有机小分子荧光探针的研究ppt课件
- 格式:ppt
- 大小:2.55 MB
- 文档页数:47
有机小分子探针黄美英 2014010714摘要细胞内生物活性化合物在细胞内作用靶点的确定是化学生物学和药物开发中的关键问题之一。
作为功能蛋白质组学中的一项重要技术, 小分子探针在确定生物活性化合物细胞内作用靶点的研究中扮演着举足轻重的角色。
PH值在生理及病理过程如受体介导的信号传导、酶活性、细胞生长和凋亡、离子运输和稳态调节、钙含量调节、细胞内吞作用、趋化作用、细胞粘附和肿瘤生长等过程中起到非常重要的作用。
本文介绍了几种小分子探针原理,技术和方法,并通过列举近年来该技术应用的成功示例进一步阐明小分子生物活性探针技术的应用原理和重要性。
关键词生物活性化合物;小分子探针;PH值;DNA探针技术一绪论荧光探针是化学传感技术领域在上个世纪八十年代的一项重大发现,目前己有愈来愈多的荧光探针应用于分子水平上进行实时检测。
荧光检测技术由于灵敏度高,操作简便,可视性强,且对细胞、生物体的损伤小,成为了用于临床分析、环境监测、生物分析及生命科学等领域不可缺少的检测工具[1]。
分子荧光探针的检测对象包括各种离子、小分子、自由基、多肽、酶,甚至还包括温度、极性、粘度等。
人们可以使用荧光显微镜、荧光光谱仪、流式细胞仪、荧光活体成像系统等仪器获取荧光探针检测的相关信息,借助荧光成像技术我们能够实时检测活细胞内分子或离子的浓度以及生物大分子结构的变化过程,也可以获得关于生物组织生理代谢过程的相关信息,还可以实现生物活体的荧光成像[2]。
另一方面研究者们能够根据需要设计合成出满足“特定要求”的探针分子,基于此,荧光探针和荧光检测技术在生命科学的发展中起到举足轻重的作用[3]。
通常一个光探针分子由荧光团(Fluorophore)和识别基团(Receptor)通过连接臂(Spacer)以共价键方式连接,荧光团作为信号转换器将识别行为转化为光信号,可以通过荧光的增强或淬灭乃至光谱位移的变化对分析物进行识别。
荧光探针分子具有非常大的可塑性和应用潜力,通过对有机分子结构进行巧妙设计和改造,就能够设计合成出满足各种需要的荧光探针。
荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。
其主要组成部件有三个(图1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。
这种结合可以通过配位键,氢键等作用实现。
2.信号报告基团(发色团,F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。
信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。
3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。
连接基团的合适与否将直接影响是否有输出信号的产生。
信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。
图1.1荧光探针的结构1.1.1荧光探针的一般设计原理(1)结合型荧光探针[21]图1.2共价连接型荧光探针结合型荧光探针是利用化学共价键将识别基团和荧光基团连接起来的一类荧光探针,是比较常见的一类荧光探针。
该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。
在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。
(a)受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500nm以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。
(b)受体分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。
常见的小分子荧光探针种类1.引言1.1 概述小分子荧光探针是一类被广泛应用于生物领域的化学工具,通过其具有的荧光性质,可以用于生物成像、药物传递、疾病诊断等方面。
小分子荧光探针具有分子结构简单、稳定性好、探测灵敏度高等特点,在生物学研究中起着重要的作用。
小分子荧光探针的种类繁多,根据其不同的结构和功能特点,可以分为许多不同的类别。
常见的小分子荧光探针包括有机荧光探针、金属配合物荧光探针、聚合物荧光探针等。
有机荧光探针是指由有机化合物构成的荧光探针,其分子结构多样,可以通过调整结构来实现特定的探测目标。
