第2章 规则金属波导
- 格式:ppt
- 大小:1.41 MB
- 文档页数:76
微波技术与天线复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段;●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~●微波的特点要结合实际应用:似光性,频率高频带宽,穿透性卫星通信,量子特性微波波谱的分析第一章均匀传输线理论●均匀无耗传输线的输入阻抗2个特性定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关;两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in z= Z in z+λ/22、λ/4变换性: Z in z- Z in z+λ/4=Z02证明题:作业题●均匀无耗传输线的三种传输状态要会判断1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态知道概念▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波;▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源;此时,信号源端无反射;▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值;共轭匹配的目的就是使负载得到最大功率;●传输线的阻抗匹配λ/4阻抗变换P15和P17●阻抗圆图的应用与实验结合史密斯圆图是用来分析传输线匹配问题的有效方法;1.反射系数圆图:Γz=|Γ1|e jΦ1-2βz= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角;反射系数圆图中任一点与圆心的连线的长度就是与该点相应的传输线上某点处的反射系数的大小;2.阻抗原图点、线、面、旋转方向:➢在阻抗圆图的上半圆内的电抗x>0呈感性,下半圆内的电抗x<0呈容性;➢实轴上的点代表纯电阻点,左半轴上的点为电压波节点,其上的刻度既代表r min又代表行波系数K,右半轴上的点为电压波腹点,其上的刻度既代表r max又代表驻波比ρ;➢|Γ|=1的圆图上的点代表纯电抗点;➢实轴左端点为短路点,右端点为开路点,中心点处是匹配点;➢在传输线上由负载向电源方向移动时,在圆图上应顺时针旋转,;反之,由电源向负载方向移动时,应逆时针旋转;3.史密斯圆图:将上述的反射系数圆图、归一化电阻圆图和归一化电抗圆图画在一起,就构成了完整的阻抗圆图;4.基本思想:➢特征参数归一阻抗归一和电长度归一;➢以系统不变量|Γ|作为史密斯圆图的基底;➢把阻抗或导纳、驻波比关系套覆在|Γ|圆上;●回波损耗、功率分配等问题的分析✓回波损耗问题:1.定义为入射波功率与反射波功率之比通常以分贝来表示,即Lrz=10lgP in/Pr dB对于无耗传输线,ɑ=0,Lr与z无关,即Lrz=-20lg|Γ1| dB2.插入损耗:定义为入射波功率与传输功率之比3.|Γ1|越大,则| Lr |越小;|Γ1|越小,则| L in|越大;P21:有关回波损耗的例题例1-4✓功率分配问题:1.入射波功率、反射波功率和传输功率计算公式反映出了它们之间的分配关系;P192.传输线的传输效率:η=负载吸收功率/始端传输功率3.传输效率取决于传输线的损耗和终端匹配情况第二章规则金属波导●导波系统中的电磁波按纵向场分量的有无,可分为TE波、TM波和TEM波三种类型;知道概念➢TEM波:导行波既无纵向磁场有无纵向电场,只有横向电场和磁场,故称为横电磁波;E z=0而H z=0➢TM波E波:只有纵向电场,又称磁场纯横向波;E z≠0而H z=0➢TE波H波:只有纵向磁场,又称电场纯横向波;E z=0而H z≠0●导行条件:k c<k时,f>f c为导行波;●矩形波导、圆波导主要模式的特点及应用✧矩形波导:将由金属材料制成的、矩形截面的、内充空气的规则金属波导称为矩形波导;1)纵向场分量E