我国交会对接任务中航天器电源设计与应用
- 格式:pdf
- 大小:1.83 MB
- 文档页数:8
航天器电源系统名词术语主电源与副电源:有些航天器的供电系统不只一套,使命期中长期供电的称为主电源,仅用于短期峰值功率补充供电或应急备用等情况的,称为副电源(或辅助电源)。
一次电源与二次电源:供电系统主母线输出的电能称为一次电源,我国航天工程师习惯将供电系统称为一次电源(系统)。
由于配电系统的主要部件是电源变换器,因此我国航天界也习惯将电源变换器称为二次电源(设备),或将电源变换器输出的电能称为二次电源。
原生电源与再生电源:供电系统中输出原始电能的装置,称为电能源。
原生电源通常指电能源。
再生电源即贮能装置,习惯上也指从贮能装置输出的电能。
原电池与蓄电池:原电池是指电极火星物质的电化学反应可逆性较差,不能进行有效再充电的电池,亦称为一次电池。
原电池可作为电能源使用。
蓄电池是指以化学能的形式贮存电能并能将化学能直接以电能形式释放的、可进行多次充放电循环的电化学装置,亦称为可充电池或二次电池,可作为贮能装置使用。
电能源与贮能装置电能源是航天器中输出原始电能的装置,亦称为“原生电源”。
工作寿命短的航天器可采用原生电池作为电能源。
常用的电能源有银锌电池、化学动力系统、燃料电池、放射性同位素热点系统或动力系统、核动力系统、太阳电池阵以及太阳动力系统等。
比功率或(与)能量密度是电能源的一项重要的性能指标,它与电源系统的重量有关。
虽然重量不一定是电源系统最佳化的最起作用的驱动因素,但与航天器的发射费用及运载器的运输能力有直接关系。
原电池以较高的能量密度著称,但一般不能再充电,通常适用于短期飞行任务(几天、十几天)。
最常用的原电池是银锌电池,它有很高的能量密度。
“水星”飞船以及“阿波罗”登月舱应用了银锌电池。
在长寿命空间系统中,原电池可作为副电源应用,主要为火工品点火与伸展装置的启动提供电功率。
对于有特高功率需求的短期飞行任务(如月球表面钻探),可应用化学动力系统为副电源,如开式循环单组元或双组元推进剂往复运动装置。
航天器电源系统设计与优化航天器的电源系统是支持其正常运行的重要组成部分。
在航天器的设计和优化过程中,电源系统的设计起着关键的作用。
本文将讨论航天器电源系统设计与优化的一些关键要素。
一、航天器电源系统的基本原理和需求航天器电源系统的基本原理是将太阳能等能源转化为电能,并通过电池或其他储能设备存储,为航天器的各项功能提供所需的电源供应。
航天器电源系统的主要需求包括高效性、稳定性、可靠性和轻量化等。
为了满足这些要求,航天器电源系统的设计和优化需要考虑以下几个方面。
二、能源转化与储存技术的选型在航天器电源系统的设计中,能源转化和储存技术的选型是至关重要的。
目前常用的能源转化技术包括太阳能电池、燃料电池和放射性同位素电池等。
在选择能源转化技术时,需要考虑能效、功率密度、质量和可靠性等因素。
同时,对能源的储存也需要选择合适的技术和设备,例如锂离子电池、超级电容器等。
三、电源管理和分配航天器电源系统的管理和分配是确保航天器正常运行的关键步骤。
电源管理涉及电源的控制、监测和保护等功能,包括电源输出的稳压、过流和过压保护等。
电源分配则是将电能分配给航天器的各个子系统,确保每个子系统获得所需的电源供应,同时提高电能利用率。
四、电源系统的优化策略为了提高航天器电源系统的效率和可靠性,需要采取一些优化策略。
一种常用的优化策略是在设计阶段对系统进行模拟和仿真分析,以评估不同设计方案的性能和可行性。
另一种策略是通过智能控制算法实现电源系统的动态调节和优化,以适应航天器在不同工作状态下的需求变化。
五、航天器电源系统的验证和测试在设计和优化完成后,航天器电源系统需要进行验证和测试,以确保其满足设计要求并具备可靠性。
验证和测试可以通过实验室测试和地面试验等方式进行,对各项关键指标进行检测和验证,例如能量转化效率、电源输出稳定性和可靠性等。
六、航天器电源系统的未来发展方向随着航天技术的不断发展和航天任务的复杂化,航天器电源系统也面临新的挑战和发展方向。
封面人物Cover Characters剑指星辰大海 胸怀报国壮志——记中国航天科技集团有限公司九院771所所长唐磊及团队 吕腾波 通讯作者 赵 昱 韩 晶对于过去的两年时间,身为中国航天科技集团有限公司九院771所所长(以下简称“771所”)的唐磊,内心百感交集。
他曾经忙碌、焦虑、紧张、兴奋,最终自豪感爆棚,他感叹“这两年的时间就仿佛过了好多年似的”,即便直到今天回忆起来,内心依然久久不能平静。
从2020年年初的新冠肺炎疫情在全国席卷开来,他就全身心投入到组织防疫抗疫的工作中去,待到国内疫情稳定之后,他又忙着指挥部署复工、复产的工作。
时间到了下半年之后,疫情蔓延到了全世界,愈演愈烈。
就在世界各国为抗疫而一片混沌和慌乱之际,中国航天人却异军突起,接连完成几项令人瞩目的惊世壮举!“北斗三号”全球卫星导航系统开通成功、“天问一号”深空探测器发射成功、“嫦娥五号”探测器探月任务圆满成功、空间站核心舱“天和”升空入轨……这几件大事里,哪一件单独拿出来都是中国乃至世界航天史上的里程碑事件,而这一系列的航天壮举,都离不开771所高尖端的先进技术与产品的保驾护航,更铭刻着全所上下7000余名胸怀报国壮志的“771所人”不可磨灭的关键性贡献。
星辰大海,逐梦而生。
历经56年的风雨兼程,几代人的接续奋斗,771所始终坚持以振兴民族微电子与计算机核心基础产业为己任,成为目前国家唯一一个集计算机、微电子和混合集成三大专业技术为一体的大型专业研究所,从事航天嵌入式计算机、半导体集成电路和混合集成电路的研制开发、批产配套、检测经营,是我国航天微电子和计算机的先驱和主力军,为我国航天事业的崛起与腾飞做出了重要贡献。
尤其近些年来,凭借着过硬的能力保障、完善的现代化管理体系,771所已经逐步打造成为自主、创新、可信赖的航天品牌,用品质书写了多项国家重点工程及型号飞行试验零失误的成就!2019年,在771所工作了25年的唐磊接过了薪火相传的接力棒,成为新一任所长。
航天器二次电源设计俞可申上海空间电源研究所前 言本文根据航天器电源的特殊要求,对电路以定性分析为主,对二次电源的设计进行了阐述。
介绍了二次电源在设计和测试的运用实例。
内容有:电路设计,储能电感设计,运算放大器增益设计技巧,噪声抑制方法等,还介绍使用示波器常见问题分析等内容。
