几类不同增长的函数模型
- 格式:ppt
- 大小:2.63 MB
- 文档页数:30
几类不同增长的函数模型【学习目标】1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.2.结合实例体会直线上升、指数爆炸、对数增大等几类不同的增长和函数模型的意义.3.通过本节内容的学习,培养用函数的观念、思想和方法去理解、解决实际问题的意识,感悟到现实世界中数学无处不在,世界是数学的物化形式,数学是世界的精髓.【要点梳理】要点一:几类函数模型的增长差异一般地,对于指数函数和幂函数,通过探索可以发现,在区间上,无论比大多少,尽管在的一定范围内,会小于,但由于的增长快于的增长,因此总存在一个,当时,就会有.同样地,对于对数函数增长得越来越慢,图象就像是渐渐地与轴平行一样,尽管在的一定范围内,可能会大于,但由于的增长慢于的增长,因此总存在一个,当时,就会有.综上所述,在区间上,尽管函数、和都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着的增大,的增长速度越来越快,会超过并远远大于的增长速度,而的增长则会越来越慢,因此总会存在一个,当时,就有三类函数模型增长规律的定性描述:1.直线上升反映了一次函数(一次项系数大于零)的增长趋势,其增长速度不变(恒为常数);2.指数爆炸反映了指数函数(底数大于1)的增长趋势,其增长速度迅速(越来越快);3.对数增长反映了对数函数(底数大于1)的增长趋势,其增长速度平缓(越来越慢).如图所示:要点诠释:当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快.要点二:利用函数的增长规律在实际问题中建立函数模型若实际问题的增长规律与一些常见函数的增长规律相吻合,则可在实际问题中建立相应的函数模型,确定其系数,便得到相应的函数模型,从而完成建模.常用的函数模型有以下几类:(1)线性增长模型:;(2)线性减少模型:.(2)二次函数模型:当研究的问题呈现先增长后减少的特点时,可以选用二次函数;当研究的问题呈现先减少后增长的特点时,可以选用二次函数(1)xy a a =>(0)y x αα=>()0,+∞αa x x a x αx a x α0x 0x x >xa >x αlog a y x =x x log a x x αlog a x x α0x 0x x >log a x x α<()0,+∞(1)xy a a =>(0)y x αα=>log (1)a y x a =>x (1)xy a a =>(0)y x αα=>log (1)a y x a =>0x 0x x >log .xa x x a α<<(0)y kx b k =+>(0)y kx b k =+<2(0)y ax bx c a =++<.(3)指数函数模型(a 、b 、c 为常数,a≠0,b >0,b≠1),当时,为快速增长模型;当时,为平缓减少模型.(4)对数函数模型(m 、n 、a 为常数,a >0,a≠1);当时,为平缓增长模型;当时,为快速减少模型.(5)反比例函数模型.当时,函数在区间和上都是减函数;当时,函数在和上都是增函数.(6)分段函数模型当自变量在几个区间上的函数关系式不相同时,问题应用分段函数来解决.【典型例题】类型一、研究函数的变化规律并比较其大小例1. 当x >0时,比较,,的大小.【解析】作出函数,,的图象(如下图所示).由二分法可得,方程的解为x=0.5,方程的近似解为x=0.64118574,方程的近似解为x=0.587774756.由图象及上述近似解可知,当0<x <0.5时,;当x=0.5时,;当0.5<x <0.587774756时,;2(0)y ax bx c a =++>()x f x ab c =+1b >01b <<()log a f x m x n =+1a >01a <<(0)ky k x=≠0k >(),0-∞()0,+∞0k <(),0-∞()0,+∞12log x 12x 12x⎛⎫⎪⎝⎭12log y x =12y x =12xy ⎛⎫= ⎪⎝⎭1212xx ⎛⎫= ⎪⎝⎭121log 2xx ⎛⎫= ⎪⎝⎭1212log x x =12121log 2xx x ⎛⎫<< ⎪⎝⎭12121log 2xx x ⎛⎫=< ⎪⎝⎭12121log 2x x x ⎛⎫<< ⎪⎝⎭当x=0.587774756时,;当0.587774756<x <0.64118574时,;当x=0.64118574时,;当x >0.64118574时,.【总结升华】本例归纳到一般有如下规律:在区间(0,+∞)上,尽管函数y=a x (0<a <1)、y=log a x(0<a <1)和y=x n (n <0)都是减函数,但它们的衰减速度不同,而且不在同一个“档次”上.随着x 的增大,y=log a x (0<a <1)的衰减速度越来越快,直至负值,因而远远大于y=a x (0<a <1)与y=x n (n <0)的衰减速度.而y=a x (0<a <1),y=a n (n <0)都是在正值范围内衰减,随着x 的不断增长,两者的衰减速度差距越来越小,其中y=a n (n <0)的衰减速度会越来越慢.因此,总会存在一个x 0,当x >x 0时,就有x n >a x >log a x .举一反三:【变式1】 比较、、的大小.【答案】【解析】分别画出的图象,可得结论.类型二、利用几类函数的变化规律建立函数模型例2.某种树苗栽种时高度为A (A 为常数)米,栽种n 年后的高度记为f (n ).经研究发现,f (n )近似地满足,其中,a ,b 为常数,n ∈N ,f (0)=A .已知栽种3年后该树木的高度为栽种时高度的3倍.问:栽种多少年后,该树木的高度是栽种时高度的8倍.【答案】9【解析】由题意知f (0)=A ,f (3)=3A .所以,解得a =1,b =8.所以,其中.令f (n )=8A ,得,解得,即,所以n =9.11221log 2xx x ⎛⎫<= ⎪⎝⎭12121log 2xx x ⎛⎫<< ⎪⎝⎭12121log 2xx x ⎛⎫=< ⎪⎝⎭12121log 2xx x ⎛⎫<< ⎪⎝⎭13x⎛⎫⎪⎝⎭13x 13log (1)x x >13x >13x⎛⎫⎪⎝⎭13log x>13131(,,log 3xy y x y x ===9()nAf n a bt=+232t -=99314AA a b A A a b ⎧=⎪+⎪⎨=⎪+⎪⎩9()18n A f n t =+⨯223t =-9818nA A t =+⨯164nt =62122364n --==答:栽种9年后,该树木的高度是栽种时高度的8倍.【总结升华】本题将指数函数型嵌入树苗种植问题,使问题情景生动而新颖,自然而贴切.同学们不仅要学会二次函数的知识,而且还要会运用所学数学知识分析和解决生活实际问题,体验数学与生活“融合”的乐趣.举一反三:【高清课程:几类不同增长的函数模型377565 例3】【变式1】如图所示,在直角坐标系的第一象限内,△AOB 是边长为2的等边三角形,设直线x = t (0≤t ≤2)截这个三角形可得位于此直线左方的图形(阴影部分)的面积为f (t ),则函数y = f (t )的图象大致是( )【答案】D【解析】 函数故选 D .【变式2】据调查,某贫困地区约有100万人从事传统农业的农民,人均年收入仅有3000元,为了增加农民的收入,当地政府积极引进资金,建立各种加工企业,对当地的农产品进行加工,同时吸收当地部分农民进入加工企业工作,据估计,如果有x (x >0)万人进入企业工作,那么剩下从事传统农业的农民的人均年收入有望提高2x%,而进入企业工作的农民的人均年收入为3000a 元(a >0).(1)建立加工企业后,要使从事传统农业的农民的年总收入不低于加工企业建立前的农民的年总收入,试求x 的取值范围;(2)在(1)的条件下,当地政府应该如何引导农民(即x 多大时),能使这100万农民的人均年收入达到最大.【答案】(1)0<x≤50;(2)50.【解析】(1)由题意得,即x 2-50x≤0,解得0≤x≤50.又∵x >0,∴0<x≤50.(2)设这100万人农民的人均年收入为y 元,则,即,0<x≤50.当0<25(a+1)≤50且a >0,即0<a≤1时,则x=25(a+1)时,y 取最大值.当25(a+1)>50即a >1时,y 在(0,5]上单调递增,∴当x=50时,y 取最大值.答:在0<a≤1时,安排25(a+1)万人进入企业工作,在a >1时安排50万人进入企业工作,才能使这10022(01)()(12)t S t t ≤≤=⎪+<≤⎪⎩23000(100)(11003000100xx -⨯+≥⨯23000(100)(1)3000100100xx ax y -⨯++=603000(1)300000100x a x -+++=223[25(1)]3000375(1)5y x a a =--++++万人的人均年收入最大.【总结升华】本题是一个关注民生的实际问题,应认真阅读,理解题意,转译为数学语言,寻找变量之间的联系.然后对此二次函数进行研究得出相关数学结论,并依此解决实际问题.例3.某地新建一个服装厂,从今年7月份开始投产,并且前4个月的产量分别为1万件、1.2万件、1.3万件、1.37万件.由于产品质量好、服装款式新颖,因此前几个月的产品销售情况良好.