幂函数对数函数指数函数增长速度比较
- 格式:docx
- 大小:36.87 KB
- 文档页数:3
§6指数函数、幂函数、对数函数增长的比较指数函数、幂函数、对数函数的增长的比较在区间(0,+∞)上,尽管指数函数y=a x(a>1),幂函数y=xα(α>0)和对数函数y=logax(a>1)都是增函数,但它们的函数值的增长①不同,随着x的增大,函数y=a x(a>1)与y=xα(α>0)的函数值的增长速度越来②,而且函数y=a x(a>1)的函数值的增长速度会远远大于函数y=xα(α>0)的函数值的增长速度,而函数y=loga x(a>1)的函数值的增长速度则会越来越慢.因此,总会存在一个x,当x>x时,有logax<xα<a x.根据函数模型的不同增长规律判断实际问题的操作方法1.(2014河北唐山模拟,★☆☆)某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林( )A.14 400亩B.172 800亩C.17 280亩D.20 736亩思路点拨指数增长模型.2.(高考预测,★☆☆)某人2014年1月1日到银行存入一年期存款a元,若年利率为x,并按复利计算,到2019年1月1日可取款(不计利息税)( )A.a(1+x)5元B.a(1+x)6元C.a(1+x5)元D.a(1+x6)元思路点拨指数增长模型.一、选择题1.某山区绿色植被的面积每年都比上一年增长10.4%,若原来绿色植被的面积为1,那么,经过x年,绿色植被的面积可增长为原来的y倍,则函数y=f(x)的大致图像为( )2.某新产品电视投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( )A.y=100xB.y=50x2-50x+100C.y=50×2xD.y=100log2x+100二、填空题3.若a>1,n>0,那么当x足够大时,a x,x n,logax的大小关系是.三、解答题4.比较函数y=x 23,y=2x-6,y=log2x+1在(1,+∞)上的增长变化情况.一、选择题1.(2015甘肃天水一中期中,★☆☆)在下列函数中,随着x的增大,函数值增长最快的是( )A.y=50B.y=1 000xC.y=lg xD.y=e x2.(2015黑龙江哈尔滨六中期末,★☆☆)已知集合A={y|y=log2x,x>1},B={y|y=(12)x,x>1},则A∩B=()A.{y|0<y<12}B.{y|0<y<1}C.{y|12<y<1} D.⌀3.(2015广东东莞三校联考,★★☆)当a>1时,在同一坐标系中,函数y=a -x 与y=log a x 的图像是( )4.(2015山东兖州期中,★★☆)某林区的森林蓄积量每年比上一年平均增加110.4%,那么经过x 年可增长到原来的y 倍,则函数y=f(x)的图像大致是( )5.(2015辽宁大连二十中期中,★★☆)下列函数中,在区间(0,2)上为增函数的是( ) A.y=2-x B.y=x 2-4x C.y=x 32D.y=-log 2x6.(2014广东六校联考,★★☆)若x∈(0,1),则下列结论正确的是( ) A.lg x>x 12>2x B.2x>lg x>x 12C.x 12>2x>lg x D.2x>x 12>lg x7.(2013山东德州模拟,★☆☆)已知函数f(x)=x-ln |x |x ,则函数f(x)的大致图像为( )二、填空题8.(2015福建泉州一中期中,★★☆)已知函数f(x)=x 2+m,g(x)=(12)x-m,若对任意的x 1∈[-1,3],均存在x 2∈[0,2],使得f(x 1)≥g(x 2),则实数m 的取值范围是 .9.(2013山东聊城模拟,★☆☆)地震的震级R 与地震释放的能量E 的关系为R=23(lg E-11.4).那么8.0级地震的能量是6.0级地震能量的 倍.知识清单①速度②越快链接高考1.C 依题意知,第四年造林10 000×(1+20%)3=10 000×1.23=10 000×1.728=17 280(亩).2.A 2015年1月1日可取款a(1+x)元,2016年1月1日可取款a(1+x)2元,依次类推,2019年1月1日可取款a(1+x)5元.基础过关一、选择题1.D 由题意知该函数为,y=1.104x,其大致图像为D.2.C 根据函数模型的增长差异和题目中的数据,易知只有C选项比较接近.二、填空题3.答案a x>x n>logax解析由题意知指数函数y=a x(a>1)增长最快,对数函数y=logax(a>1)增长最慢,故当x足够大时,a x>x n>logax.三、解答题4.