z和H z不能同时为零,不存在TEM波;2)TE波:横向的电波,纵向场只有磁场;➢TE波的截止波数k c,➢矩形波导中可以存在无穷多种TE导模,用TE mn表示;➢最低次波形为TE10,截止频率最低;3)TM波➢TM11模是矩形波导TM波的最低次模,其他均为高次模;4)主模TE10的场分布及其工作特性➢主模的定义:在导行波中截止波长最长截止频率最低的导行模➢特点:场结构简单、稳定、频带宽和损耗小等;✧圆波导:若将同轴线的内导体抽走,则在一定条件下,由外导体所包围的圆形空间也能传输电磁能量,这就是圆形波导;➢应用:远距离通信、双极化馈线以及微波圆形谐振器等;➢圆形波导也只能传输TE和TM波形;➢主模TE11,截止波长最长,是圆波导中的最低次模;圆波导中TE11模的场分布与矩形波导的TE10模的场分布很相似,因此工程上容易通过矩形波导的横截面逐渐过渡变为圆波导;即构成方圆波导变换器;➢圆对称TM01模:圆波导的第一个高次模,由于它具有圆对称性故不存在极化简并模;因此常作为雷达天线与馈线的旋转关节中的工作模式;➢低损耗的TE01模:是圆波导的高次模式,它与TM11模是简并模;它是圆对称模,故无极化简并;当传输功率一定时,随着频率升高,管壁的热损耗将单调下降;故其损耗相对于其他模式来说是低的,故可将工作在此模式下的圆波导用于毫米波的远距离传输或制作高Q值的谐振腔;●熟悉模式简并概念及其区别1.矩形波导中的E-H简并:对相同的m和n,TE mn和TM mn模具有相同的截止波长或相同的截止频率;虽然它们的场分布不同,但是具有相同的传输特性;2.圆波导中有两种简并模:➢E-H简并:TE0n模和TM1n模的简并➢极化简并模:考虑到圆波导的轴对称性,因此场的极化方向具有不确定性,使导行波的场分布在φ方向存在cosmφ和sinmφ两种可能的分布,它们独立存在,相互正交,截止波长相同,构成同一导行模的极化简并模;●熟悉矩形波导壁电流分布及应用●波导激励的几种类型1.电激励2.磁激励3.电流激励●方圆波导转换器的作用圆波导中TE11模的场分布与矩形波导的TE10模的场分布很相似,因此工程上容易通过矩形波导的横截面逐渐过渡变为圆波导;即构成方圆波导变换器;第三章微波集成传输线●带状线、微带线的结构及特点1.带状线:➢是由同轴线演化而来的,即将同轴线的外导体对半分开后,再将两半外导体向左右展平,并将内导体制成扁平带线;➢主要传输的是TEM波;可存在高次模;➢用途:替代同轴线制作高性能的无源元件;➢特点:宽频带、高Q值、高隔离度➢缺点:不宜做有源微波电路;2.微带线:➢是由双导体传输线演化而来的,即将无限薄的导体板垂直插入双导体中间,再将导体圆柱变换成导体带,并在导体带之间加入介质材料,从而构成了微带线;微带线是半开放结构;➢工作模式:准TEM波●带状线、微带线特征参数的计算会查图➢带状线和微带线的传输特性参量主要有:特性阻抗Z0、衰减常数ɑ、相速v p和波导波长λg ●介质波导主模及其特点➢主模HE11模的优点:a)不具有截止波长;b)损耗较小;c)可直接由矩形波导的主模TE10激励;第四章微波网络基础●熟练掌握阻抗参量、导纳参量、转移参量、散射参量结合元件特性和传输参量的定义P84-P93➢阻抗矩阵Z➢导纳矩阵Y➢转移矩阵A➢散射矩阵S➢传输矩阵T●掌握微波网络思想在微波测量中的应用三点法的条件➢前提条件:令终端短路、开路和接匹配负载时,测得的输入端的反射系数分别为Γs,Γo和Γm,从而可以求出S11, S12, S22;第五章微波元器件●匹配负载螺钉调配器原理、失配负载;衰减器、移相器作用➢匹配负载作用:消除反射,提高传输效率,改善系统稳定性;➢螺钉调配器:螺钉是低功率微波装置中普遍采用的调谐和匹配原件,它是在波导宽边中央插入可调螺钉作为调配原件;螺钉深度不同等效为不同的电抗原件,使用时为了避免波导短路击穿,螺钉·都设计成为了容性,即螺钉旋入波导中的深度应小于3b/4b为波导窄边尺寸;➢失配负载:既吸收一部分微波功率又反射一部分微波功率,而且一般制成一定大小驻波的标准失配负载,