常见的有机荧光探针包括荧光染料、荧光蛋白等。
荧光染料具有较强的荧光强度和良好的化学稳定性,可以用于细胞成像、生物传感等领域。
荧光蛋白是一类来源于特定生物体的蛋白质,其具有自身天然的荧光性质,可以通过基因工程技术进行改造和调整,广泛应用于生物研究中。
金属配合物荧光探针是指由金属离子与配体形成的荧光探针,其具有较强的荧光性能和较长的寿命。
金属配合物荧光探针具有选择性较高的特点,可以用于特定金属离子的探测和诊断。
常见的金属配合物荧光探针包括铜离子、锌离子、铁离子等的配合物。
聚合物荧光探针是指由高分子聚合物构成的荧光探针,其具有较好的溶解性和稳定性。
聚合物荧光探针可以通过调整聚合物的结构和链长来实现特定的探测需求。
常见的聚合物荧光探针包括聚合物分子探针、聚合物纳米探针等。
总之,常见的小分子荧光探针种类繁多,具有不同的结构和功能特点,可以根据具体的研究需求选择适合的荧光探针进行应用。
这些小分子荧光探针为生物学研究提供了有力的工具,有助于深入理解生命的基本过程和疾病的发生机制。
未来,随着技术的不断发展和突破,相信小分子荧光探针在生物领域的应用会得到更广泛的推广和应用。
1.2文章结构1.2 文章结构本文主要围绕"常见的小分子荧光探针种类"展开讨论。
文章分为引言、正文和结论三个部分。
在引言部分,将进行概述、文章结构和目的的介绍。
荧光探针的原理和应用1. 什么是荧光探针荧光探针是一种特殊的化学荧光物质,具有在一定条件下吸收和发射光的能力。
作为一种广泛应用于生物医学研究领域的工具,荧光探针可用于定量和定性分析、分子成像、检测环境变化等。
2. 荧光探针的工作原理荧光探针的发光原理基于分子的电子能级跃迁。
通常,荧光分子吸收光能后,电子从基态跃迁到激发态,接着由激发态发光跃迁到基态。
这种电子能级跃迁产生的光称为荧光。
荧光探针的发光强度与探针浓度和环境因素等因素有关。
2.1 吸收光谱荧光探针的吸收光谱是指在不同波长的光照射下,探针分子吸收光的强度特性。
吸收光谱的特征峰可以用于确定探针的波长范围。
2.2 发射光谱荧光探针的发射光谱是指在激发光下,激发后的探针分子发出的荧光光谱。
发射光谱的特征峰可用于定量和定性分析。
2.3 荧光量子产率荧光量子产率是指荧光发射过程中探针分子发射荧光光子的比例,衡量了荧光探针的发光效率。
高荧光量子产率的荧光探针对于灵敏检测尤为重要。
3. 荧光探针的应用领域荧光探针在生物医学研究中具有广泛的应用。
下面列举了一些常见的应用领域:•分子生物学研究:荧光探针可用于DNA/RNA检测、蛋白质标记、细胞示踪等分子生物学研究,以研究生物分子的结构和功能。
•药物筛选与开发:荧光探针可用于药物分子的荧光标记,以研究药物的靶向性、分布和代谢等,有助于药物筛选和开发。
•生物传感器:荧光探针结合特定受体或基质,可用于检测环境变化、生物分子测定等,如pH传感器、离子传感器等。
•医学成像:荧光探针可用于生物体内部的分子成像,如肿瘤检测、血管成像等,具有较高的诊断和监测价值。
4. 荧光探针的发展趋势随着科学技术的不断进步,荧光探针的应用领域将不断扩展,并且呈现出以下发展趋势:1.高灵敏度:研究人员正在努力开发具有更高荧光量子产率和更低检测限度的荧光探针,以实现对低浓度分子的高灵敏检测。
2.多功能性:为了满足多样化的研究需求,研究人员致力于开发具有多种功能的荧光探针,如多种靶点检测、多种荧光发光颜色选择等。
化学生物学中的小分子探针研究引言化学生物学的发展为探究生物分子和生物体之间相互作用提供了有力工具,其中小分子探针的研究也日益成为话题。
小分子探针在生物内外环境中的应用不断拓展,其结合生物学、化学和物理学等多学科交叉,为实现对生命过程的深入理解提供了有益手段。
本文将就小分子探针在化学生物学中的研究作一探讨。
一、小分子探针的定义小分子探针指的是小分子化合物,其在生物体系中表现出一定的物理、化学特性,并在分子水平上与生物大分子(如蛋白质、核酸等)相互作用,以便了解其生物学特性及生命活动的机制。
小分子探针有着较小的分子体积和相对简单的化学结构,便于对其进行合成、修饰和修饰。
利用小分子探针可以对于生命过程中的分子相互作用机制进行研究,其在高通量筛选、药物发现、生物成像等领域有广泛的应用。
二、小分子探针的分类小分子探针的一般分类有化学荧光探针、融合蛋白探针、放射性同位素标记探针及药物分子等。
1. 化学荧光探针化学荧光探针是以具有荧光性质的小分子为核心结构,以其对生物分子的特异性结合,实现对生物分子的探测和成像。
荧光探针可以通过不同的光谱性质对生物分子进行特异性标记和便于可视化。
例如,用荧光探针的荧光标记特异蛋白质,可以实现对于生命过程中蛋白质相互作用关系等信息的捕捉。