为了推销员在推销产品时,接收订单不至于过多或过少,需要估测以后几个月的产量,假如你是厂长,将会采用什么办法?【解析】首先建立直角坐标系,画出散点图(右图);其次,根据散点图,我们可以设想函数模型可能为一次函数型:f (x)=kx+b (k≠0);二次函数型:g (x)=ax 2+bx+c (a≠0);幂函数型:;指数函数型:m (x)=ab x +c .最后,用待定系数法求出各解析式,并验证,选出合适的函数. 设月产量为y 万件,月份数为x ,建立直角坐标系(如右图),可得A (1,1),B (2,1.2),C (3,1.3),D (4,1.37).(1)对于直线,将B 、C 两点的坐标代入,有,,解得k=0.1,b=1,故.将A 、D 两点的坐标代入,得f (1)=1.1,与实际误差为0.1,f (4)=1.4,与实际误差为0.03.(2)对于二次函数,将A 、B 、C 三点的坐标代,有g (1)=a+b+c=1,g (2)=4a+2b=c=1.2,g (3)=9a+3b+c=1.3.解得a=―0.05,b=0.35,c=0.7,故g (x)=―0.05x 2+0.35x+0.7.将D 点的坐标代入,得g (4)=―0.05×42+0.35×4+0.17=1.3,与实际误差为0.07.(3)对于幂函数型,将A 、B 两点的坐标代入,有h (1)=a+b=1,.解得a≈0.48,b≈0.52.故.将C 、D 两点的坐标代入,得,与实际误差为0.05;h (4)=0.48×2+0.52=1.48,与实际误差为0.11.(4)对于指数函数型m(x)=ab x +c ,将A 、B 、C 三点的坐标代入,得m (1)=ab+c=1,m (2)=ab 2+c=1.2,m (3)=ab 3+c=1.3.解得a=―0.8,b=0.5,c=1.4.故m (x)=―0.8×(0.5)x +1.4.将D 点的坐标代入,得m (4)=-0.8×(0.5)4+1.4=1.35,与实际误差为0.02.比较上述四个模拟函数的优劣,既要考虑到剩余点误差值最小,又要考虑生产的实际问题,比如增产的趋势和可能性,可以认为m (x)最佳,一是误差值最小,二是由于新建厂,开始随着工人技术、管理效益逐渐提高,一段时间内产量明显上升,但到一定时期后,设备不更新,那么产量必然要趋于稳定,而m (x)恰好反映了这种趋势,因此选用m (x)=-0.8×(0.5)x +1.4比较接近客观实际.选用y=a·b x +c 模型,且a=-0.8,b=0.5,c=1.4比较接近实际.举一反三:【高清课程:几类不同增长的函数模型377565例4】12()h x ax b =+()(0)f x kx b k =+≠(2)2 1.2f k b =+=(3)3 1.3f k b =+=()0.11f x x =+2()(0)g x ax bx c a =++≠12()h x ax b =+(2) 1.2h b =+=12()0.480.52h x x =+(3)0.480.52 1.35h =+≈【变式1】某山区加强环境保护后,绿色植被的面积每年都比上一年增长10.4%,那么经过x 年绿色植被的面积为y ,则函数y = f (x ) 的图象大致为( ).【答案】D【解析】设某山区原有绿色植被为,则经过第一年增长后面积为,经过第二年增长后面积为,…,经过x 年绿色植被的面积为,是指数型函数,故选D .【变式2】“水”这个曾经人认为取之不尽用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2000亿元,给我国农业造成的损失达1500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨二不超过6吨时,超过的部分的水费加收200%,若超过6吨而不超过7吨时,超过部分的水费加收400%,如果某人本季度实际用水量为x (x≤7)吨,试计算本季度他应交的水费y (单位:元).【思路点拨】根据每一季度每人用水量不超过5吨时,每吨水费收基本价1.2元;若超过5吨而不超过6吨时,超过部分的水费加收200%;若超过6吨而不超过7吨时,超过部分的水费加收400%.分为三段,建立分段函数模型.【答案】【解析】由题意可知:①当x ∈[0,5]时f (x )=1.2x②若超过5吨而不超过6吨时,超过部分的水费加收200%;即:当x ∈(5,6]时f (x )=1.2×5+(x -5)×3.6=3.6x -12③当x ∈(6,7]时f (x )=1.2×5+1×3.6+(x -6)×6=6x -26.4∴【总结升华】本题主要考查将实际应用问题转化为数学问题的能力,解题时要仔细阅读,抓住关键词,关键句来建立数学模型,分段函数的意义和应用.例4.(2016春 江苏启东市月考)某人年初向银行贷款10万元用于购房,(1)如果他向建设银行贷款,年利率为5%,且这笔款分10次等额归还(不计复利),每年一次,并从借后次年年初开始归还,问每年应付多少元?(2)如果他向工商银行贷款,年利率为4%,要按复利计算(即本年的计算计入次年的本金生息),a (110.4%)a +2(110.4%)a +(110.4%)xa +1.2,[0,5]() 3.612,(5,6]626.4,(6,7]x x f x x x x x ∈⎧⎪=-∈⎨⎪-∈⎩1.2,[0,5]() 3.612,(5,6]626.4,(6,7]x x f x x x x x ∈⎧⎪=-∈⎨⎪-∈⎩仍分10次等额归还,每年一次,每年应还多少元?(其中:1.0410=1.4802)【思路点拨】(1)设每年还款x 元,由题意可得,从而解x ;(2)设每年还款y 元,由题意可得,从而解y .【答案】(1)12245;(2)12330【解析】(1)设每年还款x 元,则,即,解得,;(2)设每年还款y 元,则,即,则.【总结升华】上述公式是计算复利的本利和公式,应熟练掌握它,并灵活地运用它解决实际问题中的复利利息计算问题.所谓复利,就是到期后,本期的利息自动计入下一期的本金,类似地,到期后,本期的利息不计作下一期的本金就是单利,单利的计算公式为y =a (1+xr ).其中a 为本金,r 为每一期的利率,x 为期数.举一反三:【变式1】甲、乙两人同一天分别携带1万元到银行储蓄.甲存五年定期储蓄,年利率为2.88%;乙存一年期定期储蓄.年利率为2.25%,并且在每年到期时将本息续存一年期定期储蓄.按规定每次计算时,储户须交纳利息的20%作为利息税.若存满五年后两人同时从银行取出存款,则甲、乙所得本息之和的差为________元.【答案】219.01【变式2】某种商品进价为每个80元,零售价为每个100元,为了促销采用买一个这种商品赠送一个小礼品的办法.实践表明:礼品价值为1元时,销售量增加10%,且在一定范围内,礼品价值为(n+1)元时,比礼品价值为n 元(n ∈N*)时的销售量增加10%.(1)写出礼品价值为n 元时,利润y n (元)与n (元)的函数关系式;(2)请你设计礼品的价值,以使商品获得最大利润.【答案】(1);(2)9元或10元.【解析】第(1)问易得,第(2)问礼品的价值为多少时,使商店获取最大的利润,只需借助于指数函数的单调性,使得n 取某个值时,其前面的取值与后面的取值都比它小即可,即且510(1105%)(195%)(185%)x x x +⨯=+⨯++⨯++ 5109810(14%)(14%)(14%)y y y +=+++++ 510(1105%)(195%)(185%)x x x +⨯=+⨯++⨯++ 510 1.510450.05x x ⨯=+⋅105 1.512245()12.25x ⨯=≈元5109810(14%)(14%)(14%)y y y +=+++++ 105101.04110 1.04 1.041y -⨯=-510 1.48020.0412330()0.4802y ⨯⨯≈≈元(1r)xy a =+(10080)(110%)(20) 1.1nnn y n m n m =--⋅⋅+=-⋅⋅(020,N*)n n <<∈10n n y y +-≥.(1)设未赠礼品时的销售量为m 件,则当礼品价值为n 元时,销售量为m(1+10%)n ;利润.(2)令,即,解得n≤9.所以y 1<y 2<y 3<…<y 9=y 10,令,即,解得n≥8.所以y 9=y 10>y 11>y 12>y 13>…>y 19,所以礼品价值为9元或10元时,商品获得最大利润.【高清课程:几类不同增长的函数模型377565例6】例5.如图,长方形物体E 在雨中沿面P (面积为S )的垂直方向作匀速移动,速度为v (v >0),雨速沿E 移动方向的分速度为c (c ∈R ).E 移动时单位时间内的淋雨量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与×S 成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记y 为E 移动过程中的总淋雨量,当移动距离d=100,面积S=时.(Ⅰ)写出y 的表达式;(Ⅱ)设0<v≤10,0<c≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少.【答案】(Ⅰ) (Ⅱ)当时,;当时,.【解析】(Ⅰ)单位时间的淋雨量为:总的淋雨量为:,即(Ⅱ)①当即时120n n y y ++-≥(10080)(110%)(20) 1.1n nn y n m n m =--⋅⋅+=-⋅⋅(020,N*)n n <<∈10n n y y +-≥1(19) 1.1(20) 1.10n n n m n m +-⋅⋅--⋅⋅≥120n n y y ++-≥12(19) 1.1(18) 1.10n n n m n m ++-⋅⋅--⋅⋅≥v c -11012325(103)15(),5(310)15().c v c vy c v c v -⎧+≥⎪⎪=⎨+⎪-<⎪⎩10v =min 3202y c =-v c =min 50y c=131||1022v c ⨯-+10031||202y v c v ⎡⎤=⨯-+⎢⎥⎣⎦5(103)c y v -∴=5(103)15(),5(310)15().c v c vy c v c v -⎧+≥⎪⎪=⎨+⎪-<⎪⎩1030,c ->1003c <≤在上单调递减时,最小,.②当即时在上单调递减,在上单调递增.当时,最小,.答:当雨速的分速度,时,;当雨速的分速度,时,.y (]0,10v ∈10v ∴=y min 3202y c =-1030,c -<1053c <≤y (0,)v c ∈(,10)v c ∈v c =y min 50y c=1003c <≤10v =min 3202y c =-1053c <≤v c =min 50y c=。