2目 录1 概述 (4)2 航天器电源系统 (5)2.1航天器电源 (5)2.2电源系统结构 (5)3航天器二次电源设计 (6)3.1 二次电源特性及要求 (6)3.2 二次电源设计 (7)3.2.1二次电源基本电路 (7)3.2.2储能电感设计 (8)3.2.3运算放大器增益设计技巧 (10)3.2.4散热设计 (11)3.2.5 噪声抑制方法 (13)3.3使用示波器常见问题分析 (16)31 概述众所周知,所有航天器都需要电源才能工作,而航天器是一个有多种不同功能单元组成的庞大系统,对电源而言,这些单元都是有着各种不同功率和用电要求的负载,必须设计高可靠,高性能,适配性强的电源,才能保证航天器在设计寿命内可靠安全运行,甚至可以延长航天器的使用寿命。
19世纪末,俄国科学家齐奥尔科夫斯基已经在他的著作中第一次科学地论证了借助火箭实现宇宙飞行的可能性。
1957年10月4日,苏联拉开了人类航天的新序幕,苏联人用卫星号运载火箭将世界上第一颗人造地球卫星——卫星1号送入太空,卫星1号为球状,重约83.6Kg,直径约58Cm, 距地面的最大高度为900公里,卫星绕地球一周需1小时35分,这颗卫星在轨运行了92天。
时隔一个月,同年11月3日,苏联又发射了第二颗人造地球卫星——卫星2号,卫星为锥型,重量约508kg,这颗卫星搭载了一只“莱伊卡”的小狗进行生物试验,还进行了一系列空间环境试验。
1958年1月31日,美国进行了美国人将一颗重18磅的“探险者1号” 卫星送入太空。
1961年4月12日,世界上第一艘载人飞船东方-1飞上太空,苏联航天员加加林乘飞船绕地飞行108分钟,安全返回地面,成为世界上进入太空飞行的第一人。
㊀第31卷㊀第6期2022年12月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀航㊀天㊀器㊀工㊀程S P A C E C R A F TE N G I N E E R I N G ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀V o l .31㊀N o .6㊀㊀㊀㊀205我国载人航天器对接机构技术发展张崇峰1㊀姚建2㊀刘志2㊀丁立超2㊀程芳华2㊀邱华勇2(1上海航天技术研究院,上海㊀201109)(2上海宇航系统工程研究所,上海㊀201109)摘㊀要㊀空间对接技术是载人航天的一项基本技术,是实现空间站建造和长期运营的先决条件.我国2011年实现了神舟八号飞船和天宫一号目标飞行器的空间对接,经改进及多次飞行应用,支持我国空间站的建设和运行,我国载人周边式对接机构产品技术成熟度和可靠性得到充分验证.文章论述了我国载人航天器对接机构在总体技术㊁对接动力学设计和对接试验等方面发展及应用情况,并对后续载人月球探测任务对接需求与对接方案情况进行了阐述.关键词㊀载人航天器;对接机构;对接动力学;对接试验中图分类号:V 423㊀㊀文献标志码:A ㊀㊀D O I :10 3969/ji s s n 1673G8748 2022 06 024T e c h n i c a lD e v e l o p m e n t o fD o c k i n g Me c h a n i s mof M a n n e dS pa c e c r a f t i nC h i n a Z H A N GC h o n g f e n g 1㊀Y A OJi a n 2㊀L I UZ h i 2㊀D I N GL i c h a o 2C H E N GF a n g h u a 2㊀Q I U H u a y o n g2(1S h a n g h a iA c a d e m y o f S p a c e f l i g h tT e c h n o l o g y ,S h a n g h a i 201109,C h i n a )(2A e r o s p a c eS y s t e m E n g i n e e r i n g S h a n g h a i ,S h a n gh a i 201109,C h i n a )A b s t r a c t :S p a c e c r a f td o c k i n g m e c h a n i s mt e c h n o l o g y i sab a s i c t e c h n o l o g y o fm a n n e ds pa c e c r a f t a n d a p r e r e q u i s i t e f o r t h e c o n s t r u c t i o n a n d l o n g Gt e r mo p e r a t i o n o f t h e s pa c e s t a t i o n .C h i n a r e a l i z e d t h e d o c k i n g o f S h e n z h o u G8s p a c e c r a f t a n d T i a n g o n g G1t a r g e t s pa c e c r a f t i n 2011.A f t e r i m p r o v e m e n t a n dm u l t i p l e f l i g h t a p p l i c a t i o n s ,i t h a s s u p p o r t e d t h e c o n s t r u c t i o na n do p e r a t i o no f C h i n aS p a c e S t a t i o n ,a n d t h e p r o d u c tm a t u r i t y a n d r e l i ab i l i t y o f C h i n a s p e r i p h e r a l d oc k i n g me c h Ga n i s m h a s b e e nf u l l y v e r i f i e d .T h e d e v e l o p m e n t a n d a p p l i c a t i o n o f C h i n a sm a n n e d s pa c e c r a f t d o c Gk i n g m e c h a n i s mi n t h ea s p e c t so f o v e r a l l t e c