主要用于微波测量;➢衰减器,移相器作用:改变导行系统中电磁波的幅度和相位;●了解定向耦合器的工作原理P106➢定向耦合器是一种具有定向传输特性的四端口元件,它是由耦合装置联系在一起的两对传输系统构成的;➢利用波程差;●熟练掌握线圆极化转换器的工作原理及作用●了解场移式隔离器的作用P122➢根据铁氧体对两个方向传输的波型产生的场移作用不同而制成的;●了解铁氧体环行器的分析及作用P123➢环行器是一种具有非互易特性的分支传输系统;第六章天线辐射与接收的基本理论第七章电波传播概论●天波通信、地波通信、视距波通信的概念1.天波通信:指自发射天线发出的电波在高空被电离层反射后到达接收点的传播方式,也成为电离层电波传播;主要用于中波和短波波段2.地波通信:无线电波沿地球表面传播的传播方式;主要用于长、中波波段和短波的低频段;3.视距波通信:指发射天线和接收天线处于相互能看见的视距距离内的传播方式;地面通信、卫星通信以及雷达等都可以采用这种传播方式;主要用于超短波和微波波段的电波传播●天线的作用●无线电波传输是产生失真的原因无线电波通过煤质除产生传输损耗外,还会使信号产生失真——振幅失真和相位失真两个原因:1.煤质的色散效应:色散效应是由于不同频率的无线电波在煤质中的传播速度有差别而引起的信号失真;2.随机多径传输效应:会引起信号畸变;因为无线电波在传输时通过两个以上不同长度的路径到达接收点;接收天线收到的信号是几个不同路径传来的电场强度之和;。
《微波技术基础》期末复习题第2章 传输线理论1. 微波的频率范围和波长范围频率范围 300MHz ~ 3000 GHz 波长范围 1.0 m ~ 0.1mm ;2. 微波的特点⑴ 拟光性和拟声性;⑵ 频率高、频带宽、信息量大;⑶ 穿透性强;⑷ 微波沿直线传播;3. 传输线的特性参数⑴ 特性阻抗的概念和表达公式特性阻抗=传输线上行波的电压/传输线上行波的电流 1101R j L Z G j C ⑵ 传输线的传播常数传播常数 j γαβ=+的意义,包括对幅度和相位的影响。
4. 传输线的分布参数:⑴ 分布参数阻抗的概念和定义⑵ 传输线分布参数阻抗具有的特性()()()in V d Z d I d =00ch sh sh ch L L L L V d I Z d V d I d Z γγγγ+=+000th th L L Z Z d Z Z Z d γγ+=+① 传输线上任意一点 d 的阻抗与该点的位置d 和负载阻抗Z L 有关; ② d 点的阻抗可看成由该点向负载看去的输入阻抗;③ 传输线段具有阻抗变换作用;由公式 ()in Z d 000th th L L Z Z d Z Z Z dγγ+=+ 可以看到这一点。
④ 无损线的阻抗呈周期性变化,具有λ/4的变换性和 λ/2重复性; ⑤ 微波频率下,传输线上的电压和电流缺乏明确的物理意义,不能直接测量;⑶ 反射参量① 反射系数的概念、定义和轨迹;② 对无损线,其反射系数的轨迹?;③ 阻抗与反射系数的关系;in ()1()()()1()V d d Z d I d d 01()1()d Z d ⑷ 驻波参量① 传输线上驻波形成的原因?② 为什么要提出驻波参量?③ 阻抗与驻波参量的关系;5. 无耗传输线的概念和无耗工作状态分析⑴ 行波状态的条件、特性分析和特点;⑵ 全反射状态的条件、特性分析和特点;⑶ 行驻波状态的条件、特性分析和特点;6. 有耗传输线的特点、损耗对导行波的主要影响和次要影响7. 引入史密斯圆图的意义、圆图的构成;8. 阻抗匹配的概念、重要性9. 阻抗匹配的方式及解决的问题⑴ 负载 — 传输线的匹配⑵ 信号源 — 传输线的匹配⑶ 信号源的共轭匹配10. 负载阻抗匹配方法⑴ λ/4阻抗匹配器⑵ 并联支节调配器⑶ 串联支节调配器第3章 规则金属波导1. 矩形波导的结构特点、主要应用场合;2. 矩形波导中可同时存在无穷多种TE 和TM 导模;3. TE 和TM 导模的条件;TE 导模的条件:00(,,)(,)0j z z z z E H x y z H x y e β-==≠TE 导模的条件:00(,,)(,)0j z z z z H E x y z E x y e β-==≠4. 关于矩形波导的5个特点;5. 掌握矩形波导TE 10模的场结构,并在此基础上掌握TE m0模的场结构;6. 管壁电流的概念;7. 管壁电流的大小和方向;8. 矩形波导的传输特性(导模的传输条件与截止);9. 圆形波导主模TE11模的场结构。