成长曲线模型成长曲线模型是一种分析个体、企业或产品在不同阶段成长与发展规律的数学模型。
通过对成长曲线模型的研究,我们可以更好地预测未来的发展趋势,制定相应的决策,并评估战略效果。
一、成长曲线模型的概述1.成长曲线模型的定义成长曲线模型是通过建立一个数学方程,描述个体、企业或产品在时间序列上的成长规律。
这种模型可以帮助我们了解成长过程中的波动和趋势,为未来的发展提供指导。
2.成长曲线模型的分类根据不同的应用场景,成长曲线模型可以分为以下几类:(1)指数增长模型:适用于成长速度迅速加快的情况,如初创企业的快速发展。
(2)逻辑增长模型:适用于成长速度逐渐减缓的情况,如成熟企业的稳定发展。
(3)对数增长模型:适用于成长过程中波动较小,但总体趋势明显的情况。
二、成长曲线模型的应用1.个人成长与发展成长曲线模型可以帮助个人了解自己的成长速度和潜力,制定合适的学习和发展计划。
2.企业成长与战略规划企业可以通过成长曲线模型预测市场趋势,评估产品生命周期,制定有效的战略规划。
3.产品生命周期管理成长曲线模型可以帮助企业了解产品的市场接受程度、销售量和利润变化,从而制定有针对性的市场营销策略。
三、成长曲线模型的优势与局限性1.优势(1)预测未来发展趋势:通过对成长曲线模型的分析,我们可以预测未来的发展速度和潜力。
(2)指导决策制定:成长曲线模型可以为决策者提供有关个人、企业或产品的成长状况,有助于制定合适的决策。
(3)评估战略效果:通过比较实际成长曲线与预测曲线,可以评估战略实施的效果。
2.局限性(1)数据的准确性与可靠性:成长曲线模型的建立依赖于历史数据,数据的准确性和可靠性对模型的预测效果具有重要影响。
(2)忽视外部环境变化:成长曲线模型主要关注内部成长规律,对外部环境变化敏感度较低,可能导致预测失误。
四、如何优化成长曲线模型1.提高数据质量:收集更全面、准确和可靠的数据,提高成长曲线模型的预测精度。
2.结合其他分析方法:如SWOT分析、PESTLE分析等,综合评估个人、企业或产品的成长状况。
4.5增长速度的比较学习目标核心素养1.了解和体会函数模型在实际生活中的广泛应用.(一般)2.理解直线上升、指数爆炸、对数增长的含义以及三种函数模型性质的比较.(重点) 3.会分析具体的实际问题,能够建模解决实际问题.(难点)1.通过三种不同增长的函数模型差异的学习,培养逻辑推理的核心素养.2.借助函数模型的应用,提升数学建模核心素养.【自主预习】1.三种函数增长速度的比较(1)在区间(0,+∞)上,函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是函数,但增长速度不同,且不在同一个“档次”上.(2)随着x的增大,y=a x(a>1)的增长速度,会超过并远远y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度.(3)存在一个x0,当x>x0时,有.2.增长率问题日常生活中常见的问题,计算公式为y=,若某月的产值是b,月增长率为p,则此月开始第n个月后的产值是.【基础自测】1.下列函数中,增长速度最快的是()A.y=2 020x B.y=x2 020C.y=log2 020x D.y=2 020x2.已知增函数f(x)的图像如图,则它的一个可能的解析式为()A.y=2x B.y=4-4x+1C .y =log 3(x +1)D .y =x 13(x ≥0)3.若x ∈(0,1),则下列结论正确的是( ) A .2x >x 12>lg xB .2x >lg x >x 12C .x 12>2x >lg xD .lg x >x 12>2x4.某种细菌在培养过程中,每15分钟分裂一次(由1个分裂成2个),这种细菌由1个分裂成4 096个需经过________小时.【合作探究】【例1】(1)f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是( )A .f (x )>g (x )>h (x )B .g (x )>f (x )>h (x )C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )(2)四人赛跑,假设他们跑过的路程f i (x )(其中i ∈{1,2,3,4})和时间x (x >1)的函数关系分别是f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 2x ,f 4(x )=2x ,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是哪一个?为什么?[思路探究] (1)根据指数函数、幂函数、对数函数的增长情况及指数函数的底数对其增长速度的影响来判断.(2)根据不同函数模型的增长特点来判断.【规律方法】三种函数模型的表达式及其增长特点(1)指数函数模型:表达式为f (x )=ab x +c (a ,b ,c 为常数,a >0,b >0且b ≠1),当b >1时,增长特点是随着自变量x 的增大,函数值增大的速度越来越快,常称之为“指数爆炸”;当0<b <1时,函数值由快到慢地减小.(2)对数函数模型:表达式为f(x)=m log a x+n(m,n,a为常数,m>0,a>0且a≠1),当a>1时,增长的特点是开始阶段增长得较快,但随着x的逐渐增大,其函数值变化得越来越慢,常称之为“蜗牛式增长”;当0<a<1时,相应函数值逐渐减小,变化得越来越慢.(3)幂函数模型:表达式为f(x)=axα+b(a,b,α为常数,a≠0,α≠1,α>0),其增长情况由a和α的取值确定,常见的有二次函数模型.【跟踪训练】1.四个变量y1,y2,y3,y4随变量x变化的数据如下表:x151015202530y1226101226401626901y2232 1 02432 768 1.05×106 3.36×107 1.07×109y32102030405060y42 4.322 5.322 5.907 6.322 6.644 6.907关于x呈指数函数变化的变量是________.类型二三类函数图像的比较【例2】函数f(x)=2x和g(x)=x3的图像如图所示.设两函数的图像交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出图中曲线C1,C2分别对应的函数;(2)结合函数图像,判断f(6),g(6),f(2 020),g(2 020)的大小.[思路探究]首先判断x1、x2的范围,再判断6和2 020在哪个区间内,从而得到f(6)与g(6),f(2 020)与g(2 020)的大小.最后四个值进行排序.【规律方法】由图像判断指数函数、对数函数和幂函数的方法,根据图像判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图像上升的快慢,即随着自变量的增大,图像最“陡”的函数是指数函数;图像趋于平缓的函数是对数函数. 【跟踪训练】2.(1)若-1<x <0,则不等式中成立的是( ) A .5-x <5x <0.5x B .5x <0.5x <5-x C .5x <5-x <0.5xD .0.5x <5-x <5x(2)函数f (x )=lg x ,g (x )=0.3x -1的图像如图所示.①试根据函数的增长差异指出曲线C 1,C 2分别对应的函数;②比较两函数的增长差异(以两图像交点为分界点,对f (x ),g (x )的大小进行比较).类型三几类函数模型的应用【例3】 (1)如图所示是某受污染的湖泊在自然净化过程中某种有害物质的剩留量y 与净化时间t (月)的近似函数关系:y =a t (t ≥0,a >0且a ≠1)的图像.有以下叙述:①第4个月时,剩留量就会低于15;②每月减少的有害物质质量都相等;③若剩留量为12,14,18时,所经过的时间分别是t 1,t 2,t 3则t 1+t 2=t 3.其中所有正确叙述的序号是________.