解析如图,在同一坐标系中分别画出函数y=x 23,y=2x-6,y=log2x+1的大致图像.可以看出:当1<x<8时,log2x+1>x23>2x-6;当x=8时,log2x=x23=2x-6;当x>8时,2x-6>x23>log2x+1.三年模拟一、选择题1.D 在当前所学过的增函数中,指数函数的函数值是增长最快的,故选D.2.A ∵x>1,∴log2x>log21=0,∴A={y|y>0}.∵x>1,∴0<(12)x<12,∴B={y|0<y<12}.∴A∩B={y|0<y<12}.故A正确.3.A 对于函数y=a -x,∵a>1,∴0<1a <1,∴函数y=a -x=(1a )x在R 上是递减的;对于函数y=log a x,∵a>1,∴函数y=log a x 在(0,+∞)上是递增的.结合各选项知,A 正确.4.D 由已知得,y=(1+1.104)x =2.104x (x≥0),由指数函数的图像特征知,选D.5.C A 选项,函数y=2-x=(12)x,该函数在(0,2)上单调递减,故A 错误;B 选项,函数y=x 2-4x=(x-2)2-4,该函数在(0,2)上单调递减,故B 错误;C 选项,函数y=x 32在(0,2)上单调递增,故C 正确;D 选项,函数y=-log 2x 在(0,2)上单调递减,故D 错误.所以答案为C.6.D 当x∈(0,1)时,2x∈(1,2),x 12∈(0,1),lg x∈(-∞,0),所以2x>x 12>lg x.7.A 函数f(x)的定义域是(-∞,0)∪(0,+∞).当0<x<1时,f(x)=x-lnxx 2>0,排除选项C 、D.函数f(x)不是奇函数,排除选项B.故选A. 二、填空题 8.答案 m≥18解析 易知函数f(x)=x 2+m 在区间[-1,3]上的最小值为m,函数g(x)=(12)x-m 在区间[0,2]上的最小值为14-m.由题意可得,m≥14-m,解得m≥18. 9.答案 1 000解析 由R=23(lg E-11.4),得E=103R2+11.4,由题意设R 1=8.0,R 2=6.0,则E 1E 2=103R12+11.4103R 22+11.4=103×(8-6)2=1 000.则8.0级地震的能量是6.0级地震能量的1 000 倍.。
1.三种函数的增长特点(1)当a>1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.(2)当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.(3)当x>0,n>1时,幂函数y=x n显然也是增函数,并且当x>1时,n越大其函数值的增长就越快.2.三种函数的增长比较在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,幂函数y=x n(n>0),指数函数y=a x(a>1)增长的快慢交替出现,随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.一般地,若a>1,n>0,那么当x足够大时,一定有a x>x n>log a x.[小问题·大思维]1.2x>log2x,x2>log2x,在(0,+∞)上一定成立吗?提示:结合图像知一定成立.2.2x>x2在(0,+∞)上一定成立吗?提示:不一定,当0<x<2和x>4时成立,而当2<x<4时,2x<x2.[研一题][例1] 四个变量y1,y2,y3,y4随变量x变化的数据如下表:x0510********关于x呈指数型函数变化的变量是________.[自主解答] 以爆炸式增长的变量是呈指数型函数变化的.从表格可以看出,四个变量y1,y2,y3,y4均是从5开始变化,变量y4越来越小,但是减小的速度很慢,则变量y4关于x不呈指数型函数变化;而变量y1,y2,y3都是越来越大,但是增大的速度不同,其中变量y2的增长最快,画出图像可知变量y2关于x呈指数型函数变化.[答案] y2[悟一法]解决该类问题的关键是根据所给出的数据或图像的增长的快慢情况,结合指数函数、幂函数、对数函数增长的差异,从中作出判断.[通一类]1.下面是f(x)随x的增大而得到的函数值列表:试问:(1)随着x的增大,各函数的函数值有什么共同的变化趋势?(2)各函数增长的快慢有什么不同?解:(1)随x的增大,各函数的函数值都在增大;(2)由图表可以看出,各函数增长的快慢不同,其中f(x)=2x增长最快,而且越来越快;增长最慢的是f(x)=log2x,而且增长的幅度越来越小.[研一题][例2] 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?