)phenolate anion forma-tion,and/or(3)photoinduced electron transfer(PET)involving benzylic amine moieties.Manipulation of these three,potentially cooperative pathways could be a very important element in the design of newfluorescein based sensors.As far as we are aware,no reports exist describing the sensing application which involve manipulation of these three communicating inputs.Fluorescein,which is known to display unique absorption andfluorescence spectra at different pHs,can exist in four different ionization forms including a cation,neutral substance, monoanion and dianion.Absorption l max are observed at 437nm for the cation and neutral species,455and464nm for the monoanion,and at474nm for the dianion.2c,d Usually, the colorimetric change from colorless or light yellow to red or pink and the largefluorescence enhancement in the basic pH region is caused by the formation of the dianion.However,fluorescein derivatives bearing benzylic amine moieties display quite differentfluorescence changes as compared to that of fluorescein itself.The results of the studies described below,show that two structurally similar compounds,1and2,which have morpho-line and thiomorpholine substitutedfluorescein skeletons, have extremely high binding selectivities towards Ag+ions. Furthermore,upon the addition of Ag+these substances display completely differentfluorescence changes that are a consequence of different binding modes to Ag+.Thefluorescein derivatives1–3were synthesized by using Mannich reactions of20,70-dichlorofluorescein and iminium ions produced by condensation of formaldehyde with morpho-line(81%),thiomorpholine(84%)and1-methylpiperazine (90%),respectively(Scheme1and ESI z).All three compounds were obtained in very high yields and fully characterized by 1H NMR,13C NMR,high resolution FAB mass spectroscopy (Fig.S11to S16z)and X-ray crystallography(see ESI as well as Table S1&S2z).X-Ray crystal structures z(Fig.S1&S2)show that1and2 exist in the lactone ring closed forms and thathydrogen Scheme1Synthesis of compound1–3.a Department of Chemistry and Nano Science,Ewha WomansUniversity,Seoul120-750,Korea.E-mail:jyoon@ewha.ac.kr;Fax:+822-3277-3419;Tel:+822-3277-2400b Department of Pharmaceutical Chemistry,V.L.College ofPharmacy,Raichur584103,Indiac Department of Bioinspired Science,Ewha Womans University,Seoul120-750,Koreaw Dedicated to Professor Seiji Shinkai on the occasion of his65thbirthday.z Electronic supplementary information(ESI)available:Experimentaldetails and NMR spectra of1–DC707407and707406forcompounds1and2respectively.For ESI and crystallographic datain CIF or other electronic format see DOI:10.1039/b819538by These authors contributed equally to this work.1234|mun.,2009,1234–1236This journal is c The Royal Society of Chemistry2009 COMMUNICATION /chemcomm|ChemCommbonding interactions take place between phenolic hydrogensand nitrogens of the tertiary amine groups (1.89Afor both 1and 2,Table S2).The hydrogen bonding interactions likely serve as the reason why the fluorescent emission from the fluorescein chromophores in 1and 2(Fig.2and Fig.3)are not completely quenched via photoinduced electron transfer (PET)from the tertiary amine donors.1a In addition,a mirror plane of symmetry is present in the middle of these molecules (see Fig.S1&S2z )and the lactone ring in each substance is almost perpendicular to the central ring (86.201for 1and 82.671for 2).The fluorescence responses of the probes (1–3)in acidic and basic regions of the pH range were examined.Contrary to the behavior of 2,7-dichlorofluorescein (Fig.S3z ),1,2and 3exhibited strong fluorescence in the acidic region and their emission is almost quenched in the basic region (Fig.1).Based on plots of emission intensities vs.pH,the p K a ’s of 1,2and 3are calculated to be 7.13,7.20and 8.86,respectively.This finding suggests that the oxygen atom in morpholine derivative 1,sulfur atom in thiomorpholine derivative 2or methylamine moiety in piperazine can induce the significant