h n o l o g y ,d o c k i n g d y n a m i c sd e s i g na n dd o c k i n g te s t a r e d e s c r i b e d ,a n d t h e d o c k i n g r e q u i r e m e n t s a n d d o c k i n g s c h e m e s of C h i n a sm a n n e d l u n a r e x p l o Gr a t i o nm i s s o na r ed i s c u s s e d .K e y w o r d s :m a n n e d s p a c e c r a f t ;d o c k i n g m e c h a n i s m ;d o c k i n g d y n a m i c s ;d o c k i n g t e s t 收稿日期:2022G11G04;修回日期:2022G11G28基金项目:中国载人航天工程作者简介:张崇峰,男,研究员,博士,我国神舟飞船和天宫空间实验室副总设计师,研究方向为航天器对接技术和航天器机构设计.E m a i l :z h c f 008@139.c o m .㊀㊀2021年4月29日,中国空间站第一个舱段天和核心舱由长征五号运载火箭成功发射,揭开了中国空间站建设和运行的序幕,我国载人航天也由此开启了空间站建设的新征程[1].我国空间站主要通过交会对接手段进行组建,截至2022年7月,我国载人航天器已经完成了21次对接操作.空间交会使两个航天器在空间轨道上会合,而空间对接使两个航天器在空间轨道上结合并在结构上连接成一个整体.空间对接已成为现代复杂航天器在轨运行的重要操作活动,也是载人航天活动必须掌握的一项基本技术[2].载人空间对接技术的作用主要体现在3个方面:一是为长期运行的空间设施进行物资补给㊁设备回收㊁燃料加注和人员轮换等服务;二是空间站等大型空间设施的在轨建造和运行服务;三是航天器在轨进行重构,实现系统优化降低对运载能力的要求.空间对接要解决航天器的捕获㊁碰撞缓冲㊁刚性连接㊁密封以及安全可靠分离等问题,并避免对接过程中的硬碰撞,减小冲击力.空间对接机构是实施空间对接任务的执行机构,它的研究涉及机构㊁结构㊁动力学㊁控制等方面的理论与技术,同时还要适应复杂空间环境的苛刻要求,因此,对接机构技术的掌握困难重重.我国从1994年起开展载人空间对接机构的论证工作.2011年11月3日,采用我国自主研制的空间对接机构成功实现了神舟八号飞船和天宫一号目标飞行器的首次在轨对接.在经过神舟九号㊁神舟十号和神舟十一号载人飞船的对接任务后,2017年4月天舟一号货运飞船配置改进后的周边式对接机构(主动式2型)与天宫二号进行了交会对接,后续天舟货运飞船和神舟载人飞船均配置为主动式2型对接机构,改进后对接机构在对接能力㊁可靠性和寿命方面有了大幅提高,适用我国空间站建造和运营要求.本文论述了我国载人航天器对接机构总体方案及主要技术特征,提出了对接动力学设计准则,介绍了对接动力学设计仿真在产品研制中所起到的重要作用.对我国对接机构试验所遵循的基本准则和研制的各种试验系统进行了系统介绍.最后,结合我国载人月球探测任务需求,简要介绍了我国新型对接机构特点和基本方案.1㊀对接机构总体技术空间对接机构是一种复杂空间机电产品,它的研制涉及机㊁电㊁热㊁控制㊁空间环境等多学科的交叉与融合.对接过程是一个复杂的过程,它涉及到结构碰撞㊁能力传递与耗散及机构运动等一系列的活动,在设计中必须综合考虑对接机构的力学参数的设计要求㊁结构布局约束等方面的协调,同时,必须考虑对接机构的设计要满足高低温㊁热真空等空间环境的影响[3G5].载人空间对接机构是经过了多步迭代设计才最终确定结构尺寸和基本参数.我国载人航天器对接机构采用导向板内翻的异体同构周边式构型(见图1),对接机构组成框图见图2.对接时成对使用,分别安装在来访航天器前端(称为主动对接机构,见图3)和目标航天器前端(称为被动对接机构,见图4).图1㊀对接机构产品F i g 1㊀D o c k i n g m e c h a n i s me n g i n e e r i n gp r o t o t y pe图2㊀对接机构组成F i g 2㊀C o m p o s i t i o nd i a g r a mo f d o c k i n g m e c h a n i s m主动对接机构的捕获子系统实现两航天器间的导向㊁捕获和初始柔性连接,它主要包括捕获锁和对接环等组件.传动缓冲子系统实现主动对接机构对接环的推出㊁碰撞能量的缓冲㊁两航天器间位置与姿态的校正和相互拉近,它主要包括丝杠联系组合㊁主驱动组合㊁丝杠安装组合和差动组合等组件.连接密封分离子系统实现飞行期间的刚性连接㊁密封㊁电路连通和分离,它主要包括对接锁系㊁对接框㊁分离推杆㊁浮动断接器和对接面密封圈等组件.其中,浮动断接器包括电㊁气㊁液路三类,可根据飞行任务需602㊀航㊀天㊀器㊀工㊀程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀31卷㊀求确定是否安装.被动对接机构用于配合主动对接机构完成对接和分离任务,未配置传动缓冲子系统;捕获子系统配置了卡板器实现与主动对接机构捕获锁锁合配合;连接密封分离子系统未配置密封圈,利用对接框上平面与主动对接机构密封圈实现密封.图3㊀主动对接机构总装模型F i g 3㊀A s s e m b l y m o d e l o f a c t i v e d o c k i n g me c h a n i sm 图4㊀被动对接机构总装模型F i g 4㊀A s s e m b l y m o d e l o f p a s s i v e d o c k i n g me c h a n i s m 为了实现捕获缓冲系统的柔性力学特性,将较大能量的轴向运动和需要柔顺适应的侧向运动分解开,并分别实现不同的刚度和阻尼系数.六自由度差动式传动系统设计原理见图5[4],采用丝杠联系组合㊁滚珠丝杠㊁齿轮差动器等机构,将碰撞能量分解到不同的缓冲部件,使对接时纵向运动的能量由摩擦制动器消耗;而其他方向的运动能量分解到弹簧机构和电磁阻尼器.在确定对接机构总体方案中,可靠性安全性是对接机构设计中特别重要因素.载人航天器对接机构的可靠性设计首先必须保证航天员和飞行器的安全,其次是功能任务的完成.