[自主解答] 设第x天所得回报是y元.由题意,方案一:y=40(x∈N+);方案二:y=10x(x∈N+);方案三:y=0.4×2x-1(x∈N).+作出三个函数的图像如图:由图可以看出,从每天回报看,在第一天到第三天,方案一最多,在第四天,方案一,二一样多,方案三最少,在第五天到第八天,方案二最多,第九天开始,方案三比其他两个方案所得回报多得多,经验证到第三十天,所得回报已超过2亿元,∴若是短期投资可选择方案一或方案二,长期的投资则选择方案三.通过计算器计算列出三种方案的累积收入表.天数1234567891011…累积收益方案一4080120160200240280320360400440…二,投资十一天及其以上,应选方案三.[悟一法](1)解决应用问题的关键是将应用问题转化成数学问题解决,结合函数图像有助于直观认识函数值在不同范围的大小关系.(2)一般地:指数函数增长模型适合于描述增长速度快的变化规律;对数函数增长模型适合于描述增长速度平缓的变化规律;而幂函数增长模型介于两者之间,适合于描述增长速度一般的变化规律.[通一类]2.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102 kg)与上市时间t (单位:天)的数据如下表:(1)根据表中数据,从下列函数中选取一个函数,描述西红柿种植成本Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本. 解:(1)由表中数据知,当时间t 变化时,种植成本并不是单调的,故只能选择Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c ,108=a ×1102+b ×110+c ,150=a ×2502+b ×250+c .解得Q =1200t 2-32t +4252;(2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100,∴当t =150天时,西红柿的种植成本最低,为100元/102kg.若x 2<logm x 在x ∈(0,12)内恒成立,求实数m 的取值范围.[巧思] 将不等式恒成立问题转化为两个函数图像在(0,12)内的上下位置关系,再构建不等式求解.[妙解] 设y 1=x 2,y 2=log m x ,作出符合题意的两函数的大致图像(如图),可知0<m <1.当x =12时,y 1=14,若两函数在x =12处相交,则y 2=14.由14=log m 12得m =116,又x 2<logm x 在x ∈(0,12)内恒成立,因此,实数m 的取值范围为116≤m <1.1.下面对函数f (x )=log 12x 与g (x )=(12)x 在区间(0,+∞)上的增减情况的说法中正确的是( )A .f (x )的增减速度越来越慢,g (x )的增减速度越来越快B .f (x )的增减速度越来越快,g (x )的增减速度越来越慢C .f (x )的增减速度越来越慢,g (x )的增减速度越来越慢D.f(x)的增减速度越来越快,g(x)的增减速度越来越快答案:C2.下列所给函数,增长最快的是( )A.y=5x B.y=x5C.y=log5x D.y=5x 答案:D3.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷,0.4万公顷和0.76万公顷,则沙漠增加数y关于年数x的函数关系较为近似的是( )A.y=0.2x B.y=110(x2+2x) C.y=2x10D.y=0.2+log16x 答案:C4.已知函数f(x)=3x,g(x)=2x,当x∈R时,f(x)与g(x)的大小关系为________.解析:在同一直角坐标系中画出函数f(x)=3x,g(x)=2x的图像,如图所示,由于函数f(x)=3x的图像在函数g(x)=2x图像的上方,则f(x)>g(x).答案:f(x)>g(x) 5.据报道,青海湖水在最近50年内减少了10%,如果按此规律,设2013年的湖水量为m,从2013年起,过x年后湖水量y与x的函数关系是________.解析:设湖水量每年为上年的q%,则(q%)50=0.9,∴q%=0.9150,∴x年后湖水量y=m·(q%)x=m·0.9x50.答案:y=0.9x50·m6.函数f(x)=lg x,g(x)=0.3x-1的图像如图所示.(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)比较两函数的增长差异(以两图像交点为分界点,对f(x),g(x)的大小进行比较).