(2)某品牌茶壶的原售价为80元一个,今有甲、乙两家茶具店销售这种茶壶,甲店用如下的方法促销:如果只购买一个茶壶,其价格为78元/个;如果一次购买两个茶壶,其价格为76元/个,……;如果一次购买的茶壶数每增加一个,那么茶壶的价格减少2元/个,但茶壶的售价不得低于44元/个.乙店一律按原价的75%销售.现某茶社要购买这种茶壶x个,如果全部在甲店购买,则所需金额为y1元;如果全部在乙店购买,则所需金额为y2元.①分别求出y1,y2与x之间的函数关系式;②该茶社去哪家茶具店购买茶壶花费较少?[思路探究](1)先求出解析式,再分别代入值求解.(2)根据题意先建立函数模型再求解.【规律方法】建立函数模型要遵循的原则(1)简化原则:,建立模型,要对原型进行一定的简化,抓主要因素、主变量,尽量建立较低阶、较简便的模型.(2)可推演原则:,建立的模型一定要有意义,既能对其进行理论分析,又能计算和推理,且能推演出正确结果.(3)反映性原则:,建立的模型必须真实地反映原型的特征和关系,即应与原型具有“相似性”,所得模型的解应具有说明现实问题的功能,能回到具体研究对象中去解决问题.【跟踪训练】3.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是P n=P0(1+k)n(k>-1),P n为预测人口数,P0为初期人口数,k为预测期内年增长率,n为预测期间隔年数.如果在某一时期有-1<k<0,那么在这期间人口数()A.呈下降趋势B.呈上升趋势C.摆动变化D.不变【课堂小结】1.本节课的重点是掌握指数函数、对数函数、幂函数模型的增长差异及增长差异的应用.2.本节课要重点掌握的规律方法(1)常见函数模型的增长差异.(2)不同函数模型的选取标准.3.本节课的易错点是函数模型的选取.【当堂达标】1.我国工农业总产值从1999年到2019年的20年间翻了两番,设平均每年的增长率为x,则有()A.(1+x)19=4B.(1+x)20=3C.(1+x)20=2 D.(1+x)20=42.y1=2x,y2=x2,y3=log2x,当2<x<4时,有()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y2>y3>y13.三个变量y1,y2,y3随着变量x的变化情况如下表所示:则关于x分别呈对数函数、指数函数、幂函数变化的变量依次为________,________,________.4.试比较函数y=x200,y=e x,y=lg x的增长差异.【参考答案】【自主预习】1.(1)增 (2)越来越快 大于越来越慢(3) a x >x n >log a x 2.N (1+p )xb (1+p )n【基础自测】1.A [比较幂函数、指数函数与对数函数可知,指数函数增长速度最快,故选A.] 2.B [由于过(1,2)点,排除C ,D ;由图像与直线y =4无限接近,y <4,排除A ,所以选B.]3.A [结合y =2x ,y =x 12及y =lg x 的图像易知当x ∈(0,1)时,2x>x 12>lg x .]4.3 [设1个细菌分裂x 次后有y 个细菌,则y =2x ,令2x =4 096=212,则x =12,即需分裂12次,需12×15=180(分钟),即3小时.]【合作探究】【例1】(1)B [由函数性质可知,在区间(4,+∞),指数函数g (x )=2x 增长最快,对数函数h (x )=log 2x 增长最慢,所以g (x )>f (x )>h (x ).](2)[解] 最终跑在最前面的人具有的函数关系是f 4(x )=2x ,理由如下:显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f 4(x )=2x . 【跟踪训练】1.y 2 [从表格观察函数值y 1,y 2,y 3,y 4的增加值,哪个变量的增加值最大,则该变量关于x 呈指数函数变化.以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y 1,y 2,y 3,y 4均是从2开始变化,变量y 1,y 2,y 3,y 4都是越来越大,但是增长速度不同,其中变量y 2的增长速度最快,画出它们的图像(图略),可知变量y 2关于x 呈指数函数变化.]【例2】[解] (1)C 1对应的函数为g (x )=x 3,C 2对应的函数为f (x )=2x . (2)∵f (1)>g (1),f (2)<g (2),f (9)<g (9),f (10)>g (10), ∴1<x 1<2,9<x 2<10,∴x 1<6<x 2,2 020>x 2.从图像上可以看出,当x 1<x <x 2时,f (x )<g (x ),∴f (6)<g (6). 当x >x 2时,f (x )>g (x ),∴f (2 020)>g (2 020). 又∵g (2 020)>g (6),∴f (2 020)>g (2 020)>g (6)>f (6). 【跟踪训练】2.(1)B [画出y 1=5-x ,y 2=5x ,y 3=0.5x 的图像如图,所以5x <0.5x <5-x .](2)[解] ①C 1对应的函数为g (x )=0.3x -1,C 2对应的函数为f (x )=lg x . ②当x <x 1时,g (x )>f (x ); 当x 1<x <x 2时,f (x )>g (x ); 当x >x 2时,g (x )>f (x ); 当x =x 1或x =x 2时,f (x )=g (x ).类型三几类函数模型的应用【例3】(1)①③ [根据题意,函数的图像经过点⎝⎛⎭⎫2,49,故函数为y =⎝⎛⎭⎫23t,令t =4时,y =1681<15,故①正确;令t =1时,y =23,减少13,当t =2时,y =49,减少29,每月减少有害物质质量不相等,故②不正确;分别令y =12,14,18,解得t 1=log 2312,t 2=log 2314,t 3=log 2318,t 1+t 2=t 3,故③正确.](2)[解] ①y 1与x 之间的函数关系式:y 1=⎩⎪⎨⎪⎧-2x 2+80x (0<x ≤18,x ∈N *),44x (x >18,x ∈N *),y2与x之间的函数关系式:y2=60x(x≥0,x∈N*).②y=y1-y2=当x=10时,y=y1-y2=0,即y1=y2;当1≤x<10时,y=y1-y2=-2x(x-10)>0,即y1>y2;当10<x≤18时,y=y1-y2=-2x(x-10)<0,即y1<y2;当x>18时,y=y1-y2=-16x<0,即y1<y2.所以,当茶社购买这种茶壶的数量小于10个时,到乙茶具店购买茶壶的费用较少,当茶社购买数量为10个时,费用一样,当茶社购买这种茶具的数量大于10个时,到甲茶具店购买茶壶的费用较少.【跟踪训练】3.A[若-1<k<0,则0<1+k<1,结合P0>0类指数函数P n=P0(1+k)n单调递减,即在这期间人口数呈下降趋势.]【当堂达标】1.D[本题为增长率模型函数,为指数函数形式:设1999年总产值为1,则(1+x)20=4.] 2.B[在同一平面直角坐标系内画出这三个函数的图像(图略),在区间(2,4)内,从上到下图像依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.]3.y3y2y1[通过指数函数、对数函数、幂函数等不同函数模型的增长规律比较可知,变量y3随x的变化越来越慢,为对数函数;y2随x的变化越来越快,为指数函数;y1随x 的变化速度介于指数函数与对数函数之间,为幂函数.]4.[解]根据幂函数、指数函数、对数函数的图像特征,增长最慢的是y=lg x,由图像(图略)可知随着x的增大,它几乎平行于x轴;当x较小时,y=x200要比y=e x增长得快;当x较大时,y=e x要比y=x200增长得快.。
专题38 不同函数增长的差异1.三种函数模型的性质(1)当a>1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.(2)当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.(3)当x>0,n>1时,幂函数y=x n显然也是增函数,并且当x>1时,n越大,其函数值的增长就越快.(4)一般地,虽然指数函数y=a x(a>1)与一次函数y=kx(k>0)在区间[0,+∞)上都单调递增,但它们的增长速度不同,随着x的增大,指数函数y=a x(a>1)的增长速度越来越快,即使k的值远远大于a的值,y=a x(a>1)的增长速度最终都会超过并远远大于y=kx的增长速度.尽管在x的一定变化范围内,a x会小于kx,但由于指数函数y=a x(a>1)的增长最终会快于一次函数y=kx(k>0)的增长,因此,总会存在一个x0,当x>x0时,恒有a x>kx.(5)一般地,虽然对数函数y=log a x(a>1)与一次函数y=kx(k>0)在区间(0,+∞)上都单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k>0)保持固定的增长速度,而对数函数y=log a x(a>1)的增长速度越来越慢.不论a的值比k的值大多少,在一定范围内,log a x可能会大于kx,但由于log a x的增长慢于kx的增长,因此总会存在一个x0,当x>x0时,恒有log a x<kx.3.