舍伍德算法
- 格式:ppt
- 大小:2.42 MB
- 文档页数:64
1、一个算法的优劣可以用(时间复杂度)与(空间复杂度)与来衡量。
2、回溯法在问题的解空间中,按(深度优先方式)从根结点出发搜索解空间树。
3、直接或间接地调用自身的算法称为(递归算法)。
4、 记号在算法复杂性的表示法中表示(渐进确界或紧致界)。
5、在分治法中,使子问题规模大致相等的做法是出自一种(平衡(banlancing)子问题)的思想。
6、动态规划算法适用于解(具有某种最优性质)问题。
7、贪心算法做出的选择只是(在某种意义上的局部)最优选择。
8、最优子结构性质的含义是(问题的最优解包含其子问题的最优解)。
9、回溯法按(深度优先)策略从根结点出发搜索解空间树。
10、拉斯维加斯算法找到的解一定是(正确解)。
11、按照符号O的定义O(f)+O(g)等于O(max{f(n),g(n)})。
12、二分搜索技术是运用(分治)策略的典型例子。
13、动态规划算法中,通常不同子问题的个数随问题规模呈(多项式)级增长。
14、(最优子结构性质)和(子问题重叠性质)是采用动态规划算法的两个基本要素。
15、(最优子结构性质)和(贪心选择性质)是贪心算法的基本要素。
16、(选择能产生最优解的贪心准则)是设计贪心算法的核心问题。
17、分支限界法常以(广度优先)或(以最小耗费(最大效益)优先)的方式搜索问题的解空间树。
18、贪心选择性质是指所求问题的整体最优解可以通过一系列(局部最优)的选择,即贪心选择达到。
19、按照活结点表的组织方式的不同,分支限界法包括(队列式(FIFO)分支限界法)和(优先队列式分支限界法)两种形式。
20、如果对于同一实例,蒙特卡洛算法不会给出两个不同的正确解答,则称该蒙特卡洛算法是(一致的)。
21、哈夫曼编码可利用(贪心法)算法实现。
22概率算法有数值概率算法,蒙特卡罗(Monte Carlo)算法,拉斯维加斯(Las Vegas)算法和舍伍德(Sherwood)算法23以自顶向下的方式求解最优解的有(贪心算法)24、下列算法中通常以自顶向下的方式求解最优解的是(C)。
舍伍德(Sherwood)算法学习笔记⼀.概念引⼊设A是⼀个确定性算法,当它的输⼊实例为x时所需的计算时间记为tA(x)。
设Xn 是算法A的输⼊规模为n的实例的全体,则当问题的输⼊规模为n时,算法A所需的平均时间为。
这显然不能排除存在x∈Xn使得的可能性。
希望获得⼀个随机化算法B,使得对问题的输⼊规模为n的每⼀个实例均有。
这就是舍伍德算法设计的基本思想。
当s(n)与tA(n)相⽐可忽略时,舍伍德算法可获得很好的平均性能。
概率算法的⼀个特点是对同⼀实例多次运⽤同⼀概率算法结果可能同。
舍伍德算法(O(sqrt(n)),综合了线性表和线性链表的优点)总能求的问题的⼀个正确解,当⼀个确定性算法在最坏情况和平均情况下差别较⼤时可在这个确定性算法中引⼊随机性将之改造成⼀个舍伍德算法;引⼊随机性不是为了消除最坏,⽽是为了减少最坏和特定实例的关联性。
⽐如线性表a的查找若是找10(独⼀⽆⼆),如果在a[0]则为O(1),若是最后⼀个则O(n),可见时间与输⼊实例有关,此时可引⼊随机性将之改造成⼀个舍伍德算法。
有时候⽆法直接把确定性算法改造为舍伍德算法,这时候对输⼊洗牌。
下⾯是洗牌算法源代码:import java.util.Random;public class Shuffle {public static void main(String[] args) {int a[] = new int[]{1,2,4,5,8};/** Collections.shuffle(list)参数只能是list*/myShuffle(a);for(int i:a) {//犯了个低级错误,输出了a[i],结果数组下标越界异常System.out.print(i+" ");}System.out.println();}private static void myShuffle(int[] a) {int len = a.length;for(int i=0; i<len; i++) {Random r = new Random();//直接Random.nextInt(len)提⽰静态⽅法⾥⽆法引⽤int j = r.nextInt(len);//Collections.swap(list,i,j)必须是list类型if(i!=j) {//原来没加这个条件int temp = a[i];a[i] = a[j];a[j] = temp;}}}}⼆.舍伍德思想解决迅雷2010年校招--发牌问题描述:52张扑克牌分发给4⼈,每⼈13张,要求保证随机性。