对接机构设计有针对性地采取备份措施,确保任务的可靠性.在对接机构设计中,通道密封㊁对接锁解锁㊁捕获锁解锁以及重要电机等都设置冗余备份功能,这些均用于优先保证航天员安全.2011年11月我国首次实现在轨交会对接至今,我国载人周边式对接机构根据需求经改进共形成3个型谱产品(包括2种主动对接机构和1种被动对接机构).其中,主动式2型对接机构对接框上增加了安装液路浮动断接器安装接口;为适应空间站长寿命需求对电路浮动断接器进行改进,改进接触件镀金层材料与结构,提高电连接器抵御原子氧腐蚀的能力,延缓电接触性能的退化.同时,为了应对天舟货运飞船㊁神舟载人飞船与大吨位空间站对接时偏转方向大幅增加的碰撞耗能需求,主动式2型对接机构缓冲系统增加3个可控电磁阻尼器[6G7],分别位于同一组丝杠安装组合之间(见图6).在捕获之前,可控阻尼器与缓冲系统断开(不工作状态),对捕获能力无影响;在捕获完成后,可控阻尼器启动接入缓冲系统,开始工作.可控阻尼器启动后可以增加对接环运动阻尼力矩,提高主动对接环横向和偏转方向缓冲能力,从而减少对接过程中对接环偏转方向的运动行程.图5㊀对接机构的差动原理F i g 5㊀D i f f e r e n t i a l p r i n c i p l e o f d o c k i n g me c h a n i s m 我国载人空间对接机构各型谱产品均采用统一接口要求.截至2022年7月,我国现有载人空间对接机构各型谱产品已经过21次在轨对接,对接技术成熟度及可靠性得到充分验证.随着我国空间站工程的启动,为了统一规范对接接口㊁满足国外航天器参与我国空间站对接合作的需求,我国在2017年11月发布了国家标准«载人航天周边式交会对接机构接口要求»(G B /T34512-2017),在2018年底发布了该标准的英文版.该标702㊀㊀第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀张崇峰等:我国载人航天器对接机构技术发展准与国际对接系统标准[8]具有接口兼容性的基础,为我国空间站的国际对接合作明确了接口设计规范要求,便于不同载人航天器与我国空间站实现在轨对接任务和协作[9].图6㊀可控阻尼器的位置F i g 6㊀L o c a t i o nv i e wo f c o n t r o l l a b l e d a m pe r 2㊀对接动力学设计与仿真技术空间对接机构在对接接触时,航天器在相对位置和姿态的6个自由度以及速度㊁角速度上存在偏差(空间对接机构的工作条件,定义为对接初始条件).对接机构需要适应初始偏差,完成两个航天器的相互捕获.捕获过程中,航天器通过对接机构进行互相碰撞,设计对接机构的动力学特性,可以保证航天器在碰撞中相互接近,不会弹开;同时缓冲碰撞的能量,减小碰撞力,避免对航天器造成破坏.为了使两个对接航天器的碰撞后相互靠近,通过对恢复系数的设计,确定捕获的性能设计准则.碰撞前后的速度比定义为恢复系数,即S =|V kV 0|,V 0,V k 分别为碰撞前后的速度值.纯滚转正向碰撞是较难捕获的,该情况下在对接撞击结束时刻总的冲量为ʏt 20F d t =(1+S )m e V 0x (1)式中:t 为碰撞作用时间,F 为对接碰撞力;m e 为两个航天器的等效质量(含转动惯量);V 0x 为对接碰撞前的轴向速度.当冲量与动量m e x V 0x 相等时,航天器不再接近,这是捕获的临界条件[4].因此应保证(1+S )m e V 0x <m e x V 0x ,S <m e xm e-1=S k p (2)式中:m e x 为两个航天器轴向等效质量,S k p 为临界恢复系数.缓冲性能的设计要求是即使在最高的对接速度下,也能够消耗掉两航天器之间相互碰撞的动能,减小对接过程中的冲击载荷,不会造成航天器太阳帆板等设备的损坏.空间对接机构需要具有缓冲对接撞击动能的能力,对接机构的缓冲能力(能容),要大于主㊁被动航天器相对运动和对接时发动机工作的能量,即W e n g i n e +12m e q 1V 2q 2<ʏq m a xq 1f (q ,̇q )d q (3)式中:W e ng i n e 为对接时发动机工作的能量;m e q1为航天器的各方向等效质量;V q 2为捕获后两航天器相对运动速度;q 1为捕获后对接机构各方向缓冲器运动行程;q m ax 为对接机构各方向缓冲器最大运动行程;f (q ,̇q )为对接机构缓冲器的力.空间对接机构的捕获缓冲性能的设计,需要同时满足捕获和缓冲这两个矛盾条件.通过对对接初始条件的分析,可以确定在各个自由度上需要缓冲的能量差别很大(见图7[10]).对接过程中纵向需要缓冲消耗的能量最大,包括航天器相对接近的动能和发动机所做的功,主要解决缓冲问题;而其他方向需要缓冲的能量较小,但是要求对接机构具有良好的灵活性,以便完成捕获操作.对接机构采用差动式缓冲系统,利用差动器将对接过程的运动㊁能量分解,并由阻尼器和弹簧机构进行能量消耗和运动恢复[6].图7㊀对接时各自由度的碰撞能量F i g 7㊀D o c k i n g c o n t a c t e n e r g yi n s i xd i r e c t i o n s 对接动力学研究和对接机构产品研制是相互迭代,逐步细化完成的.在研制早期,主要解决对接动力学的3个问题,一是对接机构的参数设计方法;二802㊀航㊀天㊀器㊀工㊀程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀31卷㊀是对接过程动力学仿真模型和软件开发;三是对接机构数字样机的建立.这3个方面是对接动力学参数设计和性能评估的基础,是一个由简到繁㊁由整体到局部再到整体的循环迭代过程.在工程研制阶段,如何利用地面试验对仿真模型进行修正和验证是一项重要而关键的工作,为此制定了对接机构部件测试㊁整机性能测试和对接动力学试验等不同层次及环境条件下的试验,采用各层级的试验结果对对接动力学模型各部分进行修正及验证.这些试验结果定量的修正了机构摩擦㊁润滑㊁间隙以及温度影响,如图8㊁9所示.