最优化与最优控制
- 格式:pptx
- 大小:815.25 KB
- 文档页数:17
最优化与最优控制课程的教学改革建议作者:任华玲来源:《教育教学论坛》 2017年第16期摘要:本文总结了研究生课程教学中存在的问题,尤其是最优化与最优控制这门研究生专业基础课目前教学中存在的问题。
在此基础上,给出了几点切实可行的教学改革建议,为后期专业课的学习打下坚实的理论基础,并为培养研究生从事科学研究的能力作好准备。
关键词:专业基础课;最优化与最优控制;教学改革中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)16-0141-02一、最优化与最优控制课程的性质和教学目标最优化与最优控制课程是硕士研究生系统分析与集成、系统理论等专业的专业基础课,该课程以最优化与最优控制的基本概念、建模方法、基本理论、求解方法等为主要内容,为相关专业硕士研究生在以后的科研中遇到优化问题而提供引导思路,起到“抛砖引玉”的作用。
其主要教学目标包括:掌握最优化和最优控制方法的基本思路、特点和适用条件;掌握相关理论和算法;能够应用这些方法对实际问题进行建模;了解现代优化方法发展的前沿和最新的优化工具软件。
二、最优化与最优控制教学中存在的问题1.研究生课程教学中普遍存在的问题。
首先谈谈研究生课程教学中普遍存在的问题。
研究生课程的学习对提高研究生培养质量具有非常重要的作用,但研究生与本科生不同,他们已经具备了较扎实的基础知识,然而目前仍有许多研究生课程还是主要采用传统的灌输式教学方式。
这种让学生被动接受知识的方法无法调动学生学习的积极性和主动性,也没有考虑学生学业及个人需求的差异性,教学效果不佳。
另外,大部分研究生课程没有统一教材,任课教师忙于科研工作难以及时更新教学内容,导致一些公共基础的教学内容陈旧或不够全面[1]。
然而,专业基础课是进一步学习后期相关专业课程的基础,其学习质量的优劣将直接关系到专业课教学的学习效果,关系到学生能否在理论深度上更好地理解和掌握专业课的学习,关系到在专业课中能否发挥出一定的自主和创新能力[2]。
最优控制与最优化问题中的动态规划方法动态规划方法是一种在最优控制和最优化问题中常用的方法。
它通过将问题分解为子问题,并利用子问题的最优解来求解整体问题的最优解。
本文将介绍动态规划方法的基本原理和应用,以及其在最优控制和最优化问题中的具体应用案例。
一、动态规划方法的基本原理动态规划方法的基本原理是将原问题分解为若干个子问题,并通过求解子问题的最优解来求解整体问题的最优解。
具体来说,动态规划方法有以下几个基本步骤:1. 定义状态:将问题的解表示为一个或多个状态变量。
2. 确定状态转移方程:根据问题的特点和约束条件,确定状态之间的转移关系。
3. 确定边界条件:确定问题的边界条件,即最简单的情况下的解。
4. 递推求解:利用状态转移方程和边界条件,递推求解问题的最优解。
二、动态规划方法在最优控制中的应用动态规划方法在最优控制中有广泛的应用。
最优控制问题的目标是找到一种控制策略,使得系统在给定的约束条件下达到最优性能。
动态规划方法可以用来求解最优控制问题的控制策略。
以倒立摆控制为例,倒立摆是一种常见的控制系统,其目标是使摆杆保持竖直位置。
动态规划方法可以将倒立摆控制问题分解为一系列子问题,每个子问题都是在给定状态下选择最优的控制动作。
通过递推求解子问题的最优解,最终可以得到整个控制过程的最优策略。
三、动态规划方法在最优化问题中的应用动态规划方法在最优化问题中也有广泛的应用。
最优化问题的目标是找到一组变量的最优取值,使得目标函数达到最小或最大值。
动态规划方法可以用来求解最优化问题的最优解。
以旅行商问题为例,旅行商问题是一个经典的最优化问题,其目标是找到一条路径,使得旅行商能够经过所有城市并且总路程最短。
动态规划方法可以将旅行商问题分解为一系列子问题,每个子问题都是在给定状态下选择最优的下一个城市。
通过递推求解子问题的最优解,最终可以得到整个旅行路径的最优解。
四、动态规划方法的优缺点动态规划方法有以下几个优点:1. 可以求解复杂的最优控制和最优化问题,具有较高的求解效率。
最优化及最优控制计算研究精确罚函数途径摘要最优化及最优控制是现代控制领域中研究的重点之一。
随着科技发展和信息技术的广泛应用,人们对最优化与最优控制的需求越来越强烈。