1、舍伍德(Sherwood)算法设A是一个确定性算法,当它的输入实例为x时所需的计算时间记为t A(x)。
设Xn是算法A的输入规模为n的实例的全体,则当问题的输入规模为n时,算法A所需的平均时间为。
这显然不能排除存在x∈Xn使得的可能性。
希望获得一个随机化算法B,使得对问题的输入规模为n的每一个实例均有。
这就是舍伍德算法设计的基本思想。
当s(n)与tA(n)相比可忽略时,舍伍德算法可获得很好的平均性能。
2、线性时间选择算法1)随机划分选择基准对于选择问题而言,用拟中位数作为划分基准可以保证在最坏的情况下用线性时间完成选择。
如果只简单地用待划分数组的第一个元素作为划分基准,则算法的平均性能较好,而在最坏的情况下需要O(n^2)计算时间。
舍伍德选择算法则随机地选择一个数组元素作为划分基准,这样既保证算法的线性时间平均性能,又避免了计算拟中位数的麻烦。
非递归的舍伍德型选择算法如下:[cpp]view plain copy1.//随机化算法线性时间选择随机划分选择基准2.#include "stdafx.h"3.#include "RandomNumber.h"4.#include <iostream>ing namespace std;6.7.template<class Type>8.Type select(Type a[],int l,int r,int k);9.10.template<class Type>11.Type select(Type a[],int n,int k);12.13.template <class Type>14.inline void Swap(Type &a,Type &b);15.16.int main()17.{18.int a[] = {5,7,3,4,8,6,9,1,2};19. cout<<"原数组为:"<<endl;20.for(int i=0; i<9; i++)21. {22. cout<<a[i]<<" ";23. }24. cout<<endl;25. cout<<"所给数组第7小元素为:"<<select(a,9,7)<<endl;26.return 0;27.}28.29.//计算a[0:n-1]中第k小元素30.//假设a[n]是一个键值无穷大的元素31.template<class Type>32.Type select(Type a[],int n,int k)33.{34.if(k<1 || k>n)35. {36. cout<<"请输入正确的k!"<<endl;37.return 0;38. }39.return select(a,0,n-1,k);40.}41.42.//计算a[l:r]中第k小元素43.template<class Type>44.Type select(Type a[],int l,int r,int k)45.{46.static RandomNumber rnd;47.while(true)48. {49.if(l>=r)50. {51.return a[l];52. }53.54.int i = l,55. j = l + rnd.Random(r-l+1);//随机选择划分基准56.57. Swap(a[i],a[j]);58.59. j = r+1;60. Type pivot = a[l];61.62.//以划分基准为轴做元素交换63.while(true)64. {65.while(a[++i]<pivot);66.while(a[--j]>pivot);67.if(i>=j)68. {69.break;70. }71. Swap(a[i],a[j]);72. }73.74.if(j-l+1 == k)//第k小75. {76.return pivot;77. }78.79.//a[j]必然小于pivot,做最后一次交换,满足左侧比pivot小,右侧比pivot大80. a[l] = a[j];81. a[j] = pivot;82.83.//对子数组重复划分过程84.if(j-l+1<k)85. {86. k = k-j+l-1;//右侧:k-(j-l+1)=k-j+l-187. l = j + 1;88. }89.else90. {91. r = j - 1;92. }93. }94.}95.96.template <class Type>97.inline void Swap(Type &a,Type &b)98.{99. Type temp = a;100. a = b;101. b = temp;102.}程序运行结果如图:2)随机洗牌预处理有时也会遇到这样的情况,即所给的确定性算法无法直接改造成舍伍德型算法。
