非线性系统的逆模型
- 格式:ppt
- 大小:1.62 MB
- 文档页数:54
数学建模中对非线性动力系统模型的认识和体会真实动力系统几乎总是含有各种各样的非线性因素,诸如机械系统中的间隙、干摩擦,结构系统中的材料弹塑性和黏弹性、构件大变形,控制系统中的元器件饱和特性、控制策略非线性等等。
非线性动力学理论的研究和发展已经经历了一个多世纪,在新世纪之初,为了使非线性动力学理论得到更好的发展,非常有必要回顾一下非线性动力学研究和发展的历史。
非线性动力学理论的发展大致经历了三个阶段。
第一个阶段是从1881年到1920年前后,第二阶段从20世纪20年代到70年代,第三阶段从20世纪70年代至今。
人们对于非线性系统的动力学问题的研究可以追溯到1673年Huygens对单摆大幅摆动非等时性的观察。
第一阶段的主要进展是动力系统的定性理论,其标志性成果是法国科学家Poincare从1881年到1886年期间发表的系列论文“微分方程定义的积分曲线”,俄罗斯科学家Liapunov 从1882年到1892年期间完成的博士论文“运动稳定性通论”,以及美国科学家Birkhoff在1927年出版的著作“动力系统"。
第二阶段的主要进展是提出了一系列求解非线性振动问题的定量方法,代表人物有俄罗斯科学家Krylov、Bogliubov,乌克兰科学家Mitropolsky,美国科学家Nayfeh等等。
他们系统地发展了各种摄动方法和渐近方法,解决了力学和程科学中的许多问题。
在这个阶段中抽象提炼出了若干著名的数学模型,如Duffing方程、vander Pol方程、Mathieu方程等,至今仍被人们用以研究非线性系统动力学现象的本质特征。
从20世纪60~70年代开始,原来独立发展的分岔理论汇入非线性动力学研究的主流当中,混沌现象的发现更为非线性动力学的研究注入了活力,分岔、混沌的研究成为非线性动力学理论新的研究热点。
俄罗斯科学家Arnold和美国科学家Smale等数学家和力学家相继对非线性系统的分岔理论和混沌动力学进行了奠基性和深入的研究,Lorenz和Ueda等物理学家则在实验和数值模拟中获得了重要发现。
机械系统动力学模型的非线性分析方法一、引言机械系统动力学模型的非线性分析方法是研究机械系统中复杂非线性行为的重要手段。
在实际工程中,机械系统往往存在着多种非线性现象,如摩擦、接触、间隙、变刚度等,这些非线性行为对系统的稳定性和动态响应产生重要影响。
因此,研究机械系统的非线性特性对于工程设计及系统优化具有重要意义。
二、基础理论机械系统动力学模型的非线性分析方法建立在基础理论的基础上。
其中,最基本的理论是非线性动力学理论,包括非线性振动理论、混沌理论等。
非线性振动理论研究了机械系统在非线性激励下出现的振动现象,而混沌理论则研究了非线性系统中存在的混沌现象。
三、非线性摩擦模型摩擦是机械系统中常见的非线性现象,对系统的运动性能和能量传递产生显著影响。
研究摩擦现象的非线性分析方法包括多种摩擦模型,如Coulomb摩擦模型、Dahl摩擦模型等。
这些模型可以定量描述摩擦力与相对运动速度之间的关系,并应用于动力学分析中。
四、非线性接触力模型在机械系统中,接触是一种常见的非线性现象,对系统运动和力学行为具有重要影响。
非线性接触力模型包括Hertz接触模型、Köhler接触模型等,可用于描述接触区域的应力分布、接触刚度等参数,进而分析系统的振动特性和接触行为。
五、非线性间隙模型间隙是机械系统中一种常见的非线性现象,广泛存在于传动系统、液压系统等领域。
非线性间隙模型用于描述机械系统中间隙对动力学响应的影响,常用的模型包括Hunt-Crossley模型、Berg模型等。
这些模型可以描述间隙位置、间隙力与系统响应之间的关系,为系统动力学行为的分析提供基础。
六、非线性变刚度模型变刚度是机械系统中的一种常见非线性现象,常见于弹性元件或柔性结构。
非线性变刚度模型可用于描述刚度随位移或载荷变化而发生变化的情况,如软弹簧、受压弯曲杆件等。
基于变刚度模型的非线性分析方法可以研究系统的振动特性和稳定性。
七、非线性分析方法在机械系统动力学模型的非线性分析中,常用的方法包括数值模拟方法、摄动法、变分法等。
第六章非线性系统的反馈线性化反馈线性化方法的基本思想是用反馈的方法,将非线性被控对象补偿成为一个具有线性特性的系统,然后利用线性系统理论进行控制系统设计。
基于微分几何的反馈线性化方法是一种精确线性化方法。