指数函数、对数函数和幂函数的增长差异一般地,在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢,总会存在一个x0,当x>x0时,就有log a x<x n<a x.题型一几类函数模型增长差异的比较1.下列函数中,增长速度最快的是()A.y=2 019x B.y=2019C.y=log2 019x D.y=2 019x[解析]指数函数y=a x,在a>1时呈爆炸式增长,并且随a值的增大,增长速度越快,应选A.2.下列函数中,随x 的增大,增长速度最快的是( )A .y =1B .y =xC .y =3xD .y =log 3x[解析]结合函数y =1,y =x ,y =3x 及y =l o g 3x 的图象可知(图略),随着x 的增大,增长速度最快的是y =3x . 3.当a >1时,有下列结论:①指数函数y =a x ,当a 越大时,其函数值的增长越快; ②指数函数y =a x ,当a 越小时,其函数值的增长越快; ③对数函数y =log a x ,当a 越大时,其函数值的增长越快; ④对数函数y =log a x ,当a 越小时,其函数值的增长越快. 其中正确的结论是( )A .①③B .①④C .②③D .②④[解析]结合指数函数及对数函数的图象可知①④正确.故选B.4.下面对函数f (x )=log 12x ,g (x )=⎝⎛⎭⎫12x与h (x )=-2x 在区间(0,+∞)上的递减情况说法正确的是( ) A .f (x )递减速度越来越慢,g (x )递减速度越来越快,h (x )递减速度越来越慢 B .f (x )递减速度越来越快,g (x )递减速度越来越慢,h (x )递减速度越来越快 C .f (x )递减速度越来越慢,g (x )递减速度越来越慢,h (x )递减速度不变 D .f (x )递减速度越来越快,g (x )递减速度越来越快,h (x )递减速度越来越快[解析]观察函数f (x )=log 12x ,g (x )=⎝⎛⎭⎫12x 与h (x )=-2x 在区间(0,+∞)上的图象(如图)可知:函数f (x )的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g (x )的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h (x )的图象递减速度不变. 5.函数y =x 2与函数y =x ln x 在区间(0,+∞)上增长较快的一个是________ . [解析]当x 变大时,x 比ln x 增长要快,∴x 2要比x ln x 增长的要快. 6.四个变量y 1,y 2,y 3,y 4随变量x 变化的数据如表: x 1 5 10 15 20 25 30 y 1 2 26 101 226 401 626 901 y 2 2 32 1 024 37 768 1.05×1063.36×1071.07×109y 3 2 10 20 30 40 50 60 y 424.3225.3225.9076.3226.6446.907[解析]以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.故填y2.7.以固定的速度向如图所示的瓶子中注水,则水面的高度h和时间t之间的关系是()[解析]水面的高度增长得越来越快,图象应为B.8.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()[解析]小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.9.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在图中请选择与容器相匹配的图象,A对应________;B对应________;C对应________;D对应________.[解析] A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器快,与(3)对应,D容器慢,与(2)对应.题型二指数函数、对数函数、幂函数、一次函数模型的比较1.y1=2x,y2=x2,y3=log2x,当2<x<4时,有()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y2>y3>y1[解析]在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=l o g2x,故y2>y1>y3.2.下列各项是四种生意预期的收益y关于时间x的函数,从足够长远的角度看,更为有前途的生意是___.①y=10×1.05x;②y=20+x1.5;③y=30+lg(x-1);④y=50.[解析]结合三类函数的增长差异可知①的预期收益最大,故填①.3.当2<x<4时,2x,x2,log2x的大小关系是()A.2x>x2>log2x B.x2>2x>log2xC.2x>log2x>x2D.x2>log2x>2x[解析]解法一:在同一平面直角坐标系中分别画出函数y=log2x,y=x2,y=2x,在区间(2,4)上从上往下依次是y=x2,y=2x,y=log2x的图象,所以x2>2x>log2x.解法二:比较三个函数值的大小,作为选择题,可以采用特殊值代入法.可取x=3,经检验易知选B. 4.某地区植被被破坏,土地沙漠化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系较为近似的是()A.y=0.2x B.y=110(x2+2x)C.y=2x10D.y=0.2+log16x[解析]用排除法,当x=1时,排除B项;当x=2时,排除D项;当x=3时,排除A项.5.四人赛跑,假设他们跑过的路程f i(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是() A.f1(x)=x2B.f2(x)=4xC.f3(x)=log2x D.f4(x)=2x[解析]显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f4(x)=2x,故选D.6.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为()A B C D[解析]设该林区的森林原有蓄积量为a ,由题意可得ax =a (1+0.104)y ,故y =l o g 1.104x (x ≥1),所以函数y =f (x )的图象大致为D 中图象,故选D.7.某地为加强环境保护,决定使每年的绿地面积比上一年增长10%,那么从今年起,x 年后绿地面积是今年的y 倍,则函数y =f (x )的大致图象是( )[解析]设今年绿地面积为m ,则有my =(1+10%)x m ,∴y =1.1x ,故选D . 8.某工厂8年来某种产品的总产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速度越来越慢; ③第三年后这种产品停止生产; ④第三年后产量保持不变. 其中说法正确的序号是________.[解析]由t ∈[0,3]的图象联想到幂函数y =x α(0<α<1).反映了总产量C 随时间t 的变化而逐渐增长但速度越来越慢.由t ∈[3,8]的图象可知,总产量C 没有变化,即第三年后停产,所以②③正确.9.已知某工厂生产某种产品的月产量y 与月份x 满足关系y =a ·0.5x +b ,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为________万件.[解析]∵y =a ·0.5x +b ,且当x =1时,y =1,当x =2时,y =1.5,则有⎩⎪⎨⎪⎧ 1=a ×0.5+b ,1.5=a ×0.25+b ,解得⎩⎪⎨⎪⎧a =-2,b =2,∴y =-2×0.5x +2.当x =3时,y =-2×0.125+2=1.75(万件).10.画出函数f (x )=x 与函数g (x )=14x 2-2的图象,并比较两者在[0,+∞)上的大小关系.[解析]函数f (x )与g (x )的图象如图所示.根据图象易得:当0≤x <4时,f (x )>g (x );当x =4时,f (x )=g (x );当x >4时,f (x )<g (x ).11.函数f(x)=2x 和g(x)=x 3的图象如图所示.设两函数的图象交于点A(x 1,y 1),B(x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数. (2)结合函数图象,判断f(6),g(6)的大小.[解析] (1)C 1对应的函数为g(x)=x 3,C 2对应的函数为f(x)=2x .(2)因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x 1<2,9<x 2<10,所以x 1<6<x 2. 由图可知g(6)>f(6).12.函数f (x )=2x 和g (x )=2x 的图象如图所示,设两函数的图象交于点A (x 1,y 1),B (x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数;(2)结合函数图象,判断f ⎝⎛⎭⎫32与g ⎝⎛⎭⎫32,f (2 019)与g (2 019)的大小. [解析] (1)C 1对应的函数为g (x )=2x ,C 2对应的函数为f (x )=2x .