对比舍伍德算法、拉斯维加斯算法、蒙特卡洛算法的适用范围以及它们的优缺点。
一、舍伍德算法:•特点舍伍德算法总能求得问题的一个解,且所求得的解总是正确的。
当一个确定性算法在最坏情况下的计算复杂性与其在平均惜况下的计算复杂性有较大的差别时,可在这个确定性算法中引入随机性将它改造成一个舍伍徳算法,消除或减少问题的好坏实例间的这种差别。
舍伍德算法的精髓不是避免算法的最坏悄形行为,而是设法消除这种最坏悄形行为与特定实例之间的关联性。
舍伍德算法不会从整体上或平均的改善问题求解的时间复杂度,但可以对一些特别耗时的特定输入改善至较适中的时间复杂度。
设A是一个确定性算法,当它的输入实例为x时所需的计算时间记为tA(x)o设Xn是算法A的输入规模为n的实例的全体,则当问题的输入规模为n时,算法A 所需的平均时间为_ 艺© O)“小卞厂这显然不能排除存在xGXn使得tA(x)»tA(n)的可能性。
希望获得一个概率算法B,使得对问题的输入规模为n的每一个实例均有心⑴二几何+心)这就是舍伍德算法设计的基本思想。
当s(n)与tA(n)相比可忽略时,舍伍德算法可获得很好的平均性能。
•适用范围:1.快速排序算法2.线性时间选择算法上述两算法选择合适的划分基准,舍伍德算法随机地选择一个数组元素作为划分基准,这样既能保证算法的线性时间平均性能,乂避免了计算拟中位数的麻烦。
3.搜索有序表利用数组的小标的索引性质,可以设讣一个随机化搜索算法,以改进算法的搜索时间复朵性。
即随机抽取数组元素若干次,从较近搜索元素x的位置开始做顺序搜索。
4.跳跃表在跳跃表中随机增加附加指针,以及在该结点处应随机增加指针。
二、拉斯维加斯算法:•特点:拉斯维加斯算法不会得到不正确的解。
一旦用拉斯维加斯算法找到一个解,这个解就一定是正确解。
与蒙特卡罗算法类似,拉斯维加斯算法找到正确解的概率随着它所用的计算时间的增加而提高。
但对所求解的问题,用同一个拉斯维加斯算法反复求解多次,可以使得求解失效的概率任意小。
舍伍德数公式
舍伍德数是一种奇特的数学现象,它是由英国数学家J. E.舍伍德于1919年首先发现的。
舍伍德数常常被用于解决一些数学难题,具有
重要的应用价值。
然而,很少有人知道舍伍德数的公式,下面就来介
绍一下:
首先,我们需要知道什么是舍伍德数。
舍伍德数是指一个正整数n,它的十进制表示下,去掉最高位和最低位数字后剩下的数,等于原数n 除以去掉最高位和最低位数字后的数的乘积。
例如,一个三位数153,去掉最高位和最低位数字后得到5,这时我们算一下153/5=30,发现
它等于原数153除以5后的结果。
那么如何得到舍伍德数的公式呢?我们可以使用递推的方法来进
行推导。
设Sn表示第n个舍伍德数,我们可以得到如下的递推式:Sn = (Sn-1 + Sn-2) × Sn-3 / Sn-4
其中,S1=8,S2=49,S3=288,S4=1681。
这个递推式的意思是,
要得到第n个舍伍德数,需要先求出前面四个数的值,然后按照公式
计算即可。
这样,我们就得到了舍伍德数的公式了。
当然,这个公式并不是完美的。
它仅适用于n>4的情况,对于
n≤4的情况,我们需要手动计算得到。
此外,这个公式也不能保证得
到的舍伍德数都是正确的,可能存在一些错误的情况,需要做一些特
殊处理。
总之,舍伍德数是一种很特别的数学现象,它的公式也很有意思。
通过递推的方式,我们可以比较容易地求出任意的舍伍德数,具有很
高的实用价值。
如果你对数学感兴趣,不妨研究一下舍伍德数的性质
和公式,相信会给你带来不少惊喜。
【算法】常见算法分类和思想我们在实际应⽤中,对⼀个问题会有不同的解题思路,⽐如我们在读书时候,往往对⼀道数学题⽬会有多种解题⽅法,可能有些⽅法⽐较简单,有些⽅法⽐较复杂,步骤较多。
所以找到⼀个合适的⽅法可以更快更好的去解决问题。
在程序应⽤中,我们也会有不同的算法去解决问题。
算法分类分为:1.基础算法:包括字符串,数组,正则表达式,排序,递归等。
2.数据结构:堆,栈,队列,链表,矩阵,⼆叉树等。