6.1 反馈线性化基本概念反馈线性化设计步骤是:(1)通过反馈的方法将非线性系统转化为线性系统,这个过程可以微分几何方法;(2)经过线性化处理后的系统进行设计。
与泰勒级数展开的近视线性化方法不同,它是建立在系统状态变换与非线性反馈基础上的一种精确方法。
它是大范围有效的,而不是仅仅局限于工作点附近。
1水槽的系统模型为()()2h d A h dhu t a ⎡⎤=−∫4()f B =+ xx u 考虑如下系统x是系统状态,f(x)是光滑向量场,u是控制输入,B是输入矩阵且可逆。
设跟踪轨迹为x d 。
=d e x x−定义跟踪误差=f()B d ex x u −− 主要思路是设计如下的补偿控制算法1=(f())d u Bxx ke −−+ =-eke 补偿后的误差动态方程为稳定例2 两关节机械手111212121112122212220H H qhq hqhq q g H H qhq qg ττ−−−⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦&&&&&&&&&&(6.1)5其中,[]12,Tq q =q 为关节角,[]12,Tττ=τ为关节输入。
12222221222221111211222222221212122221211122122122122cos cos sin cos cos()cos cos()c c c c c c c c c c H m l I m l l l l q I H m l I H H m l l q m l I h m l l q g m l g q m g l q q l q g m l g q q ⎡⎤=+++++⎣⎦=+==++=⎡⎤=+++⎣⎦=+表示成向量形式()(,)()H q qC q q q g q τ++=&&&&两边同乘以1H −,可变成仿射非线性系统(6.1)。
(LSE —SVD),仅需假设输入为持续激励,并可获得在有噪声情况下系统的有效辨识,但这种算法只在被控对象可无误差的分解为非线性和线性环节且非线性部分的基先验已知时,且最小二乘所得参数矩阵的秩为l ,才能保证辨识误差在额定范围内,否则辨识误差将受到参数矩阵其他特征值干扰,无法保证辨识落入允许范围;第四类是参]5[数过度化法,是使Hamerstein 系统过度参数化,从而在未知参数下过度参数化的系]7,6[统就线性化了,然后就可以使用线性估计算法进行辨识,这种方法的难点在于所得到的线性系统维数可能很大,因此系统的收敛性和鲁棒性就可能成问题;第五类子空间辨识法,通常适用于多输入、多输出的非线性系统的辨识。
]9,8[在近年来的研究中,基于群集智能方法的发展,越来越多演化计算技术被应用到复杂系统辨识当中。
如蚁群算法(ACO ),粒子群优化(PSO )算法和细菌觅食(BFO )优化算法等在Hammerstein 模型的辨识中得到了广泛的发展和应用,其理论也在不断地改进和完善。
下面简要介绍下粒子群优化(PSO )算法和细菌觅食(BFO )优化算法。
1. 粒子群优化PSO 算法1995年,Kennedy 和Eberhar 提出一种较为新颖的优化算法—— 粒子群优化算]11,10[法(ParticleSwarm Optimization ,PSO)。
该算法与蚁群算法(AntColony Optimization ,ACO)相似,也是一种基于群体智能(Swarm Intelligence ,SI)的优化算法,即模拟鸟群觅食的过程,而其功能与遗传算法(Genetic Algorithm ,GA)非常相似。
PSO 优化算法起源于对简单社会系统的模拟,PSO 算法是一种有效的解决优化问题的群集智能算法,它的突出特点是算法中需要选择的参数少,程序实现简单,并在种群数量、寻优速度等方面较其他进化算法具有一定的优势,尤其是在高噪信比情况下,也收到较满意的结果。
非线形动态系统自适应控制算法详解非线性动态系统是指在系统的描述中存在非线性项的系统。
这类系统由于其非线性特性,使得传统的线性控制算法无法有效地对其进行控制。
而自适应控制算法则提供了一种针对非线性动态系统进行优化控制的方法。
自适应控制算法的核心思想是根据系统的动态特性和输入输出数据,通过反馈调整控制器的参数,使得系统能够自动地根据外部变化和内部变化进行调整,以达到控制系统的性能要求。
在非线性动态系统中,自适应控制算法通过模型参考自适应控制,通过调整控制器的参数来逼近系统的未知非线性函数。
