人教版七年级数学下册第五章第三节命题、定理、证明习题(含答案) (74)
- 格式:docx
- 大小:58.56 KB
- 文档页数:10
5.3平行线的性质5.3.2命题、定理、证明1.理解命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;(重点)2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对命题举反例.(难点)一、情境导入2015年10月,屠呦呦因发现青蒿素治疗疟疾的新疗法获诺贝尔生理学或医学奖.屠呦呦是第一位获得诺贝尔科学奖项的中国本土科学家、第一位获得诺贝尔生理医学奖的华人科学家.青蒿素是从植物黄花蒿茎叶中提取的有过氧基团的倍半萜内酯药物.其对鼠疟原虫红内期超微结构的影响,主要是疟原虫膜系结构的改变,该药首先作用于食物泡膜、表膜、线粒体、内质网,此外对核内染色质也有一定的影响.青蒿素的作用方式主要是干扰表膜-线粒体的功能.可能是青蒿素作用于食物泡膜,从而阻断了营养摄取的最早阶段,使疟原虫较快出现氨基酸饥饿,迅速形成自噬泡,并不断排出虫体外,使疟原虫损失大量胞浆而死亡.要读懂这段报道,你认为要知道哪些名称和术语的含义?二、合作探究探究点一:命题的定义与结构【类型一】命题的判断下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线解析:根据命题的定义,看其中哪些选项是判断句,其中只有D选项不是判断句.故选D.方法总结:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.【类型二】把命题写成“如果……那么……”的形式把下列命题写成“如果……那么……”的形式.(1)内错角相等,两直线平行;(2)等角的余角相等.解:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(2)如果两个角是相等的角,那么它们的余角相等.方法总结:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.【类型三】命题的条件和结论写出命题“平行于同一条直线的两条直线平行”的条件和结论.解析:先把命题写成“如果……那么……”的形式,再确定条件和结论.解:把命题写成“如果……那么……”的形式:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以命题的条件是“两条直线都与第三条直线平行”,结论是“这两条直线也互相平行”.方法总结:每一个命题都一定能用“如果……那么……”的形式来叙述.在“如果”后面的部分是“条件”,在“那么”后面的部分是“结论”.探究点二:真命题与假命题下列命题中,是真命题的是()A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=0解析:选项A中,a·b>0可得a、b同号,可能同为正,也可能同为负,是假命题;选项B中,a·b<0可得a、b异号,所以错误,是假命题;选项C中,a·b=0可得a、b 中必有一个字母的值为0,但不一定同时为零,是假命题;选项D中,若a·b=0,则a=0或b=0或二者同时为0,是真命题.故选D.方法总结:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.探究点三:证明与举反例 【类型一】 命题的证明求证:两条直线平行,一组内错角的平分线互相平行.解析:按证明与图形有关的命题的一般步骤进行.要证明两条直线平行,可根据平行线的判定方法来证明.解:如图,已知AB ∥CD ,直线AB ,CD 被直线MN 所截,交点分别为P ,Q ,PG 平分∠BPQ ,QH 平分∠CQP ,求证:PG ∥HQ .证明:∵AB ∥CD (已知),∴∠BPQ =∠CQP (两直线平行,内错角相等).又∵PG 平分∠BPQ ,QH 平分∠CQP (已知),∴∠GPQ =12∠BPQ ,∠HQP =12∠CQP (角平分线的定义), ∴∠GPQ =∠HQP (等量代换),∴PG ∥HQ (内错角相等,两直线平行).方法总结:证明与图形有关的命题时,正确分清命题的条件和结论是证明的关键.应先结合题意画出图形,再根据图形写出已知与求证,然后进行证明.【类型二】 举反例举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab =0,则a +b =0.