而在最优化与最优控制中,精确罚函数方法是一种重要的技术手段,它已被广泛应用于各种实际问题的求解中。
本文主要介绍精确罚函数方法的研究现状和应用,包括其基本概念、基本原理及其数值求解方法,并对精确罚函数方法进行了深入的剖析和思考。
关键词:最优化、最优控制、精确罚函数、数值求解AbstractOptimization and optimal control are one of the research focuses in the field of modern control. With the development of science and technology and the widespread application of information technology, people's demand for optimization and optimal control is becoming more and more urgent. In optimization and optimal control, the accurate penalty function method is an important technical means, which has been widely used in the solution of various practical problems. This paper mainly introduces the research status and application of the accurate penalty function method, including its basic concepts, basic principles, and numerical solution methods, and deeply analyzes and thinks about the accurate penalty function method.Keywords: optimization, optimal control, accurate penalty function, numerical solution1.引言目前,最优化与最优控制已经成为现代控制领域中研究的重点之一,其在各个领域中得到了广泛的应用,特别是对于涉及到大量数据和多变量的问题求解中,最优化与最优控制更是不可或缺的重要手段。
控制系统中的最优控制与最优化技术随着科技的不断进步和应用范围的扩大,控制系统在各行各业中的重要性也日益凸显。
最优控制与最优化技术作为控制系统中的重要概念和方法,在提高系统性能和效率方面发挥着关键作用。
本文将就控制系统中的最优控制与最优化技术进行深入探讨。
一、最优控制的定义与概念最优控制是指在满足给定约束条件的前提下,通过使某种性能准则达到最大或最小值来确定控制器参数或控制策略的问题。
最优控制的实现可以使系统在最短时间内达到期望状态或在给定资源条件下获得最佳性能。
最优化技术是实现最优控制的关键方法之一,它利用数学和计算方法来寻找系统中使性能准则达到最大或最小值的最优解。
最优化技术广泛应用于各种领域,例如经济学、工程学、管理学等,其中最为常见的应用是在控制系统中。
二、最优控制的分类最优控制可以分为离散最优控制和连续最优控制两大类。
离散最优控制是指在离散时间点上确定控制器参数或控制策略的问题。
典型的离散最优控制方法包括动态规划、贝尔曼方程等。
连续最优控制是指在连续时间范围内确定控制器参数或控制策略的问题。
常见的连续最优控制方法有经典最优控制、最速控制、最小能耗控制等。
三、最优化技术在控制系统中的应用最优化技术在控制系统中有着广泛的应用。
以下是一些常见的应用领域。
1. 机器人控制机器人控制是利用最优化技术来实现机器人移动、定位和路径规划等问题。
通过对机器人运动过程中的能耗、时间等指标进行优化,可以实现机器人的高效控制和优化运动。
2. 制造业控制在制造业中,最优化技术可以用来优化物料和生产设备的调度、工艺参数的优化以及生产线的平衡等问题。
通过合理地设计和优化控制策略,可以提高制造业的生产效率和产品质量。
3. 能源系统控制能源系统控制是指在能源产生、传输和消费过程中,通过最优化技术实现能源的高效利用。
例如在电力系统中,可以通过最优化技术对电网的输电线路和发电机组进行优化调度,以最大限度地提高电网的稳定性和电能的利用率。