differences in the p K a ’s of these substances,a factor that might be useful in desiging new fluorescein based pH probes.Ag +,Ca 2+,Cd 2+,Co 2+,Cs +,Cu 2+,Hg 2+,K +,Li +,Mg 2+,Mn 2+,Na +,Ni 2+,Rb +and Zn 2+ions were used to evaluate the metal ion binding properties of 1and 2.As shown in Fig.2and Fig.3,fluorescence emission changes of 1(3m M)and 2(1m M)were observed upon the addition of variousmetal ions at pH 7.4.Both fluorescein derivatives display an extremely selective response to Ag +among the metal ions examined.Interestingly,chemosensor 1displays a selective CHEF (chelation enhanced fluorescence enhancement)effect with Ag +but,in contrast,2shows a selective CHEQ (chelation enhanced fluorescence quenching)effect with this metal cation.Even though there is an increasing interest in finding the selective and sensitive detection of Ag +ions,there are only a few reports describing fluorescence chemosensors for Ag +ions.9,10To the best of our knowledge,there are only a couple of examples,in which fluorescent chemosensors display a significant selectivity for Ag +ions in aqueous solution.10In Fig.S4and S5is shown the results of competition experi-ments carried out with compounds 1and 2and Ag +and K +,Na +,Ca 2+,Mg 2+and Zn 2+.The opposite fluorescent changes of 1and 2promoted by the addition of Ag +are attributed to completely different metal cation binding modes of these substances.As the UV data shown in Fig.S6and S7and the Fig.4demonstrate,a colorimetric change occurs only for chemosensor 2upon the addition of Ag +.Specifically,a red shift of ca.15nm takes place when Ag +is added to a solution of 2(Fig.S7z ).This change is associated with the formation of a dianionic species.Obviously,in the absence of Ag +,both 1and 2exist in their monoanionic forms because the color of their solutions is light yellow.2c ,d Since the color change of 2promoted by Ag +is due to the formation of phenolate anion,it is likely that two Ag +ions chelate with sulfurs of the two thiomorpholine rings and the phenolic oxygens of fluorescein.The consequence of this complexation mode is that intramolecular hydrogenbondingFig.2Fluorescent changes of 1(3m M)with various metal ions (100eq.)at pH 7.4(0.01M HEPES :DMSO =95:5,v/v)(excitation at 504nm).Fig.3Fluorescent changes of 2(1m M)with various metal ions (100eq.)at pH 7.4(0.01M HEPES :DMSO =95:5,v/v)(excitation at 507nm).Fig.1Fluorescent pH titrations of 1–3in DMSO–water (5:95,v/v).Fig.4Colorimetric changes of 1(20m M)and 2(20m M)upon the addition of Ag +(300eq.)at pH 7.4(0.01M HEPES :DMSO =95:5,v/v).This journal iscThe Royal Society of Chemistry mun.,2009,1234–1236|1235between the phenolic hydrogens and the benzylic amines is eliminated.This releases tertiary amine groups that can now participate in photoinduced electron transfer(PET)quenching of emission from thefluorescein chromohore2(Scheme2). The addition of tetrabutylammonium chloride to the2–Ag+, complex and after removal of AgCl,changes the color of the solution back to yellow(Fig.S8z).This observation indicated that the sensor is active toward Ag+and provided evidence of a reversible process.On the other hand,thefluorescence enhancement and the absence of color change of1is likely caused by Ag+coordina-tion with nitrogens of the two morpholine donors(Scheme2). Strong interactions between the benzylic amines and Ag+ blocks the PET quenching and results in afluorescence enhancement.This binding mode is also the reason for the absence of the color change of1upon addition of Ag+.It is interesting that the strong affinity of sulfur towards Ag+ compared with oxygen results in such a huge difference in the binding mode as well asfluorescence and colorimetric changes seen with1and2.The data fromfluorescence titration experiments(Fig.S9and S10z)give respective association constants of3.5Â103MÀ1 (error o10%)and3.2Â109MÀ2(error o15%)for compounds 1and2with Ag+.8In conclusion,the studies described above,have led to the design,preparation and testing of