解:(1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x;(2)当x<x1时,g(x)>f(x);当x1<x<x2时,f(x)>g(x);当x>x2时,g(x)>f(x).一、选择题1.当x越来越大时,下列函数中,增长速度最快的应该是( )A .y =10xB .y =lg xC .y =x 10D .y =10x 答案:D 2.某山区为加强环境保护,绿色植被的面积每年都比上一年增长10.4%,那么,经过x 年,绿色植被的面积可增长为原来的y 倍,则函数y =f (x )的大致图像为( )解析:y =f (x )=(1+10.4%)x =1.104x 是指数型函数,定义域为{0,1,2,3,4…},由单调性,结合图像知选D.答案:D3.函数y =2x -x 2的图像大致是( )解析:由图像可知,y =2x 与y =x 2的交点有3个,说明函数y =2x -x 2与x 轴的交点有3个,故排除B 、C 选项,当x <x 0时,有x 2>2x 成立,即y <0,故排除D.答案:A4.当0<x <1时,f (x )=x 2,g (x )=x 12,h (x )=x -2的大小关系是( ) A .h (x )<g (x )<f (x ) B .h (x )<f (x )<g (x ) C .g (x )<h (x )<f (x )D .f (x )<g (x )<h (x )解析:在同一坐标下作出函数f (x )=x 2,g (x )=x 12,h (x )=x -2的图像,由图像知,D 正确.答案:D二、填空题5.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子没有什么变化,但价格却上涨了,小张在2004年以15万元的价格购得一所新房子,假设这10年来价格年膨胀率不变,那么到2014年,这所房子的价格y (万元)与价格年膨胀率x 之间的函数关系式是________. 答案:y =15(1+x )106.在直角坐标系中,横、纵坐标均为整数的点叫格点.若函数y =f (x )的图像恰好经过k 个格点,则称函数y =f (x )为k 阶格点函数,则下列函数中为一阶格点函数的序号是________.①y =x 2;②y =x -1;③y =e x -1;④y =log 2x .解析:这是一道新概念题,重点考查函数值的变化情况.显然①④都有无数个格点;②有两个格点(1,1),(-1,-1);而③y =e x -1除了(0,0)外,其余点的坐标都与e 有关,所以不是整点,故③符合.答案:③7.若a =(35)x ,b =x 3,c =log 35x ,则当x >1时,a ,b ,c 的大小关系是________.解析:∵x >1,∴a =(35)x ∈(0,1),b =x 3∈(1,+∞),c =log 35x ∈(-∞,0).∴c <a <b .答案:c <a <b8.已知a >0,a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是________.解析:当a >1时,作出函数y 1=x 2,y 2=a x 的图像:要使x ∈(-1,1)时,均有f (x )<12,只要当x =-1时有(-1)2-a -1≤12,解得a ≤2,∴1<a ≤2.当0<a <1时,同理,只需12-a 1≤12,即a ≥12. ∴12≤a <1. 综上所述,a 的取值范围是[12,1)∪(1,2]. 答案:[12,1)∪(1,2]三、解答题9.一个叫迈克的百万富翁碰到一件奇怪的事.一个叫吉米的人对他说:“我想和你订立个合同,在整整一个月中,我每天给你10万元,而你第一天只需要给我1分钱,以后每天给我的钱数是前一天的两倍”.迈克非常高兴,他同意订立这样的合同. 试通过计算说明,谁将在合同中获利?解:在一个月(按31天计算)的时间里,迈克每天得到10万元,增长的方式是直线增长,经过31天后,共得到31×10=310(万元).而吉米,第一天得到1分, 第二天得到2分, 第三天得到4分, 第四天得到8分, 第20天得到219分, ……第31天得到230分,使用计算器计算可得1+2+4+8+16+…+230=2 147 483 647分≈214 7.48(万元). 所以在这份合同中吉米纯获利2 147.48-310=1 837.48(万元).所以吉米将在合同中获利.10.