下面将详细介绍几种常见的非线性动态系统自适应控制算法。
1. 反馈控制系统反馈控制系统是一种基于模型参考自适应控制的方法,它通过在线更新控制器的参数来逼近系统的非线性函数。
具体而言,通过引入反馈控制器的输出误差和系统的参考模型,来设计一个适应性调节算法,以期望输出和实际输出之间的误差趋于零。
反馈控制系统通常采用随机梯度下降法或最小二乘法来调整控制器的参数。
2. 参考模型自适应控制参考模型自适应控制算法是一种基于参考模型的自适应控制方法,它通过模型参考控制律来逼近非线性系统。
具体而言,参考模型自适应控制算法通过设计一个参考模型和一个控制律来调整控制器的参数,使得系统的输出逼近参考模型的输出。
该算法能在未知模型的情况下对非线性动态系统进行自适应控制。
3. 后退误差模型自适应控制后退误差模型自适应控制算法是一种基于模型参考自适应控制的方法,它通过后退误差模型来逼近非线性系统。
后退误差模型是指将实际测量到的输出误差与控制器的输入之间的关系建立模型。
具体而言,该算法通过调整控制器的参数,使得反馈误差模型的输出逼近实际输出误差的后退误差模型的输出。
以上介绍的几种算法都是非线性动态系统中常见的自适应控制方法,它们通过不同的方式逼近非线性系统的非线性函数,实现对系统的控制。
这些算法在实际控制系统中具有广泛的应用,能够提高系统的稳定性、鲁棒性和响应速度。
非线性系统模型参数估计的算法模型摘要:针对非线性系统模型的多样性,提出了适用于多种非线性模型的基于粒子群优化算法的参数估计方法。
计算结果表明,粒子群优化算法是非线性系统模型参数估计的有效工具。
关键词:粒子群优化算法;非线性系统;参数估计;优化abstract: aiming at the diversity of nonlinear system model, it is proposed in this article a parameter estimation method based on particle group optimization algorithm that is applicable to a variety of nonlinear models. the result shows that the particle group optimization algorithm for parameter estimation of nonlinear system model is an effective tool. key words: particle group optimization algorithm;nonlinear system; parameter estimation; optimization0 引言非线性系统广泛地存在于人们的生产生活中,但是,目前我们对非线性系统的认识还不够深入,不能像线性系统那样,把所涉及的模型全部规范化,从而使辩识方法也规范化。
非线性模型的表达方式相对比较复杂,目前还很少有人研究各种表达方式是否存在等效关系,因此,暂时还没有找到对所有非线性模型都适用的参数模型估计方法[1]。
如果能找到一种不依赖于非线性模型的表达方式的参数估计方法,那么,也就找到了对一般非线性模型系统进行参数估计的方法[2]。
粒子群优化算法[3](particle swarm optimaziton,简称pso)是由kennedy博士和eberhart博士于1995年提出的一种基于群体智能的优化算法,它源于对鸟群群体运动行为的研究,即粒子群优化算法模拟鸟群的捕食行为。
系统辨识的常用方法系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型,是现代控制理论中的一个分支。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
传统的系统辨识方法(1)脉冲响应脉冲响应一般是指系统在输入为单位冲激函数时的输出(响应)。
对于连续时间系统来说,冲激响应一般用函数h(t)来表示。
对于无随机噪声的确定性线性系统,当输入信号为一脉冲函数δ(t)时,系统的输出响应 h(t)称为脉冲响应函数。
辨识脉冲响应函数的方法分为直接法、相关法和间接法。
①直接法:将波形较理想的脉冲信号输入系统,按时域的响应方式记录下系统的输出响应,可以是响应曲线或离散值。