图8㊀对接动力学仿真分析模型F i g 8㊀D o c k i n g d yn a m i c s s i m u l a t i o nm o d el 图9㊀对接机构设计㊁仿真㊁试验迭代关系F i g 9㊀S h o w s t h e d e s i g n ,s i m u l a t i o n ,t e s t i n gr e l a t i o n s h i p o f d o c k i n g me c h a n i s m 基于对接动力学仿真研究,建立了对接机构产品数字化样机,实现对飞行产品性能的综合评估,为神舟飞船㊁货运飞船和空间站对接任务提供重要支撑,也为后续新型对接技术的开发和拓展提供了保障.3㊀对接机构试验技术在地面条件下,多因素全面地㊁同时地模拟所有的飞行环境条件是不可能的,同时各种环境条件有一定的离散性,这也大大增加了试验的难度.因此需要将试验条件进行分解,建立对接机构地面试验系统,并综合对比试验结果,研究对空间对接性能产生影响的主要因素,包括各种因素的耦合,合理的设计和划分试验项目,确定试验方案.这样既达到了试验目的,同时也降低了设备研制难度,使对接机构地面试验具有可行性.对接动力学试验是对接机构最重要的试验项目,对接动力学试验需要在模拟失重/高低温和热真空耦合环境下实现不同质量特性的飞行器高精度复杂的撞击动力学过程,同时模拟对接初始条件的11个变量的任意组合,精确地建立和控制对接初始偏差条件.在各种试验中,常温的全物理对接和分离试验(机械式对接动力学试验)较为直观,并且在有限的自由度上精度较好,可以有效地考核产品的主要能力,同时作为数学仿真和其他试验的基础[11].遵循上述原则,我国先后研制了对接机构特性测试台㊁对接缓冲试验台㊁六自由度对接综合试验台和热真空对接试验台等地面试验系统.对接机构特性测验台是静态性能测试设备,如图10所示[3],用于测试主动对接环在六个自由度方向的等效力学性能,可以初步确定对接机构的工作能力,判断对接机构产品的性能,测试的结果可以用于对接过程的动力学仿真.图10㊀对接机构特性测试台F i g10㊀M e c h a n i c a l c h a r a c t e r i s t i c s t e s t b e d 对接缓冲试验台(见图11)采用了气浮平台加两轴转台的全物理模拟方案,气浮平台和转台的摩902㊀㊀第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀张崇峰等:我国载人航天器对接机构技术发展擦力小,可以精确地设定对接初始条件.试验系统的追踪航天器和目标航天器均为8t 量级,各具有5个自由度,可以进行精确地对接动力学试验.该试验台用于实现对接机构接触㊁捕获㊁拉近㊁锁紧㊁密封到分离的全过程模拟,研究对接过程中碰撞㊁捕获㊁缓冲校正过程中对接机构和航天器的动力学行为.该试验台在国际上首次实现地面真实模拟航天器在轨分离过程[6].图11㊀对接缓冲试验台F i g 11㊀D o c k i n g bu f f e r t e s t b e d 六自由度对接综合台(见图12)是采用半物理仿真的方法实时模拟两个飞行器在设定对接初始条件下的对接动力学过程.其中主动对接机构安装综合台的上平台,被动对接机构安装在运动模拟器上,均为真实产品.两飞行器的质量㊁惯量特性和飞行器姿控系统作用采用数学模型模拟,由六自由度运动模拟器实现两飞行器的相对运动.两飞行器接触前的相对运动根据交会的对接初始条件得出,两个对接飞行器接触后相对运动,由六维力传感器测得相互作用力由数学模型实时计算得出.本试验台能够实现空间站全状态㊁全温度范围的对接缓冲试验[3].图12㊀六自由度对接综合试验台F i g 12㊀S i xd e g r e e s o f f r e e d o md o c k i n gge n e r a l t e s t s t a n d 热真空对接试验台(见图13)用于在热真空环境条件下考核对接机构的对接与分离全过程的功能及性能满足情况[6].将对接机构安装在热真空试验台上,整体吊入真空罐进行试验的.该试验能够模拟两飞行器对接纵向等效质量,可以设定一定的对接初始条件,实现主㊁被动对接机构的碰撞㊁捕获㊁缓冲㊁校正㊁拉近㊁锁紧与分离的全过程.图13㊀热真空对接试验台F i g 13㊀T h e r m a l v a c u u mt e s t d o c k i n g st a t i o n 在载人航天器对接机构研制过程中,我国研制建立了一系列设施齐全㊁技术指标先进㊁验证全面的对接机构试验验证系统和试验方法.对接机构试验已逐步形成行业规范,先后制定发布了«空间对接机构捕获缓冲试验方法»(Q J 20419-2016)㊁«空间对接机构连接分离试验方法»(Q J 20420-2016)和«空间对接机构热真空环境对接与分离试验方法»(Q J 20421-2016)等行业标准.这些在规范对接机构研制与试验方面发挥了重要作用.我国探月工程三期研制的对接与样品转移试验系统均借鉴了载人航天器对接试验技术及方法.4㊀后续载人对接技术的发展我国载人月球探测任务提出了轻量化新型对接机构的研制需求,并据此开展未来对接机构的方案设计,其核心是轻量化和新技术,在对接方式上兼顾碰撞对接和停靠对接.与现有周边式对接机构相比较,新型对接机构应具有以下特点:(1)为适应载人登月任务和近地空间站运营任务,采用周边式构型,对接接口兼容近地空间站;(2)实现对接机构轻量化;012㊀航㊀天㊀器㊀工㊀程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀31卷㊀(3)采用新技术,降低对接过程中的相对速度和碰撞力;(4)有良好的适应能力,具备在轨调整缓冲能力,同一套对接机构可以适应从3吨到几百吨的航天器的对接任务.我国现有载人航天工程周边式对接机构虽然技术成熟度及可靠性得到充分验证,但仍不能满足未来载人登月的智能化和轻量化要求.在弱撞击对接技术研究方面,N A S A早期的弱撞击对接系统(L I D S),提出了一种基于六维力闭环力反馈控制的对接系统[12],可以实现弱撞击对接,但该系统采用了力传感器非常复杂,对实时控制系统要求高且复杂.波音公司于2014年提出了一种基于滑动离合器的力管理系统的对接系统,通过设置期望滑动力阀值的方式实现对接过程[13].我国在2011年开始启动新型弱撞击对接机构研究工作.与美国的技术方案不同,我国在2012年提出一种基于位置速度测量的控制方案,根据每根丝杠获得的位置速度信息,通过电流实时控制,实时调整该丝杠相连电机的扭矩,实现主动对接环6个方向上等效性能,从而达到刚度阻尼的闭环反馈控制[14].在此基础上,简化六根丝杠电机的扭矩控制律,实现预置的对接环6个方向等效性能.