(2)∵f (1)=g (1),f (2)=g (2),从图象上可以看出,当1<x <2时,f (x )<g (x ), ∴f ⎝⎛⎭⎫32<g ⎝⎛⎭⎫32;当x >2时,f (x )>g (x ),∴f (2 019)>g (2 019). 13.函数f (x )=lg x ,g (x )=0.3x -1的图象如图所示. (1)试根据函数的增长差异指出曲线C 1,C 2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f (x ),g (x )的大小进行比较). [解析] (1)C 1对应的函数为g (x )=0.3x -1,C 2对应的函数为f (x )=lg x .(2)当x <x 1时,g (x )>f (x );当x 1<x <x 2时,f (x )>g (x );当x >x 2时,g (x )>f (x );当x =x 1或x =x 2时,f (x )=g (x ).14.函数f (x )=1.1x,g (x )=ln x +1,h (x )=x 12的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a ,b ,c ,d ,e 为分界点).[解析]由指数爆炸、对数增长、幂函数增长的差异可得曲线C 1对应的函数是f (x )=1.1x ,曲线C 2对应的函数是h (x )=x 12,曲线C 3对应的函数是g (x )=ln x +1.由题图知,当x <1时,f (x )>h (x )>g (x );当1<x <e 时,f (x )>g (x )>h (x );当e <x <a 时,g (x )>f (x )>h (x );当a <x <b 时,g (x )>h (x )>f (x );当b <x <c 时,h (x )>g (x )>f (x );当c <x <d 时,h (x )>f (x )>g (x );当x >d 时,f (x )>h (x )>g (x ). 15.某国2016年至2019年国内生产总值(单位:万亿元)如下表所示:年份 2016 2017 2018 2019 x (年份代码) 0 1 2 3 生产总值y (万亿元)8.206 78.944 29.593 310.239 8(1)画出函数图象,猜想y 与x 之间的函数关系,近似地写出一个函数关系式; (2)利用得出的关系式求生产总值,与表中实际生产总值比较; (3)利用关系式预测2033年该国的国内生产总值. [解析] (1)画出函数图象,如图所示.从函数的图象可以看出,画出的点近似地落在一条直线上,设所求的函数关系式为y =kx +b (k ≠0). 把直线经过的两点(0,8.206 7)和(3,10.239 8)代入上式,解得k =0.677 7,b =8.206 7. ∴函数关系式为y =0.677 7x +8.206 7.(2)由得到的函数关系式计算出2017年和2018年的国内生产总值分别为0.677 7×1+8.206 7=8.884 4(万亿元),0.677 7×2+8.206 7=9.562 1(万亿元). 与实际的生产总值相比,误差不超过0.1万亿元.(3)2033年,即x =17时,由(1)得y =0.677 7×17+8.206 7=19.727 6, 即预测2033年该国的国内生产总值约为19.727 6万亿元.题型三函数模型的选择问题1.某人投资x元,获利y元,有以下三种方案.甲:y=0.2x,乙:y=log2x+100,丙:y=1.005x,则投资500元,1 000元,1 500元时,应分别选择________方案.[解析][将投资数分别代入甲、乙、丙的函数关系式中比较y值的大小即可求出.答案乙、甲、丙2.在某实验中,测得变量x和变量y之间对应数据,如表.x 0.500.99 2.01 3.98y -1.010.010.98 2.00则x,y最合适的函数是()A.y=2x B.y=x2-1C.y=2x-2 D.y=log2x[解析]根据x=0.50,y=-1.01,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B、C;将各数据代入函数y=l o g2x,可知满足题意.故选D.3.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=log a(t+1)来刻画h与t的关系,你认为哪个符合?并预测第8年的松树高度.t(年)12345 6h(米)0.61 1.3 1.5 1.6 1.7 [解析]据表中数据作出散点图如图:由图可以看出用一次函数模型不吻合,选用对数型函数比较合理.将(2,1)代入到h=log a(t+1)中,得1=log a3,解得a=3.即h=log3(t+1).当t=8时,h=log3(8+1)=2,故可预测第8年松树的高度为2米.4.某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且资金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但资金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=log5x,y=1.02x,其中哪个模型符合该校的要求?[解析]借助工具作出函数y=3,y=0.2x,y=log5x,y=1.02x的图象(如图所示).观察图象可知,在区间[5,60]上,y=0.2x,y=1.02x的图象都有一部分在直线y=3的上方,只有y=log5x的图象始终在y=3和y =0.2x的下方,这说明只有按模型y=log5x进行奖励才符合学校的要求.5.芦荟是一种经济作物,可以入药,有美容、保健的功效.某人准备栽培并销售芦荟,为了解行情,进行市场调研.从4月1日起,芦荟的种植成本Q(单位:元/千克)与上市时间t(单位:天)的数据情况如下表:(1)的变化关系的函数式:①Q =at +b ,②Q =at 2+bt +c ,③Q =a·b t ,④Q =alog b t ;(2)利用你选择的函数,求芦荟种植成本最低时的上市时间及最低种植成本.[解析] (1)由表中所提供的数据可知,反映芦荟种植成本Q 与上市时间t 的变化关系的函数不可能是常数函数,故用函数Q =at +b ,Q =a·b t ,Q =alog b t 中的任意一个来反映时都应有a ≠0,而上面三个函数均为单调函数,这与表格提供的数据不符合,所以应选用二次函数Q =at 2+bt +c 进行描述.将表格所提供的三组数据分别代入函数Q =at 2+bt +c ,得⎩⎪⎨⎪⎧15.0=2500a +50b +c ,10.8=12100a +110b +c ,15.0=62500a +250b +c ,解得⎩⎪⎨⎪⎧a =12000,b =-320,c =854.所以反映芦荟种植成本Q 与上市时间t 的变化关系的函数为Q =12000t 2-320t +854.故选②.(2)当t =150(天)时,芦荟种植成本最低,为Q =12000×1502-320×150+854=10(元/千克).6.某债券市场发行三种债券,A 种面值为100元,一年到期本息和为103元;B 种面值为50元,半年到期本息和为51.4元;C 种面值为100元,但买入价为97元,一年到期本息和为100元.作为购买者,分析这三种债券的收益,如果只能购买一种债券,你认为应购买哪种?[解析]A 种债券的收益是每100元一年到期收益3元;B 种债券的半年利率为51.4-5050,所以100元一年到期的本息和为100⎝⎛⎭⎪⎫1+51.4-50502≈105.68(元),收益为5.68元;C 种债券的利率为100-9797,100元一年到期的本息和为100⎝⎛⎭⎪⎫1+100-9797≈103.09(元),收益为3.09元.通过以上分析,购买B 种债券.7.某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中平均每生产一件产品有0.5立方米污水排出,为了净化环境,工厂设计两套方案对污水进行处理,并准备实施.方案一:工厂的污水先净化处理后再排出,每处理1立方米污水所用原料费2元,并且每月排污设备损耗费为30000元;方案二:工厂将污水排到污水处理厂统一处理,每处理1立方米污水需付14元的排污费,问: (1)工厂每月生产3000件产品时,你作为厂长,在不污染环境,又节约资金的前提下应选择哪种方案?通过计算加以说明;(2)若工厂每月生产6000件产品,你作为厂长,又该如何决策呢?[解析] 设工厂每月生产x 件产品时,选择方案一的利润为y 1,选择方案二的利润为y 2,由题意知y 1=(50-25)x -2×0.5x -30000=24x -30000. y 2=(50-25)x -14×0.5x =18x.(1)当x =3000时,y 1=42000,y 2=54000,∵y 1<y 2,∴应选择方案二处理污水. (2)当x =6000时,y 1=114000, y 2=108000,∵y 1>y 2,∴应选择方案一处理污水.8.某鞋厂从今年1月份开始投产,并且前四个月的产量分别为1万件、1.2万件、1.3万件、1.37万件.