2. 融合蛋白探针融合蛋白探针是将荧光蛋白等标记单元融合到感兴趣的生物分子上进行研究的方法。
利用蛋白质工程技术构建可以识别具体生物分子的融合蛋白探针,在定量和实时监测细胞内分子过程中,有着广泛的应用。
3. 放射性同位素标记探针放射性同位素标记探针利用放射性同位素来标记小分子,利用放射性检测技术来探测这些生物分子的含量和位置,并实现药物代谢研究。
目前市场上大多数新药被标记为放射性药物,这在新药研发中应用广泛。
4. 药物分子药物分子是一种广泛应用的小分子探针,通过对药物分子与靶分子的交互作用,了解药物分子对生物过程的影响,可用于药物筛选及药物研究等方面。
1.3荧光分子探针识别机理1.3.1光诱导电子转移[4,12](Photoinduced Electron Transfer,PET)典型的PET体系是由包含电子给体的识别基团部分R(reseptor),通过一间隔基S(space)和荧光团F(fluorophore)相连而构建。
其中荧光团部分是光能吸收和荧光发射的场所,识别基团部分则用于结合客体,这两部分被间隔基隔开,又靠间隔基相连而成一个分子,构成了一个在选择性识别客体的同时又给出光信号变化的超分子体系。
PET荧光探针中,荧光团与识别基团之间存在着光诱导电子转移,对荧光有非常强的淬灭作用,因此在未结合客体之前,探针分子不发射荧光,或荧光很弱,一旦识别基团与客体相结合,光诱导电子转移作用受到抑制,甚至被完全阻断,荧光团就会发射出强烈荧光(图1-1)。
PET荧光探针作用机制可由前线轨道理论来说明(图1-2)。
由于与客体结合前后,荧光强度差别非常大,呈明显的“关”、“开”状态,因此这类探针又被称做荧光分子开关。
图1-1 PET荧光探针的一般原理图LUMO图1-2 PET荧光探针的前线轨道原理图已报道的PET荧光分子探针中,多数都是以脂肪氨基或氮杂冠醚作为识别基团。
de Silva 研究小组利用多种荧光团设计了大量该类PET探针用于氢质子、碱金属阳离子识别。
化合物1是一个简单的PET荧光分子探针,在甲醇中和K+络合后,荧光量子产率从0.003增加至0.14。
钱旭红等设计的PET荧光探针(化合物2),对氢质子有很好的识别作用,已被Molecular Probe公司推广为细胞内酸性内酯质探针。
de Silva研究小组利用类似于EDTA结构的氨羧酸基团设计的化合物3是螯合型PET荧光分子探针,识别基羧酸基团形成一个小的空穴,可以有效螯合碱土金属Ca2+和Mg2+。
大多数PET荧光分子探针的设计是基于受体与客体结合,使光诱导电子转移作用受到抑制,荧光团发射出强烈荧光的原理,但是当与过渡金属作用时,结果有时会发生变化。
荧光探针(fluorescent probe)在化学传感、光学材料及生物检测和识别等领域得到了广泛的应用,并成为实现上述功能的一种主要的技术手段。
但以传统的有机荧光染料为主的荧光探针在应用中也存在一些难以克服的缺陷。
最近,无机发光量子点、荧光聚合物纳米微球、复合荧光二氧化硅纳米粒子等荧光纳米探针的相继出现,在一定程度上克服了传统有机荧光试剂的缺陷,为生物分析提供了新的发展领域,成为了近年来研究的热点,在此我想作一简单介绍,希望能起到抛砖引玉的作用,如果大家觉得我有什么地方说错的话,欢迎批评指正!让我也从中受益!1、荧光纳米粒子的分类荧光纳米粒子是指可以发荧光的半导体纳米微晶体(量子点)或将荧光团(Fluorophore)通过包埋、共价键连接以及超分子组装等方式引入有机或无机纳米粒子中,并让纳米粒子承担有机小分子荧光染料的检测、标记等功能。
与传统的荧光染料相比,荧光纳米粒子具有更高的亮度和光稳定性,也能更加容易地实现水分散性和生物相容性。
另外,随着纳米制备技术的进一步提高,对纳米粒子的尺度的精确控制及对粒子功能化手段的日臻完善,这在很大程度上使荧光纳米粒子满足了化学传感器、生物探针等领域的要求。
目前荧光纳米粒子主要有无机发光量子点、荧光高分子纳米微球、复合荧光二氧化硅纳米粒子三大类。
1.1.量子点量子点(quantum dot, QD)又可称为半导体纳米微晶体,是由数百到数千个原子组成的无机纳米粒子,是一种由II-VI 族或者III-V 族元素组成的纳米颗粒。
目前研究较多的主要是CdX(X = S、Se、Te)。
量子点粒径很小,它们的电子和空穴被量子限域,连续能带变成具有分子特性的分立能级结构,因此光学行为与一些大分子很相似,可以发射荧光。
量子点的体积大小严格控制着它的光谱特征。
量子点的晶体颗粒越小,比表面积越大,分布于表面的原子就越多,而表面的光激发的正电子或负电子受钝化表面的束缚作用就越大,其表面束缚能就越高,吸收的光能也越高,即存在量子尺寸效应,从而使其吸收带蓝移,荧光发射峰也相应蓝移。