解析:分清题目的条件和结论,所举的例子满足条件但不满足结论即可.解:(1)两条直线平行形成的内错角,这两个角不是对顶角,但是它们相等;(2)当a =5,b =0时,ab =0,但a +b ≠0.方法总结:举反例时,所举的例子应当满足题目的条件,但不满足题目的结论.举反例时常见的几种错误:①所举例子满足题目的条件,也满足题目的结论;②所举例子不满足题目的条件,但满足题目的结论;③所举例子不满足题目的条件,也不满足题目的结论.三、板书设计命题⎩⎪⎨⎪⎧概念结构真、假命题证明与举反例本节课通过命题及其证明的学习,让学生感受到要说明一个定理成立,应当证明;要说明一个命题是假命题,可以举反例.同时让学生感受到数学的严谨,初步养成学生言之有理、落笔有据的推理习惯,发展初步的演绎推理能力.。
第三课青春的证明 3.2青春有格一、单项选择题:1. 青春,我们敢想敢做,但青春并不意味着放纵,也要懂得选择。
下列有关“选择”的说法不正确的是( ) A. 只要自己愿意,就可作出各种选择 B. “羞恶之心”是我们明确行为选择的理由C. 我们要树立底线意识,违背道德或法律的行为坚决不做D. 要独立思考,明辨是非善恶,不盲目从众,作出正确的选择2. “世界那么大,我想去看看”,但世界又是纷繁复杂的,美丑、善恶交织在一起,这就要求我们“行己有耻”。
引导我们辨别是非、做出正确选择的主要因素是( )A. 恻隐之心B. 辞让之心C. 是非之心D. 羞恶之心3. 很多人觉得自己计划完不成,拖延,生活中养成种种恶习的根源在于自控力不强。
下列增强自控力的合理建议是( )①每天坚持做一些自己力所能及的事情①认真记录一些自己平时不关注的事情①尝试不做某些事情,纠正自己的行为①拒绝一切娱乐活动,专注提高学习成绩A. ①②③B. ①②④C. ①③④D. ②③④4. 后汉东莱太守杨震经过管辖地昌邑县时,县令王密送去十金,并说“暮夜无知者”。
杨震严词拒受,说:“天知,地知,你知,我知,何谓无知?”人们因此称他为“四知太守”。
杨震值得我们当代人学习的品质是( ) A. 自信,要相信自己的能力 B. 自爱,不做有损人格的事C. 自强,有不断进取的精神D. 自负,遇事有自己的主见5. “行己有耻”需要我们磨砺意志,拒绝不良诱惑,不断增强自控力。
我们要做到()①增强“我不要”的力量。
尝试不做某些事情,纠正自己的行为①增强“我想要”的力量。
每天坚持做一些自己未能做到的事情①加强自我监控。
认真记录一些自己平时不关注的事①面对挫折,半途而废A. ①①①B. ①①①C. ①①①D. ①①①6. “行己有耻”出自《论语·子路》。
春秋时期的孔子曾说:“行己有耻,使于四方,不辱君命,可谓士矣。
”下列行为中,没有做到“行己有耻”的是( )①拿别人的缺点、缺陷、姓名开玩笑②经常帮助同学,特别是身体残疾的同学③喜欢散播小道消息,专门讲同学的糗事④上课时给同学讲故事听,逗同学发笑A. ①①①B. ①①①C. ①①①D. ①①①7. 雨果说:“谁虚度了年华,青春就将褪色。
人教版七年级数学下册第五章第三节命题、定理、证明复习试题(含答案)命题“内错角相等”的题设是____________________,这个命题是_________命题(填“真”或“假”).【答案】如果两个角是内错角假【解析】分析:根据命题由题设与结论组成得到内错角相等”题设是两个角为内错角,结论是这两个角相等.这个命题不正确.详解:命题“内错角相等”题设是两个角为内错角,结论是这两个角相等.此命题为假命题.故答案为:两个角为内错角,假.点睛:本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误得命题叫假命题;经过推论论证得到的真命题称为定理.92.“两直线平行,同旁内角互补”是___命题(真、假)【答案】真【解析】分析:根据平行线的性质即可得出答案.详解:平行线的性质定理中有一条:两直线平行,同旁内角互补.故这个是真命题.点睛:本题主要考查的是平行线的性质,属于基础题型.平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.93.有下列说法:①无理数就是开方开不尽的数;②不带根号的数一定是有理数;③若点P(x,y)的坐标满足xy>0,且x+y<0,则点P在第三象限;④互为邻补角的两角的平分线互相垂直;⑤点到直线的距离指的是过点向直线作的垂线段。