Research Institute of Antennas & RF Techniques射频电路与天线(一)RF Circuits and Antennas第7讲金属波导(2)褚庆昕华南理工大学电子与信息学院天线与射频技术研究所TEL: 22236201-601Email:qxchu@第Research Institute of Antennas & RF Techniques So u thCh i n a U n i v e r s i t yo fT e c h n o l o g y 7.1 同轴线 同轴线是由两根共轴的圆柱导体所组成,主模为TEM波,也可传输TE、TM波(高次模)。
Research Institute of Antennas & RF TechniquesSo u thC h i n a U n i v e r s i t yo fT e c h n o l o g y TEM模场分布E HResearch Institute of Antennas & RF Techniques So ut h C h i n a U n i v e r s i t y o f T e c h n o l o g y 同轴线横截面TEM模电场动态图Research Institute of Antennas & RF Techniques So ut h C h i n a U n i v e r s i t y o f T e c h n o l o g y 同轴线横截面TEM模磁场动态图Research Institute of Antennas & RF Techniques So u thCh i n a U n i v e r s i t yo fT e c h n o l o g y 同轴线TM 01模场分布Research Institute of Antennas & RF Techniques So u thCh i n a U n i v e r s i t yo fT e c h n o l o g y 同轴线TE 11模(最低高次模)场分布Research Institute of Antennas & RF TechniquesS o uth C h i n a U n i v e r s i t y o f T e c h n o l o g y 同轴线模式分布图Research Institute of Antennas & RF TechniquesS o u thC h i n a U n i v e r s i t yo fT e c h n o l o g y 同轴线尺寸的选择原则 单模传输,只传输TEM 波 功率容量大 衰减小易于匹配,特性阻抗合适11min ()cTE k b a λπ>=+ 对于TEM 模单模工作【例b=0.116in单模工作的最高频率。
2-1 波导为什么不能传输TEM 波?答:一个波导系统若能传输TEM 波型,则在该系统中必须能够存在静电荷静电核或恒定电流,而在单导体所构成的空心金属波导馆内,不可能存在静电荷或恒定电流,因此也不可能传输TEM 波型。
2-2 什么叫波型?有哪几种波型?答:波型是指每一种能够单独地在规则波导中存在的电磁场的一种分布状态。
根据场的横向分量与纵向分量之间的关系式划分波型,主要有三种:TEM 波(0z E =,0z H =),TE 波(0z E =,0z H ≠),TM 波(0z E ≠,0z H =) 2-3 何谓TEM 波,TE 波和TM 波?其波阻抗和自由空间波阻抗有什么关系?答:0z E =,0z H =的为TEM 波;0z E =,0z H ≠为TE 波;0z E ≠,0z H =为TM 波。