为了能够实现对小吨位目标航天器的捕获,在初次接触时,主动对接环给定一个推出速度,以快速实现两对接环的贴合捕获.为了适应我国载人登月任务轻量化需求,新型对接机构开展了轻量化方案设计.除了采用电机直驱六根丝杠代替传统的机械式差动系统外,还从材料选择㊁刚性连接系统优化㊁对接环与对接框等结构件减重等方面实现新型对接机构的轻量化.5㊀结束语本文论述了我国载人航天器对接机构的方案与特点,介绍了对接动力学设计思想,以及对接动力学设计仿真与产品研制迭代循环过程,并对我国对接动力学试验系统进行了简介,最后,为满足我国载人月球探测需求和适应近地空间站运营任务,提出我国新型对接机构方案具备周边式构型㊁轻量化㊁低碰撞力和任务适应性强等特点.我国在载人航天工程初期确定了自主研制周边式对接机构,经过近30年发展,逐步建立和完善了对接机构一套独立自主的设计㊁生产和试验配套体系,具有对接机构技术和产品的自主知识产权.现有周边式对接机构在我国载人航天领域得到广泛应用,技术成熟,制定了对接机构试验规范,形成了统一标准接口,对我国空间站建造和长期运营起到重要保证作用.现有技术成果为后续载人月球探测任务中新型弱撞击㊁轻量化对接机构的研制奠定了良好的基础.参考文献(R e f e r e n c e s)[1]张柏楠.中国载人航天开启新征程[J].中国航天.2021(8):8G13Z h a n g B a i n a n.C h i n aM a n n e dS p a c eL a u n c haN e wJ o u rGn e y[J].A e r o s p a c eC h i n a,2021(8):8G13(i nC h i n e s e) [2]周建平.空间交会对接技术[M].北京:国防工业出版社,2013Z h o u J i a n p i n g.S p a c e c r a f t r e n d e z v o u s a n dd o c k i n g t e c hGn o l o g y[M].B e i j i n g:N a t i o n a lD e f e n s eI n d u s t r y P r e s s,2013(i nC h i n e s e)[3]陈宝东,郑云青,邵济明,等.对接机构分系统研制[J].上海航天,2011,28(6):1G6C h e nB a o d o n g,Z h e n g Y u n q i n g,S h a oJ i m i n g,e t a l.D eGv e l o p m e n t o f d o c k i n g s u b s y s t e m[J].A e r o s p a c e S h a n g h a i,2011,28(6):1G6(i nC h i n e s e)[4]张崇峰,柏合民.飞船空间对接机构技术[J].中国科学:技术科学,2014,44(1):22G26.Z h a n g C h o n g f e n g,B a i H e m i n.S p a c e d o c k i n g m e c h a n i s mt e c h n o l o g y o f s p a c e c r a f t[J].S c i e n t i aS i n i c a T e c h n o l o g i c a,2014,44:20G26(i nC h i n e s e) [5]陈宝东,唐平.空间对接机构技术及其研制[J].上海航天,2005(5):6G8,61C h e nB a o d o n g,T a n g P i n g.T h e t e c h n o l o g y d e v e l o p m e n t o f d o c k i n g m e c h a n i s ms y s t e m[J].A e r o s p a c eS h a n g h a i,2005(5):6G8,61(i nC h i n e s e)[6]张崇峰,陈宝东,郑云青,等航天器对接机构[M].北京:科学出版社,2016Z h a n g C h o n g f e n g,C h e nB a o d o n g,Z h e n g Y u n q i n g,e t a l.S p a c e c r a f t d o c k i n g m e c h a n i s m[M].B e i j i n g:S c i e n c e P r e s s,2016(i nC h i n e s e)[7]上海宇航系统工程研究所.邱华勇,张崇峰,苑会领,等.一种阻尼可控的对接机构传动缓冲系统[P].中国: Z L201811057025.X,2018A e r o s p a c e S y s t e mE n g i n e e r i n g S h a n g h a i.Q i uH u a y o n g, Z h a n g C h o n g f e n g,Y u a nH u i l i n g,e t a l.Ad a m p i n g c o nGt r o l l a b l e t r a n s i m i s s i o n b u f f e r s y s t e mf o r d o c k i n g m e c h aGn i s m[P].C h i n a:Z L201811057025.X,2018(i nC h i n e s e) [8]I S S M C B.I n t e r n a t i o n a l D o c k i n g S y s t e m S t a n d a r d (I D S S),I n t e r f a c eD e f i n i t i o nD o c u m e n t(I D D)(R e v i s i o n112㊀㊀第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀张崇峰等:我国载人航天器对接机构技术发展E).[E B/O L].[2017G04G01].h t t p://I n t e r n a t i o n a lD o cGk i n g S t a n d a r d.c o m/.[9]刘志,张崇峰,靳宗向,等.G B/T34512G2017,载人航天周边式交会对接机构接口要求[S].