由于产品质量好,款式受欢迎,前几个月的产品销售情况良好.为了使推销员在推销产品时,接受订单不至于过多或过少,需要估测以后几个月的产量.以这四个月的产品数据为依据,用一个函数模拟产品的月产量y 与月份x 的关系,模拟函数有三个备选:①一次函数f (x )=kx +b (k ≠0),②二次函数g (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0),③指数型函数m (x )=ab x +c (a ,b ,c 为常数,a ≠0,b >0,b ≠1).厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程.厂里也暂时不准备增加设备和工人,假如你是厂长,将会采用什么办法估计以后几个月的产量?[解析]将已知前四个月的月产量y 与月份x 的关系记为A (1,1),B (2,1.2),C (3,1.3),D (4,1.37). ①对于一次函数f (x )=kx +b (k ≠0),将B ,C 两点的坐标代入,有f (2)=2k +b =1.2,f (3)=3k +b =1.3, 解得k =0.1,b =1,故f (x )=0.1x +1.所以f (1)=1.1,与实际误差为0.1,f (4)=1.4,与实际误差为0.03.②对于二次函数g (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0),将A ,B ,C 三点的坐标代入,得⎩⎪⎨⎪⎧a +b +c =1,4a +2b +c =1.2,9a +3b +c =1.3,解得⎩⎪⎨⎪⎧a =-0.05,b =0.35,c =0.7,故g (x )=-0.05x 2+0.35x +0.7.所以g (4)=-0.05×42+0.35×4+0.7=1.3,与实际误差为0.07.③对于指数型函数m (x )=ab x +c (a ,b ,c 为常数,a ≠0,b >0,b ≠1),将A ,B ,C 三点的坐标代入,得⎩⎪⎨⎪⎧ab +c =1,ab 2+c =1.2,ab 3+c =1.3,解得⎩⎪⎨⎪⎧a =-0.8,b =0.5,c =1.4.故m (x )=-0.8×0.5x +1.4.所以m (4)=-0.8×0.54+1.4=1.35,与实际误差为0.02.比较上述3个模拟函数的优劣,既要考虑到剩余点的误差值最小,又要考虑生产的实际问题,比如增产的趋势和可能性,可以认为m (x )最佳,一是误差值最小,二是由于新建厂,开始随着工人技术、管理效益逐渐提高,一段时间内产量明显上升,但到一定时期后,设备不更新,那么产量必然要趋于稳定,而m(x)恰好反映了这种趋势,因此选用m(x)=-0.8×0.5x+1.4来估计以后几个月的产量比较接近客观实际.。
几种不同类型的函数模型一 函数模型及数学建模函数模型是解决实际问题的重要数学模型,将实际问题中的变量关系用函数表现出来,然后对函数进行研究得出相关数学结论,并依此解决实际问题.那么如何建立数学模型呢?可按以下步骤完成.(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学结论还原为实际问题.建模过程示意图:二 几种常见的函数模型1.一次函数模型:f(x)=kx +b(k 、b 为常数,k ≠0);2.反比例函数模型:f(x)=k x+b(k 、b 为常数,k ≠0); 3.二次函数模型:f(x)=ax 2+bx +c(a 、b 、c 为常数,a ≠0);4.指数函数模型:f(x)=ab x +c(a 、b 、c 为常数,a ≠0,b>0,b ≠1);5.对数函数模型:f(x)=mlog a x +n(m 、n 、a 为常数,a>0,a ≠1);6.幂函数模型:f(x)=ax n +b(a 、b 、n 为常数,a ≠0,n ≠1);7.分段函数模型:这个函数模型实则是以上两种或多种模型的综合,因此应用也十分广泛.三 指、对、幂三种函数模型增长速度的比较正确认识“直线上升”、“指数爆炸”、“对数增长”和幂函数的增长差异.直线上升反映了一次函数(一次项系数大于零)的增长趋势,其增长速度均匀(恒为常数);在区间(0,+∞)上,尽管函数y =a x (a>1),y =log a x(a>1)和y =x n (n>0)都是增函数,但它们的增长速度不在同一个“档次”上. 随着x 的增大,y =a x (a>1)的增长速度越来越快,会超过并远远大于y =x n (n>0)的增长速度,而y =log a x(a>1)的增长速度则会越来越慢,因此总会存在一个x 0,当x>x 0时,就有log a x<x n <a x ,此式揭示了在充分远处三种函数的变化规律.总结:(1)在区间(0,+∞)上,函数y=a x (a>1),y=log a x(a>1)和y=x n (n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上;(2)随着x 的增大,y=a x (a>1)的增长速度越来越快,会超过并远远大于y=x n (n>0)的增长速度,表现为指数爆炸;(3)随着x 的增大,y=log a x(a>1)的增长速度会越来越慢;(4)随着x 的增大,y=a x (a>1)的图象逐渐表现为与y 轴平行一样,而y=log a x(a>1)的图象逐渐表现为与x 轴平行一样;(5)当a>1,n>0时,总会存在一个x 0,当x>x 0时,有a x >x n >log a x ;(6)当0<a<1,n<0时,总会存在一个x 0,当x>x 0时,有log a x<x n <a x一次函数模型例1 为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”和“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y 1(元)、y 2(元)的关系分别如图(1)、图(2)所示.图(1) 图(2)(1)分别求出通话费y 1,y 2与通话时间x 之间的函数关系式;(2)请帮助用户计算,在一个月(30天)内使用哪种卡便宜.思路点拨:由题目可知函数模型为直线型,可先用待定系数法求出解析式,然后再进行函数值大小的比较.解:(1)由图象可设y 1=k 1x +29,y 2=k 2x ,把点B(30,35),C(30,15)分别代入y 1,y 2得k 1=15,k 2=12.∴y 1=15x +29(x≥0),y 2=12x(x≥0).(2)令y 1=y 2,即15x +29=12x ,则x =9623.当x =9623时,y 1=y 2,两种卡收费一致;当x<9623时,y 1>y 2,即便民卡便宜;当x>9623时,y 1<y 2,即如意卡便宜. 函数的图象是表示函数的三种方法之一,正确识图、用图、译图是解决函数应用题的基本技能和要求.本题由于过原点的直线是正比例函数图象,因此运用了待定系数法求得一次函数解析式,然后利用函数解析式解决了实际问题.借助函数图象表达题目中的信息,读懂图象是关键.例2 一个报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)内有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进报纸的份数都相同,问应该从报社买进多少份才能使每月所获得的利润最大?并计算每月最多能获得的利润.解:设每天从报社买进设每月所获利润为y ∵y=0.8x +550在[250,400]上是增函数,∴当x =400时,y 取得最大值870.即每天从报社买进400份报纸时,每月获得的利润最大,最大利润为870元. 二次函数模型例3 以100元/件的价格购进一批羊毛衫,以高于进价的相同价格出售.羊毛衫的销售有淡季与旺季之分.标价越高,购买人数越少.我们称刚好无人购买时的最低标价为羊毛衫的最高价格.某商场经销某品牌的羊毛衫,无论销售淡季还是旺季,进货价都是100元/件.针对该品牌羊毛衫的市场调查显示:①购买该品牌羊毛衫的人数是标价的一次函数;②该品牌羊毛衫销售旺季的最高价格是淡季最高价格的32倍;③在销售旺季,商场以140元/件价格销售时能获取最大利润.(1)分别求出该品牌羊毛衫销售旺季的最高价格与淡季的最高价格;(2)在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为多少?思路点拨:首先用标价x 表示出购买人数和旺季价格,进而可表示出利润函数,再利用函数关系解决相关问题.解:(1)设在旺季销售时羊毛衫的标价为x 元/件,购买人数为kx +b(k<0),则旺季的最高价格为-b k元/件,利润函数L(x)=(x -100)(kx +b)=kx 2-(100k -b)x -100b ,x∈[100,-b k ].当x =100k -b 2k =50-b 2k时,L(x)最大.由题意知50-b 2k =140,解得-b k =180.即旺季的最高价格是180(元/件),则淡季的最高价格是180×23=120(元/件).(2)设在淡季销售时羊毛衫的标价为t 元/件,购买人数为mt +n(m<0),则淡季的最高价格为-n m=120(元/件),即n =-120m ,利润函数L(t)=(t -100)(mt -120m)=m(t -110)2-100m ,t∈[100,120].