TE 波阻抗:x TE y E wuZ H ηβ===>TM 波阻抗:x TM y E Z H w βηε=== 其中η为TEM 波在无限答煤质中的波阻抗。
2-4 试将关系式y z x H H jw E y z ε∂∂-=∂∂,推导为1()zx y H E j H jw yβε∂=+∂。
解:由y H 的场分量关系式0j zy H H eβ-=(0H 与z 无关)得:y y H j H zβ∂=-∂利用关系式y z x H H jw E y zε∂∂-=∂∂可推出: 11()()y z zx y H H H E j H jw y z jw yβεε∂∂∂=+=+∂∂∂ 2-5 波导的传输特性是指哪些参量?答:传输特性是指传输条件、传播常数、传播速度、波导波长、波形阻抗、传输功率以及损耗和衰减等。
2-6 何为波导的截止波长c λ?当工作波长λ大于或小于c λ时,波导内的电磁波的特性有何不同?答: 当波沿Z 轴不能传播时呈截止状态,处于此状态时的波长叫截止波长,定义为2c ck πλ=; 当工作波长大于截止波长时,波数c k k <,此时电磁波不能在波导中传播; 当工作波长小于截止波长时,波数c k k >,此时电磁波能在波导内传播;2-7 矩形波导中的截止波长c λ和波导波长g λ,相速度p υ和群速度g υ有什么区别和联系?它们与哪些因素有关? 答:波导波长为2g πλλβ==>,c λ为截止波长群速为g c υ=<,相速为p υ=,且2p g c υυ⋅=,与c ,工作波长λ,截止波长c λ有关。
微波技术与天线考试重点复习归纳第⼀章1.均匀传输线(规则导波系统):截⾯尺⼨、形状、媒质分布、材料及边界条件均不变的导波系统。
2.均匀传输线⽅程,也称电报⽅程。
3.⽆⾊散波:对均匀⽆耗传输线, 由于β与ω成线性关系, 所以导⾏波的相速v p 与频率⽆关, 称为⽆⾊散波。
⾊散特性:当传输线有损耗时, β不再与ω成线性关系, 使相速v p 与频率ω有关,这就称为⾊散特性。
11010010110cos()sin()tan()()tan()cos()sin()in U z jI Z z Z jZ z Z z Z U Z jZ z I z jz Z ββββββ++==++02p rv fλπλβε===任意相距λ/2处的阻抗相同, 称为λ/2重复性z1 终端负载221021101()j z j zj zj zZ Z A ez eeZ Z A eββββ----Γ===Γ+ 1101110j Z Z eZ Z φ-Γ==Γ+ 终端反射系数均匀⽆耗传输线上, 任意点反射系数Γ(z)⼤⼩均相等,沿线只有相位按周期变化, 其周期为λ/2, 即反射系数也具有λ/2重复性4.00()()()in in Z z Z z Z z Z -Γ=+ 0()1()()()1()in U z Z Z Z Z I z Z +Γ==-Γ111ρρ-Γ=+ 1111/1/1Γ-Γ+=-+=+-+-U U U U ρ电压驻波⽐其倒数称为⾏波系数, ⽤K 表⽰5.⾏波状态就是⽆反射的传输状态, 此时反射系数Γl =0, 负载阻抗等于传输线的特性阻抗, 即Z l =Z 0, 称此时的负载为匹配负载。
综上所述, 对⽆耗传输线的⾏波状态有以下结论: ①沿线电压和电流振幅不变, 驻波⽐ρ=1;②电压和电流在任意点上都同相; ③传输线上各点阻抗均等于传输线特性阻抗6终端负载短路:负载阻抗Z l =0, Γl =-1, ρ→∞, 传输线上任意点z 处的反射系数为Γ(z)=-e-j2βz此时传输线上任意⼀点z 处的输⼊阻抗为0()tan in Z Z jZ zβ=①沿线各点电压和电流振幅按余弦变化, 电压和电流相位差 90°, 功率为⽆功功率, 即⽆能量传输; ②在z=n λ/2(n=0, 1, 2, …)处电压为零, 电流的振幅值最⼤且等于2|A 1|/Z 0, 称这些位置为电压波节点;在z=(2n+1)λ/4 (n=0, 1, 2, …)处电压的振幅值最⼤且等于2|A 1|, ⽽电流为零, 称这些位置为电压波腹点。