北京:中国标准出版社,2017L i uZ h i,Z h a n g C h o n g f e n g,J i nZ o n g x i a n g,e t a l.G B/T 34512G2017,R e q u i r e m e n t f o r i n t e r f a c e o f m a n n e d s p a c e c r a f t p e r i p h e r a ld o c k i n g m e c h a n i s m[S].B e i j i n g: S t a n d a r d sP r e s s o fC h i n a,2017(i nC h i n e s e) [10]张崇峰,刘志.空间对接机构技术综述[J].上海航天,2016,33(5):1G11Z h a n g C h o n g f e n g,L i uZ h i.R e v i e w o fs p a c ed o c k i n gm e c h a n i s m a n d i t s t e c h n o l o g y[J].A e r o s p a c e S h a n g h a i,2016,33(5):1G11(i nC h i n e s e)[11]娄汉文,曲广吉,刘济生.空间对接机构[M].北京:航空工业出版社,1992L o uH a n w e n,Q uG u a n g j i,L i u J i s h e n g.S p a c e d o c k i n gm e c h a n i s m[M].A v i a t i o nI n d u s t r y P r e s s,1992(i nC h i n e s e)[12]T o b i e L a b a u v e.L o w I m p a c tD o c k i n g S y s t e m(L I D S) [R/O L].[2021G12G20].h t t p://n t r s.n a s a.g o v/a r c h i v e/n a s a/c a s i.n t r s.n a s a.g o v/20090007783_2009006897.p d f.[13]P e j m u n M o t a g h e d i,S i a m a kG h o f r a n i a n.F e a s i b i l i t y o f t h es o f ti m p a c t m a t i n g a t t e n u a t i o n c o n c e p tf o rt h eN A S A d o c k i n g s y s t e m[C].A I A A S p a c e2014C o n f e r e n c e a n d E x p o s i t i o n.W a s h i n g t o n D.C.:A I A A,2014[14]刘志,张崇峰,邵济明,等.异体同构㊁刚度阻尼闭环反馈控制的对接系统及方法[P].中国:Z L201210489374.5,2013L i u Z h i,Z h a n g C h o n g f e n g,S h a o J i m i n g,e t a l.D o c k i n g s y s t e ma n d m e t h o do f a n d r o g y n o u s,s t i f f n e s sa n dd a m p i n g c l o s e dGl o o p f e e db ac kc o n t r o l[P].C h i n a:Z L201210489374.5,2013(i nC h i n e s e)(编辑:李多)212㊀航㊀天㊀器㊀工㊀程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀31卷㊀。
应用WPT的航天器可维修供配电系统设计刘治钢;朱立颖;张晓峰;马亮;陈琦【摘要】提出了应用无线能量传输(WPT)技术的蓄电池组、功率分配设备及主母线并入无线功率拓扑结构.在此基础上,设计了应用WPT的典型在轨维修供配电系统方案.通过在轨接管器间无线能量传输验证系统对系统方案设计进行了验证,结果表明:应用无线能量传输的可维修航天器供配电系统具有可行性,无线能量传输系统效率大于91.5%,为供配电系统在轨服务与维护设计提供支撑.【期刊名称】《电源技术》【年(卷),期】2019(043)007【总页数】4页(P1191-1193,1222)【关键词】航天器;可维修;供配电系统;无线能量传输;拓扑结构;电能传输效率【作者】刘治钢;朱立颖;张晓峰;马亮;陈琦【作者单位】北京空间飞行器总体设计部,北京100094;北京空间飞行器总体设计部,北京100094;北京空间飞行器总体设计部,北京100094;北京空间飞行器总体设计部,北京100094;北京空间飞行器总体设计部,北京100094【正文语种】中文【中图分类】TM91供配电系统是航天器的重要组成部分,担负着向航天器平台和负载提供、储存、调节和分配电能的重要任务,其功率大小、寿命长短、可靠度等性能指标是影响整个航天器成败的关键因素。
目前,供配电系统设计主要通过冗余或裕度设计、高可靠长寿命部组件设计等手段提高使用寿命。
然而,由于航天器对质量比能量、载荷质量比等指标的严格要求,供配电系统不太可能采用整机备份的形式,一旦发生故障对整个任务影响仍比较深远。
为保障航天器的长寿命,在轨维修是一种预防和消除故障的有效手段。
可维修供配电系统指通过航天器设计的标准化、通用化和模块化,实现各系统或单机“即插即用”以及航天器研制和在轨维护、组装的快速响应[1-4]。
通过构建适应在轨维修的供配电系统体制,在供配电系统失效或性能降级后通过在轨维修等手段,实现供配电系统的功能恢复与升级。
航天器电源系统设计与优化一、引言航天器电源系统是保障航天器正常运行所必需的核心部分。
随着航天技术的不断发展和航天任务的日益复杂,对电源系统的设计与优化提出了更高的要求。
本文旨在探讨航天器电源系统设计与优化的相关问题,并提供一些可行的解决方案。
二、航天器电源系统设计要考虑的因素1. 工作环境:航天器在太空中的工作环境极为恶劣,存在辐射、极低温、真空等因素的影响,电源系统需具备良好的抗辐射性能和适应不同环境的能力。