某公司为了实现1 000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,开始按销售利润进行奖励,奖金y (万元)随销售利润x (万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y =0.25x ,y =log 7x +1,y =1.002x ,其中哪个模型能符合公司的要求?解:借助计算器或计算机作出函数y =5,y =0.25x ,y =log 7x +1,y =1.002x 的图像(如图),观察图像发现,在区间[10,1 000]上,模型y =0.25x ,y =1.002x 的图像都有一部分在直线y =5的上方,只有模型y =log 7x +1的图像始终在y =5的下方,这说明只有按模型y =log 7x +1进行奖励时才符合公司的要求,下面通过计算确认上述判断.首先计算哪个模型的奖金总数不超过5万. 对于模型y =0.25x ,它在区间[10,1 000]上单调递增,当x ∈(20,1 000)时,y >5,因此该模型不符合要求;对于模型y =1.002x ,由函数图像,并利用计算器,可知在区间(805,806)内有一个点x 0满足1.002x 0=5,由于它在区间[10,1 000]上单调递增,因此当x >x 0时,y >5,因此该模型也不符合要求;对于模型y =log 7x +1,它在区间[10,1 000]上单调递增,而且当x =1 000时,y =log 71 000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y =log 7x +1奖励时,奖金是否不超过利润的25%,即当x ∈[10,1 000]时,是否有y x=log 7x +1x≤0.25成立.令f (x )=log 7x +1-0.25x ,x ∈[10,1 000]. 利用计算器或计算机作出函数f (x )的图像(如图),由图像可知它是单调递减的,因此f (x )<f (10)≈-0.316 7<0,log 7x +1<0.25x .所以,当x ∈[10,1 000]时,log 7x +1x<0.25.说明按模型y =log 7x +1奖励,奖金不会超过利润的25%. 综上所述,模型y =log 7x +1确实能符合公司要求.。
幂函数对数函数指数函数增长速度比较
幂函数、对数函数和指数函数是高中数学中经常涉及的三种基本函数类型。
这三种函数具有不同的定义和性质,它们的增长速度也各不相同。
下面,我将从三个方面分别阐述幂函数、对数函数和指数函数的增长速度及其比较。
一、幂函数的增长速度
幂函数的一般形式为y=x^a,其中a为正实数,x为自变量,y为因变量。
当a>1时,幂函数的增长速度比线性函数快,而当0<a<1时,则比线性函数慢。
幂函数随着x的增大而增大,增长速度越来越快,但增长速度的大小与指数a的大小有关。
例如,y=x^2和y=x^3的增长速度比y=x和y=x^1.5快,因为x^2和x^3比x和x^1.5的增长速度更快。
另一方面,y=x^0.5和y=x^0.3的增长速度比y=x慢,因为x^0.5和x^0.3比x的增长速度更慢。
二、对数函数的增长速度
对数函数的一般形式为y=loga(x),其中a为正实数且a ≠ 1,x为正实数。
对数函数随着x的增大而增加,但增长速度非常缓慢。
例如,y=log2(x)和y=log3(x)的增长速度比y=log5(x)和y=log10(x)慢,因为以2或3为底的对数的增长速度比以5或10为底的对数慢。
三、指数函数的增长速度
指数函数的一般形式为y=a^x,其中a为正实数且a ≠ 1,x为自变量。
指数函数随着x的增大而快速增加。
例如,y=2^x和y=3^x的增长速度比y=1.5^x和y=1.1^x快,因为2和
3比1.5和1.1更大。
比较三种函数的增长速度
根据上述三种函数的增长速度特性,我们可以得出以下结论:
1. 当x越来越大时,指数函数的增长速度最快,其次是幂函数,最慢
的是对数函数。
2. 如果幂函数和指数函数的底相同,那么指数函数的增长速度比幂函
数快。
例如,y=2^x的增长速度比y=x^2的增长速度快。
3. 如果对数函数和指数函数的底相同,那么对数函数的增长速度比指
数函数慢。
例如,y=log2(x)的增长速度比y=2^x的增长速度慢。
4. 当指数和幂函数的指数或幂相等时,它们的增长速度是相等的。
例如,y=x^2和y=2^log2(x^2)的增长速度相等。
综上所述,我们可以通过分析幂函数、对数函数和指数函数的增长速
度来比较它们之间的大小关系。
在数学问题中,正确理解三种函数的
性质和特点,有助于我们更深刻地理解数学的本质,提高数学的思维能力和解决问题的能力。