newfluorescein derivatives bearing morpholine,thiomorpholine and methylpiperazine groups for sensing silver ions.These substances display oppositefluorescence responses to pH changes as compared to2,7-dichlorofluorescein.Furthermore,1and2display extremely selective binding of Ag+at pH7.4.Chemosensor 1shows a selectivefluorescence enhancement with Ag+.On the other hand,thefluorescence of chemosensor2is quenched and a light yellow to pink color change takes place upon addition of Ag+.Different binding modes in complex forma-tion between the two compounds and Ag+shown in Scheme2 are the cause of differences observed influorescent and colorimetric changes.It is remarkable that oxygen in the morpholine unit and sulfur in the thiomorpholine unit of 1and2,respectively,can induce this huge difference in binding with Ag+in aqueous solution.It is likely that the observations made in this effort will provide the basis for a new strategy for the design offluorescein basedfluorescent chemosensors. Studies exploring the detailed reasons for the large p K a differences between1/2and3,as well as how to use different metal ion binding modes for the design of newfluorescent chemosensors and pH sensors are currently under way.This work was supported by grants from the NRL program (R04-2007-000-2007-0),the SRC program of KOSEF/MEST (R11-2005-008-02003-0)and WCU(R31-2008-000-10010-0) program.H.N.K.and J.H.S.thank BK21.Notes and references1(a)A.P.de Silva,H.Q.N.Gunaratne,T.A.Gunnlaugsson, T.M.Huxley,C.P.McCoy,J.T.Rademacher and T.E.Rice, Chem.Rev.,1997,97,1515;(b)J.F.Callan,A.P.de Silva andD.C.Magri,Tetrahedron,2005,61,8551;(c)C.-H.Lee,H.Miyaji,D.-W.Yoon and J.L.Sessler,mun.,2008,24;(d)J.Yoon,S.K.Kim,N.J.Singh and K.S.Kim,Chem.Soc.Rev.,2006,35,355;(e)T.Gunnlaugsson,M.Glynn,G.M.Tocci, P.E.Kruger and F.M.Pfeffer,Coord.Chem.Rev.,2006,250, 3094;(f)P. A.Gale,Acc.Chem.Res.,2006,39,465;(g)D.T.Quang and J.S.Kim,Chem.Rev.,2007,107,3780;(h)H.N.Kim,M.H.Lee,H.J.Kim,J.S.Kim and J.Yoon,Chem.Soc.Rev.,2008,37,1465.2(a)D.Margulies,G.Melman and A.Shanzer,J.Am.Chem.Soc., 2006,128,4865;(b)D.Margulies,G.Melman and A.Shanzer, Nat.Mater.,2005,4,768;(c)M.M.Martin and L.Lindqvist, J.Lumin.,1975,10,381;(d)N.Klonis and W.H.Sawyer, J.Fluoresc.,1996,6,147.3(a)S.C.Burdette,G.K.Walkup,B.Spingler,R.Y.Tsien and S.J.Lippard,J.Am.Chem.Soc.,2001,123,7831;(b)C.J.Chang,E.M.Nolan,J.Jaworski,S. C.Burdette,M.Sheng andS.J.Lippard,Chem.Biol.,2004,11,203;(c)E.M.Nolan and S.J.Lippard,Inorg.Chem.,2004,43,8310.4(a)K.M.K.Swamy,Y.J.Lee,H.N.Lee,J.Chun,Y.Kim, S.-J.Kim and J.Yoon,.Chem.,2006,71,8626;(b)Y.J.Jang,E.J.Jun,Y.J.Lee,Y.S.Kim,J.S.Kim andJ.Yoon,.Chem.,2005,70,9603;(c)S.Y.Kim and J.-I.Hong,Org.Lett.,2007,9,3109.5(a)M.H.Lim,D.Xu and S.J.Lippard,Nat.Chem.Biol.,2006,2, 375;(b)M.H.Lim, B. A.Wong,W.H.Pitcock,Jr.,D.Mokshagundam,M.-H.Baik and S.J.Lippard,J.Am.Chem.Soc.,2006,128,14364.6M.C.Y.Chang,A.Pralle,E.Y.Isacoffand C.J.Chang,J.Am.Chem.Soc.,2004,126,15392.7S.Kou,H.N.Lee,D.v.Noort,K.M.K.Swamy,S.H.Kim, J.H.Soh,K.Lee,S.Nam,J.Yoon and S.Park,Angew.Chem., Int.Ed.,2008,47,872.8(a)K.A.Conners,Binding Constants,Wiley,New York,1987;(b)Association constants were obtained using the computer pro-gram ENZFITTER,available from Elsevier-BIOSOFT,68Hills Road,Cambridge CB21LA,United Kingdom.9(a)M.Shamsipur,K.Alizadeh,M.Hosseini,C.Caltagirone and V.Lippolis,Sens.Actuators,B,2006,113,892;(b)A.Coskun andE.U.Akkaya,J.Am.Chem.Soc.,2005,127,10464;(c)J.Kang,M.Choi,E.Y.Lee and J.Yoon,.Chem.,2002,67,4384;(d)H.Tong,L.X.Wang,X.B.Ting and F.Wang,Macromole-cules,2002,35,7169;(e)J.Parker and T.E.Glass,.Chem., 2001,66,6505;(f)J.Ishikawa,H.Sakamoto,S.Nakao andH.Wada,.Chem.,1999,64,1913;(g)C.Huang,X.Peng,Z.Lin,J.Fan,A.Ren and D.Sun,Sens.Actuators,B,2008,133, 113.10(a)R.-H.Yang,W.-H.Chan, A.W.M.Lee,P.-F.Xia,H.-K.Zhang and K.A.Li,J.Am.Chem.Soc.,2003,125,2884;(b)S.Lyoshi,M.Taki and Y.Yamamoto,Inorg.Chem.,2008,47,3946.Scheme2Proposed binding modes of1and2with Ag+.1236|mun.,2009,1234–1236This journal is c The Royal Society of Chemistry2009。