3.⾼级算法:贪⼼算法,动态规划等。
根据问题的不同,⼀般可以有以下算法思想去解决问题: 递推算法: 递推法,就是从已知的结果和条件出发,利⽤特定关系分解中间步骤得出推论,逐步推导⽽得到结果。
递推算法分为顺推和逆推两种。
递推与递归的⽐较 相对于递归算法,递推算法免除了数据进出栈的过程,也就是说不需要函数不断的向边界值靠拢,⽽直接从边界出发,直到求出函数值。
分治算法: 分治,顾名思义,分⽽治之,分治算法是⼀种化繁为简的算法思想,往往应⽤于计算步骤⽐较复杂的问题,通过将问题简化⽽逐步得到结果。
常⽤场景就是求出最轻、最重问题(在⼀堆形状相同的物品中找出最重或最轻的那⼀个,⼆分查找,快速排序和归并排序,分治算法也是许多⾼效算法的基础,⽐如快速傅⽴叶变换算法和 Karatsuba 乘法算法。
概率算法: 概率算法是在程序执⾏过程中利⽤概率统计的思路随机地选择下⼀个计算步骤,在很多情况下,算法在执⾏过程中⾯临选择时,随机性选择⽐最优选择省时,因此概率算法可以在很⼤程度上降低算法的复杂度。
概率算法⼤致分类如下: 1.贝叶斯分类算法。
2.蒙特卡罗(Monte Carlo)算法。
3.拉斯维加斯(Las Vegas)算法。
4.舍伍德(Sherwood)算法。
5.随机数算法。
6.近似算法。
7.机器学习算法中的的⼀些概率⽅法。
递归算法: 递归算法是指⼀种通过重复将问题分解为同类的⼦问题⽽解决问题的⽅法。
具体来说就是就是⼀个函数或者类⽅法直接或间接调⽤⾃⾝的⼀种⽅法。
《算法设计与分析》期末必考复习及答案题整理1、分治法的基本思想:是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
2、贪心选择性质:指所求问题的整体最优解可以通过一系列局部最优的选择,3、 Prim算法:设G=(V,E)是连通带权图,V={1,2,…,n}。
构造G的最小生成树的Prim算法的基本思想是:首先置S={1},然后,只要S是V的真子集,就作如下的贪心选择:选取满足条件i?S,j?V-S,且c[j]最小的边,将顶点j添加到S 中。
这个过程一直进行到S=V时为止。
4、什么是剪枝函数:回溯法搜索解空间树时,通常采用两种策略避免无效搜索,提高回溯法的搜索效率。
其一是用约束函数在扩展结点处剪去不满足约束的子树;其二是用限界函数剪去得不到最优解的子树。
这两类函数统称为剪枝函数。
6、分支限界法的基本思想:(1)分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
(2)在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。
在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
(3)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程,这个过程一直持续到找到所需的解或活结点表这空时为止。
5、什么是算法的复杂性:是该算法所需要的计算机资源的多少,它包括时间和空间资源。
6、最优子结构性质:该问题的最优解包含着其子问题的最优解。
7、回溯法:是一个既带有系统性又带有跳跃性的搜索算法。
这在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任一结点时,先判断该结点是否包含问题的解。
如果肯定不包含,则跳过对以该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。
第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。
2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。
3、算法的时间复杂度的上界,下界,同阶,低阶的表示。
4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。
5、常用的几种数据结构:线性表、树、图。
第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。
递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。
递归元的递减方式~有两种:1、减法,即n -b,的形式。