②相关法:由著名的维纳-霍夫方程得知:如果输入信号u(t)的自相关函数R(t)是一个脉冲函数kδ(t), 则脉冲响应函数在忽略一个常数因子意义下等于输入输出的互相关函数,即h(t)=(1/k)Ruy(t)。
实际使用相关法辨识系统的脉冲响应时,常用伪随机信号作为输入信号,由相关仪或数字计算机可获得输入输出的互相关函数Ruy(t),因为伪随机信号的自相关函数 R(t)近似为一个脉冲函数,于是h(t)=(1/k)Ruy(t)。
这是比较通用的方法。
也可以输入一个带宽足够宽的近似白噪声信号,得到h(t)的近似表示。
③间接法:可以利用功率谱分析方法,先估计出频率响应函数H(ω), 然后利用傅里叶逆变换将它变换到时域上,于是便得到脉冲响应h(t)。
(2)最小二乘法最小二乘法(LS)是一种经典的数据处理方法, 但由于最小二乘估计是非一致的、有偏差的, 因而为了克服它的不足, 形成了一些以最小二乘法为基础的辨识方法:广义最小二乘法(GLS)、辅助变量法(IVA)和增广矩阵法(EM), 以及将一般的最小二乘法与其它方法相结合的方法,有相关分析———最小二乘两步法(COR -LS)和随机逼近算法。
(3)极大似然法极大似然法(ML)对特殊的噪声模型有很好的性能, 具有很好的理论保证;但计算耗费大, 可能得到的是损失函数的局部极小值。
非线性系统的分析与控制方法现今,非线性现象随处可见,涉及到的领域包括工程学、物理学、化学、生物学、经济学等。
与此同时,为了满足人类日益增长的需求,我们需要分析与控制这些非线性系统,使其达到我们所希望的状态。
本文将探讨分析与控制非线性系统的常见方法,涵盖了数学模型、稳定性分析、反馈控制等方面的内容。
1. 数学模型一个非线性系统通常可以利用微分方程表达。
微分方程可以是常微分方程或者偏微分方程,这取决于物理系统的特性。
使用数学模型可以对非线性系统进行分析与控制,比如进行数值计算,对系统进行仿真或者进行数值优化。
数学建模可以使用不同的方法,比如解析法、数值法和近似法等。
在实际应用中,通常使用形式化方法来描述系统的行为。
形式化方法涉及到一些形式的逻辑体系来描述现实问题。
它们通常适用于非线性系统的分析、验证和控制,其中一些常见的方法有:模型检验、定理证明和模型检查等。
2. 稳定性分析稳定性分析是对非线性系统的一个重要分析方法,它涉及到系统是否能够维持其稳定性。
稳定性分析包括局部稳定性分析和全局稳定性分析。
局部稳定性分析关注系统是否能够询问某种程度的扰动,而全局稳定性分析关注系统在无论多大的扰动下是否能保持稳定。
通常情况下,对于一个非线性系统,可以通过对其相应线性化系统的特征值进行分析来评估系统是否稳定。
如果相应线性化系统的特征值的实部都为负,则该非线性系统是局部稳定的。
如果相应线性化系统的特征值的实部都为负,并且没有虚部,则非线性系统是全局稳定的。
相反,如果相应线性化系统的特征值具有正实部,那么原始的非线性系统是不稳定的。
3. 反馈控制反馈控制是对非线性系统的适当信息反馈的一种方法,用于实现所需的稳态或动态目标。
在这种方法中,系统的输出信号与输入信号之间存在一定的误差。
通过将该误差反馈到控制器中,可以对系统进行优化,使其达到所需要的目标。
反馈控制方法最常见的类型是Proportional-Integral-Derivative (PID)控制器,它涉及到根据系统的误差信号进行比例反馈(P 项)、积分反馈(I项)和微分反馈(D项)。
非线性系统的模糊建模与自适应控制及其应用一、本文概述随着科技和工业的快速发展,非线性系统的建模与控制问题日益凸显出其重要性。
这类系统广泛存在于实际工程应用中,如航空航天、机械制造、生物医疗等领域。
由于其内部结构的复杂性和外部环境的多变性,非线性系统的建模与控制往往面临巨大的挑战。
因此,研究非线性系统的建模与控制方法,对于提高系统的稳定性和性能,具有非常重要的理论和实践意义。
本文旨在探讨非线性系统的模糊建模与自适应控制方法,并研究其在实际应用中的效果。
我们将介绍非线性系统的基本特性和建模方法,特别是模糊建模的原理和步骤。
然后,我们将详细介绍自适应控制理论,包括其基本原理、设计方法和优化策略。
在此基础上,我们将结合具体案例,分析模糊建模与自适应控制在非线性系统中的应用效果,探讨其在实际工程中的潜力和优势。
本文的主要内容包括:非线性系统的基本特性与建模方法、模糊建模的原理与步骤、自适应控制的基本原理与设计方法、模糊建模与自适应控制在非线性系统中的应用案例分析等。