当t =110时,L(t)最大.所以,在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为110元/件.二次函数模型是初等数学阶段研究的最为广泛的多项式函数,由于具有二次函数、二次方程、二次不等式、二次曲线等四个“二次”互为关联的重要特征,因此在应用型问题中是最为重要的模型.此外作为一个考点,由于二次函数涉及函数单调性、区间最值等诸多方面,因此有理由相信,今后这类试题仍将是重点.本题最为重要的特点是逆向运用二次函数最值问题,通过旺季最值的取得来获得参变量之间的关系进而对淡季羊毛衫的价格作出判断与预测.这种方法值得去关注.指数函数模型例4 按复利计算利率的一种储蓄,本金为a ,每期利率为r ,设本利和为y ,存期为x ,写出本利和y 随存期x 变化的函数式.如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少?思路点拨:复利是计算利息的一种方法,即把前一期的利息和本金加在一起作本金,再计算下一期的利息 解:已知本金为a 元.1期后的本利和为y 1=a +a×r=(1+r)a ;2期后的本利和为y 2=a(1+r)+a(1+r)r =a(1+r)2;3期后的本利和为y 3=a(1+r)3;…x 期后的本利和为y =a(1+r)x .将a =1000(元),r =2.25%,x =5代入上式得y =1000×(1+2.25%)5=1000×(1.0225)5≈1117.68(元).故复利函数式为y =a(1+r)x,5期后的本利和为1117.68元.在实际问题中,常常遇到有关平均增长率的问题,如果原来产值的基础数为N ,平均增长率为P ,则对于时间x 的总产值y ,可以用公式y =N(1+P)x 来表示,解决平均增长率的问题时要用到这个函数式.例5 光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y.(1)写出y 关于x 的函数关系式;(2)至少通过多少块玻璃后,光线强度减弱到原来的13以下?(lg 3≈0.4771) 解:(1)y =a(1-10%)x (x∈N *)(2)∵y≤13a ,∴a(1-10%)x ≤13a ,∴0.9x ≤13,x≥log 0.913=-lg 32 lg 3-1≈10.4,∴x =11.对数函数模型例6 燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log 2Q 10,单位是m/s ,其中Q 表示燕子的耗氧量. (1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?思路点拨:该问题已经给出了函数模型,故赋值后可求出Q 的值,进而求出v 的值.解:(1)由题知,当燕子静止时,它的速度v =0,代入题给公式可得:0=5log 2Q 10,解得Q =10.即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15(m/s). 即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.直接以对数函数为模型的应用题不是很多,此类问题一般是先给出对数函数模型,利用对数运算性质求解. 例7 某中学的研究性学习小组为考察一个小岛的湿地开发情况,从某码头乘汽艇出发,沿直线方向匀速开往该岛,靠近岛时,绕小岛环行两周后,把汽艇停靠岸边,上岸考察,然后又乘汽艇沿原航线提速返回.设t 为出发后的某一时刻,S 为汽艇与码头在时刻t 的距离,下列图象中能大致表示S =f(t)的函数关系的为( C )解析:当汽艇沿直线方向匀速开往该岛时,S =vt ,图象为一条线段;当环岛两周时,S 两次增至最大,并减少到与环岛前的距离S 0;上岛考察时,S =S 0; 返回时,S =S 0-vt ,图象为一条线段.所以选C.例8 用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是( B ) A 3 B 4 C 5 D 6解析:设至少要洗x 次,则(1-34)x ≤1100,所以x≥1lg2≈3.32,因此至少要洗4次. 例9 函数y =f(x)与y =g(x)的图象如图:则函数y =f(x)·g(x)的图象可能是( A )解析:明确函数图象在x 轴上下方与函数值符号改变的关系,数值相乘“同号为正、异号为负”.∵函数y =f(x)·g(x)的定义域是函数y =f(x)与y =g(x)的定义域的交集(-∞,0)∪(0,+∞),图象不经过坐标原点,故可以排除C 、D.由于当x 为很小的正数时f(x)>0且g(x)<0,故f(x)·g(x)<0.故选A.例 10 下列函数中,随x 值的增大,增长速度最快的是( D )(A)y =50x(x∈Z) (B)y=1000x (C)y =0.4×2x -1 (D)y =110000·e x解析:指数“爆炸式”增长,y =0.4×2x -1和y =110000·e x 虽然都是指数型函数,但y =110000·e x 的底数e 较大些,增长速度更快.例11 把长为12厘米的细铁丝截成两段,各自围成一个正三角形,求这两个正三角形面积之和的最小值解析:设一个正三角形的边长为x(cm),则另一个正三角形的边长为12-3x 3=4-x(cm),两个正三角形的面积和为S =34x 2+34(4-x)2=32[(x -2)2+4](0<x <4).当x =2(cm)时,S min =23(cm 2). 例12 当2<x<4时,2x ,x 2,log 2x 的大小关系是( B )(A)2x >x 2>log 2x (B)x 2>2x >log 2x (C)2x >log 2x>x 2 (D)x 2>log 2x>2x解析:法一:在同一平面直角坐标系中分别画出函数y =log 2x ,y =x 2,y =2x ,在区间(2,4)上从上往下依次是y =x 2,y =2x ,y =log 2x 的图象,所以x 2>2x >log 2x.法二:比较三个函数值的大小,作为选择题,可以采用特殊值代入法.可取x =3,经检验易知选B. 例13 已知函数的图象如图所示,试写出它的一个可能的解析式__________________.解:可由图象的两点特征去确定.第一点:过两定点(0,1),(10,3).第二点:增长情况.答案:y =lg(99100x 2+1)+1(x≥0)(答案不唯一)例14 奇瑞曾在2009年初公告:2009年生产目标定为39.3万辆;而奇瑞董事长极力表示有信心达成这个生产目标,并在09年实现更为平衡的增长.我们不妨来看看近三年奇瑞的政绩吧:2006年,奇瑞汽车年销量8万辆;2007年,奇瑞汽车年销量18万辆;2008年,奇瑞汽车年销量30万辆;如果我们分别将06,07,08,09定义为第一,二,三,四年.现在你有两个函数模型:二次函数模型f(x)=ax 2+bx +c(a≠0),指数函数模型g(x)=a·b x +c(a≠0,b>0,b≠1),哪个模型能更好地反映奇瑞公司年销量y 与年份x 的关系?解:建立年销量y 与年份x 的函数,可知函数必过点(1,8),(2,18),(3,30).(1)构造二次函数模型f(x)=ax 2+bx +c(a≠0),将点坐标代入,可得⎩⎪⎨⎪⎧ a +b +c =8,4a +2b +c =18,9a +3b +c =30,解得a =1,b =7,c =0,则f(x)=x 2+7x ,故f(4)=44,与计划误差为4.7. (2)构造指数函数模型g(x)=a·b x +c(a≠0,b >0,b≠1),将点坐标代入,可得⎩⎪⎨⎪⎧ ab +c =8,ab 2+c =18,ab 3+c =30,解得a =1253,b =65,c =-42,则g(x)=1253·(65)x -42,故g(4)=1253·(65)4-42=44.4,与计划误差为5.1. 由(1)(2)可得,f(x)=x 2+7x 模型能更好地反映奇瑞公司年销量y 与年份x 的关系.例15 近年来,太阳能技术运用的步伐日益加快.2002年全球太阳能电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳能电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳能电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳能电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳能电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?解:(1)由已知得2003,2004,2005,2006年太阳能电池的年生产量的增长率依次为36%,38%,40%,42%.则2006年全球太阳能电池的年生产量为670×1.36×1.38×1.40×1.42≈2499.8(兆瓦).(2)设太阳能电池的年安装量的平均增长率为x ,则+4+4≥95%,解得x≥0.615. 因此,这四年中太阳能电池的年安装量的平均增长率至少应达到61.5%.例16 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。