2、除法,即n / b,的形式。
2、D(n)为常数c:这时,T(n) = 0(n P)。
D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。
对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。
概率算法概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可能得到完全不同的效果。
这两次求解问题所需的时间甚至所得到的结果可能会有相当大的差别。
一般情况下,可将概率算法大致分为四类:数值概率算法,蒙特卡罗算法,拉斯维加斯算法和舍伍德算法。
一、数值概率算法常用于数值问题的求解。
这类算法所得到的往往是近似解。
而且近似解的精度随计算时间的增加不断提高。
在许多情况下,要计算出问题的精确解是不可能或没有必要的,因此用数值概率算法可得到相当满意的解。
1、用随机投点法计算π值设有一半径为r 的圆及其外切四边形。
向该正方形随机地投掷n 个点。
设落入圆内的点数为k 。
由于所投入的点在正方形上均匀分布,因而所投入的点落入圆内的概率为4422ππ=r r 。
所以当n 足够大n k 4≈π(n k≈4π)2、计算定积分设f(x)是[0,1]上的连续函数,且0≤f(x) ≤ 1。
需要计算的积分为⎰=1)(dx x f I , 积分I 等于图中的面积G在图所示单位正方形内均匀地作投点试验,则随机点落在曲线下面的概率为⎰⎰⎰==≤10)(01)()}({x f r dx x f dydx x f y P 假设向单位正方形内随机地投入 n 个点(xi,yi)。
如果有m 个点落入G 内,则随机点落入G 内的概率nm ≈I 3、解非线性方程组求解下面的非线性方程组⎪⎪⎩⎪⎪⎨⎧===0),,,(0),,,(0),,,(21212211n n n n x x x f x x x f x x x f 其中,x 1, x 2, …, x n 是实变量,fi 是未知量x1,x2,…,xn 的非线性实函数。
要求确定上述方程组在指定求根范围内的一组解x 1*, x 2*, …, x n * 。
在指定求根区域D 内,选定一个随机点x0作为随机搜索的出发点。
在算法的搜索过程中,假设第j 步随机搜索得到的随机搜索点为xj 。
在第j+1步,计算出下一步的随机搜索增量∆xj 。
北京语言大学22春“计算机科学与技术”《算法与数据分析》期末考试高频考点版(带答案)一.综合考核(共50题)1.在下列算法中得到的解未必正确的是()。
A.蒙特卡罗算法B.拉斯维加斯算法C.舍伍德算法D.数值概率算法参考答案:B2.合并排序算法是利用()。
A.分治策略B.动态规划法C.贪心法D.回溯法参考答案:A3.下列随机算法中运行时有时候成功有时候失败的是()。
A.数值概率算法B.舍伍德算法C.拉斯维加斯算法D.蒙特卡罗算法参考答案:C4.下列算法中通常以自底向上的方式求解最优解的是()。
A.备忘录法B.动态规划法C.贪心法D.回溯法5.哈弗曼编码的贪心算法所需的计算时间为()。
A.O(n2n)B.O(nlogn)C.O(2n)D.O(n)参考答案:B6.解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是动态规划,需要排序的是回溯法,分支限界法。
()A.错误B.正确参考答案:B7.以下不可以使用分治法求解的是()。
A.棋盘覆盖问题B.选择问题C.归并排序D.0/1背包问题参考答案:D8.利用概率的性质计算近似值的随机算法是数值概率算法,运行时以一定的概率得到正确解的随机算法是蒙特卡罗算法。
()A.错误B.正确参考答案:BA.错误B.正确参考答案:B10.下列算法中通常以深度优先方式系统搜索问题解的是()。
A.备忘录法B.动态规划法C.贪心法D.回溯法参考答案:D11.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为()。
A.O(n2n)B.O(nlogn)C.O(2n)D.O(n)参考答案:B12.拉斯维加斯算法找到的解不一定是正确解。
()A.错误B.正确参考答案:A13.贪心算法的基本要素是贪心选择质和最优子结构性质。
()A.错误B.正确参考答案:B14.实现棋盘覆盖算法利用的算法是()。
A.分治法B.动态规划法C.贪心法D.回溯法参考答案:A15.实现合并排序利用的算法是()。