通过本文的研究,我们希望能够为非线性系统的建模与控制提供新的思路和方法,为相关领域的理论和实践研究提供有益的参考。
二、非线性系统的模糊建模在控制理论和工程实践中,非线性系统的建模是一个重要且复杂的问题。
传统的线性建模方法往往无法准确描述非线性系统的动态特性,因此,模糊建模作为一种有效的非线性系统建模方法,受到了广泛的关注。
模糊建模基于模糊集合论和模糊逻辑推理,通过将非线性系统的行为划分为多个局部线性或非线性模型,并利用模糊逻辑将这些模型进行组合,从而实现对整个非线性系统的建模。
模糊建模的主要优势在于其能够处理不确定性和模糊性,使得建模过程更加贴近实际系统的运行情况。
在模糊建模过程中,首先需要确定模糊模型的输入和输出变量,然后设计模糊集合和模糊规则。
模糊集合用于描述输入和输出变量的不确定性,而模糊规则则根据输入变量的模糊集合进行推理,得到输出变量的模糊集合。
非线性模型预测控制
非线性模型预测控制,是一种基于非线性模型的控制方法,它可以有
效地控制复杂的系统,并且可以满足多个约束条件。
NMPC的基本思想是,通过预测未来的状态,并在预测的状态下求解最优控制量,从而
实现最优控制。
NMPC的优势在于,它可以有效地控制复杂的系统,并且可以满足多个
约束条件。
NMPC可以有效地控制复杂的系统,因为它可以根据系统的
实际状态来预测未来的状态,从而更好地控制系统。
此外,NMPC可以
满足多个约束条件,因为它可以根据系统的实际状态来求解最优控制量,从而满足多个约束条件。
NMPC的应用非常广泛,它可以用于控制各种复杂的系统,如机器人、
航空航天、汽车、电力系统等。
例如,NMPC可以用于控制机器人的运动,从而实现机器人的自动化操作。
此外,NMPC还可以用于控制航空
航天系统,从而实现航空航天系统的自动化操作。
NMPC的缺点在于,它的计算复杂度较高,因为它需要预测未来的状态,并在预测的状态下求解最优控制量,从而实现最优控制。
此外,NMPC
还受到系统模型的精度限制,因为它需要根据系统的实际状态来预测
未来的状态,如果系统模型的精度不够,则可能会导致NMPC的控制效
果不佳。
总之,NMPC是一种有效的控制方法,它可以有效地控制复杂的系统,
并且可以满足多个约束条件。
但是,NMPC的计算复杂度较高,并且受
到系统模型的精度限制,因此,在使用NMPC时,需要考虑这些因素。
自动控制原理的数学模型自动控制是一种通过控制器、执行器和传感器等组件来改变系统特性以实现预期目标的过程。
自动控制原理的数学模型是描述该过程的数学方程组,用于定量地分析和设计控制系统。
实际上,自动控制原理的数学模型可以通过一些基本的物理规律和方程来构建。
下面将介绍几种常见的自动控制原理的数学模型。
1.线性系统模型线性系统是指系统的输出与输入之间的关系是线性的。
在自动控制领域中,线性系统模型是最常见和基础的数学模型。
线性系统的数学模型可以通过常微分方程或差分方程来描述。
常见的线性系统模型有传递函数模型、差分方程模型和状态空间模型等。
传递函数模型是一种常见的线性系统模型,将系统的输入和输出之间的关系表示为一个分子多项式与一个分母多项式的比值。
传递函数模型可以通过系统的拉普拉斯变换或者离散时间系统的Z变换得到。
2.非线性系统模型除了线性系统以外,许多现实中的控制系统是非线性的。
非线性系统的数学模型可以通过非线性方程组来描述。
非线性系统的模型可能难以分析和求解,因为非线性方程组通常没有解析解。
3.离散系统模型离散系统是指系统的输入和输出是在离散时间上进行的。
离散系统的数学模型可以通过差分方程来描述。
差分方程是描述离散时间系统的常用数学工具,可以通过差分方程求解得到系统的时间响应。
4.状态空间模型状态空间模型是一种描述线性动态系统的数学模型。
状态空间模型将系统的状态用向量表示,以描述系统在不同时间点的状态和状态之间的相互关系。
状态空间模型适用于揭示系统的内部细节和进行控制系统设计。
为了应用自动控制原理的数学模型,需要进行系统的建模和参数辨识。
系统的建模是根据系统的特性和运行规律,建立数学模型的过程。
参数辨识是根据实际测量数据和实验结果,确定数学模型中的参数值的过程。
总结起来,自动控制原理的数学模型是用于描述控制系统的数学方程组,常见的数学模型包括线性系统模型、非线性系统模型、离散系统模型和状态空间模型等。
建立和辨识数学模型是应用自动控制原理的重要步骤,可以通过物理规律和系统运行数据等来完成。