2. 高可靠性:航天任务一旦启动,往往无法进行修复或维护,因此电源系统的可靠性至关重要。
设计应充分考虑故障预测与容错机制,以确保航天器能够长时间、稳定地运行。
3. 能源供应:电源系统应能提供稳定的能源供应,满足航天器各种系统的电能需求。
同时,航天器电源系统还需考虑能源的来源、储存和管理,以保证能源的可持续供应。
4. 轻质化要求:航天器电源系统应具备轻量化的特性,以降低航天器的总质量,减少对运载火箭的要求,提高有效载荷能力。
5. 高效能利用:设计航天器电源系统时,应充分考虑能源的高效利用问题,提高能量转换效率,减少能源损耗,进一步延长航天器的寿命。
三、航天器电源系统设计与优化的方案1. 新型电池技术的应用:在航天器电源系统中,电池是最常用的能源储存装置。
当前,随着锂电池技术的发展,其能量密度和循环寿命都得到了显著提高,对于航天器电源系统的设计与优化具有重要意义。
2. 多能源供应策略:由于太阳能电池板会受到阴影和天气等因素的影响,航天器电源系统应考虑多种能源供应方式的组合,如太阳能、燃料电池等,以提高系统的可靠性和稳定性。
3. 智能能源管理系统:引入智能能源管理系统,通过精细化的能源分配,合理调配电力供应,实现对电源系统的优化控制和能源的高效利用。
4. 抗辐射措施:航天器电源系统在太空中要经受辐射的严重考验,可以采用抗辐射器件和材料,提高系统的抗辐射能力,减小辐射带来的影响。
5. 线路优化设计:航天器电源系统中的线路布局及连接方式的优化,能有效减少能耗和信号传输损耗,提升系统的性能和可靠性。
航天器电源系统设计作业1.电源系统在主电源、储能电源、功率调节三方面的方案初步设计步骤包括哪些方面。
确定电源系统的技术指标要求首先要充分了解飞行任务特点、航天器结构构型方案、工作寿命要求、有效载荷方案,从而确认航天器总体对电源系统的设计要求:电源系统的任务、供电要求(长期功率,峰值功率,平均功率,脉冲功率)、工作寿命及可靠性要求、质量及体积要求、环境试验要求、研制经费和航天器总体的制约条件等。
①主电源的方案选择与设计包括:太阳电池类型(品种和规格)、太阳电池阵的布局及安装方式(本体安装、单轴跟踪、双轴跟踪)、太阳电池阵输出功率预估、太阳电池阵的质量和面积预估、可靠性、安全性要求和可靠度指标预估、与航天器其它分系统的机、电、热接口要求、与地面支持设备间的机、电、热接口要求②储能电源的方案选择与设计包括:蓄电池的类型(品种和规格)、蓄电池组的组成形式、蓄电池组容量、放电深度要求(满足各种工况下的航天器对功率的需求)、蓄电池组的最大输出功率需求、蓄电池组充放电循环寿命需求、蓄电池组的质量和体积预估、可靠性、安全性要求和可靠度指标预估、与航天器其它分系统的机、电、热接口要求、与地面支持设备间的机、电、热接口要求③功率调节的方案选择与设计包括:能量传输方式(直接能量传输系统、峰值功率跟踪系统)、母线电压调节方式(不调节、半调节和全调节母线)、母线电压的选择和母线供电品质要求、太阳电池阵、蓄电池组的功率调节与控制方式、电源控制设备的质量和体积预估、可靠性、安全性要求和可靠度指标预估、与航天器其它分系统的机、电、热接口要求、与地面支持设备间的机、电、热接口要求2.空间环境对电源系统的影响包括哪些方面。
针对原子氧侵蚀影响、等离子体环境的表面充放电影响的预防措施。
①地球空间环境:引力场、中性大气、真空、电离层、磁场与磁层、高能粒子辐射环境、微流星体和空间碎片(1)对轨道的影响:地球引力场、高层大气、日月摄动、太阳辐射压力(2)对姿态的影响:地球磁场、高层大气、地球引力场、太阳辐射压力(3)空间环境对结构和材料的影响:辐射损伤(电磁辐射损伤;高能粒子辐射损伤)、材料放气、污染、材料表面原子氧侵蚀、撞击损伤、接触表面黏着和冷焊(4)空间环境对航天器的充电和放电影响:真空放电、表面静电充放电、体内放电、低压放电(5)空间环境对电子器件的影响:热环境、辐射损伤、单粒子事件(6)空间环境影响对航天器研制各阶段的要求:可行性论证阶段、方案设计阶段、研制阶段、发射阶段、运行阶段、发生异常和故障阶段(7)空间环境对电源系统的影响:太阳总辐照度变化的影响、化学损伤的影响、高能带电粒子的辐射损伤影响、等离子体环境的表面充放电影响、机械损伤的影响、温度环境的影响、空间污染的影响②原子氧侵蚀影响的预防措施:(1)选用抗原子氧侵蚀能力强的互联材料,或选择满足任务寿命要求的互连片的厚度,同时开展地面验证试验。
2024北京顺义初二(上)期末语文一、基础•运用(共12分)1.(12分)某校八年级准备开展“跟着书本去研学——北京古代建筑博物馆”研学活动,请你一起修订研学预热手册。
(1)同学们为整理“研学目的”找了以下文字材料,请你一起修订。
中国古代建筑屹立于世界建筑之林,在世界的东方绽放异彩。
这一由中华民族所创造和发展的“空间造型艺术和建构技术”,自成体系,,是中国古代灿烂文化的重要组成部分。
神奇的土木结构、卓越的科技成就与迷人的艺术风采,令华夏营造处处闪烁温润的哲学精神、严谨的伦理思想和灿烂的人性光辉。
①材料划线处遗失了一个成语,请从下列词语中选择最恰当的一项CA.锐不可当B.震聋发聩C.独树一帜D.鹤立鸡群②材料第二段的几句话顺序被打乱了,请你帮忙做重新梳理(用序号作答即可)。
A.欣赏着它典雅精致的造型和独具一格的技艺时B.领略中国古代建筑辉煌的发展历程C.进而引发我们对文化、历史、人生的思考和感悟D.我们能感受到华夏文明的博大精深、中华五千年的生命脉动我的排序是:BADC(2)同学们为了对“北京古代建筑博物馆”有初步了解,找了以材料,请你帮助修订。
北京古代建筑博物馆位于永定门大街西侧的先农坛内,1988年在文博界专家的积极呼吁和鼎力相助....下成立博物馆,1991年9月25日正式对外开放,立属..于北京市文物局。
北京古代建筑博物馆是我国第一座以收藏、研究和展示反映中国古代建筑历史、建筑艺术、建筑技术的专题性博物馆。
现已成为向社会传播建筑文化的科普窗口,得到社会各界人士的观注..和热爱。
在这里举办的“中国古代建筑发展简史”基本陈列展,以丰富多彩的文物、图片、照片、模型等反映中国建筑的灿烂成就【甲】以匠心独运、雅俗共赏的体例、编制来展示中国古代建筑的风采神韵..;以古代坛庙氛围和现代展览形式相结合的方式来展示建筑文化的深邃蕴含【乙】当你走进太岁殿、拜殿、西配殿等展区时,中国古代建筑构架的恢弘,建筑材料的复杂多样,不得不为前人的聪慧头脑和非凡创造能力而叫绝。