其中不正确的说法有_________________ .(填序号)【答案】①②⑤【解析】分析:无理数是指无限不循环小数,包括开方开不尽的数和π;第一象限中点的坐标特征为(+,+),第二象限中点的坐标特征为(-,+),第三象限中点的坐标特征为(-,-),第四象限中点的坐标特征为(+,-).详解:①、无理数除了开方开不尽的数之外,还有一个特殊的数就是π,则错误;②、π是不带根号的数,但是是有理数,则错误;③和④正确;⑤、点到直线的距离是指过点向直线作的垂线段的长度,则错误;故本题的答案为①②⑤.点睛:本题主要考查的就是无理数的定义,点的象限,邻补角的性质以及点到直线的距离,属于基础题型.明确各定义是解决这个问题的关键所在.94.下列问题你能肯定的是(填“能”或“不能”):(1)钝角大于锐角:_____;(2)直线比线段长:_____;(3)多边形的外角和都是360°:_____;(4)明天会下雨:_____.【答案】能不能能不能【解析】(1)钝角大于锐角:能;(2)直线比线段长,直线没有长短:故不能;(3)多边形的外角和都是360°:能;(4)明天会下雨:不能,故答案为:(1). 能;(2). 不能;(3). 能;(4). 不能.三、解答题95.老师为了考察甲,乙两个同学的聪明程度,就对这两名同学说:“我这里有三顶帽子,一顶是红颜色的,两顶是兰颜色的,老师把你们的眼睛蒙上并给每人戴一顶帽子,去掉蒙布以后,你们只能通过看对方的帽子的颜色来猜自己所戴帽子的颜色.”说完,老师就按上述过程操作.当两人都去掉蒙布以后,甲发现乙迟迟不说自己帽子的颜色,便说出了自己帽子的颜色.同学们,你能猜出甲帽子的颜色是什么并说明理由吗?答:甲帽子颜色是:(填“红”或“兰”)理由是:【答案】甲的帽子是兰色;理由:若甲的帽子是红色,则乙立即可以判定自己的颜色;乙迟迟不说说明甲的帽子不是红色【解析】【分析】因为乙不能说出自己帽子的颜色,说明甲是戴兰帽子,还剩下一顶兰帽子和一顶红帽子,(如果甲戴红色帽子,还剩下2顶兰帽子,所以乙马上知道自己戴的是兰帽子).【详解】甲的帽子是兰色;理由:若甲的帽子是红色,则乙立即可以判定自己的颜色;乙迟迟不说说明甲的帽子不是红色.故答案为兰【点睛】本题考核知识点:简单推理. 解题关键点:学会分析推理.96.已知:如图,点D是△ABC内一点。
人教版七年级数学下册第五章第三节命题、定理、证明复习试题(含答案)下列命题的逆命题是假命题的是( )A.对顶角相等B.角平分线上的点到这个角的两边的距离相等C.如果a2=b2,那么a=b D.同旁内角互补,两直线平行【答案】A【解析】解:A.其逆命题是“相等的角是对顶角”,错误;B.其逆命题是“到这个角的两边的距离相等的点在角平分线上”,正确;C.其逆命题是“如果a=b或a+b=0,那么a2=b2”,正确;D.其逆命题是“两直线平行,同旁内角互补”,正确;故选A.22.用反证法证明“三角形中最多有一个直角或钝角”,第一步应假设() A.三角形中至少有一个直角或钝角B.三角形中至少有两个直角或钝角C.三角形中没有直角或钝角D.三角形中三个角都是直角或钝角【答案】B【解析】解:根据反证法的步骤,则可假设为三角形中至少有两个直角或钝角.故选B.23.如下图,在下列条件中,能判定AB//CD的是( )A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4【答案】C【解析】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD∠BC,由∠1=∠4,得到AB∠CD.故选C.24.平面上三条直线两两相交最多能构成对顶角的对数是().A.7 B.6 C.5 D.4【答案】B【解析】根据题意可知平面上三条直线两两相交可有两种可能:由此可知对顶角的对数为6对.故选:B.25.下列语句正确的是().A.相等的角是对顶角B.相等的两个角是邻补角C.对顶角相等D.邻补角不一定互补,但可能相等【答案】C【解析】根据对顶角的概念,可知相等的角不一定是对顶角,故不正确;根据邻补角的概念,可知相等的两个角不一定是邻补角,故不正确;根据对顶角的性质,对顶角相等,故正确;根据邻补角的概念,可知邻补角一定互补,故不正确.故选:C.26.下列命题是真命题的是()A.和为180°的两个角是邻补角;B.一条直线的垂线有且只有一条;C.点到直线的距离是指这点到直线的垂线段;D.两条直线被第三条直线所截,内错角相等,则同位角必相等。
人教版七年级数学下册第五章第三节命题、定理、证明复习试题(含答案)下列命题中,哪些是真命题?哪些是假命题?若是假命题,请举一反例.(1)互为邻补角的两角之和等于180°;(2)如果ab>0,那么a+b>0;(3)如果一个有理数既不是正数,也不是负数,那么它一定是0.【答案】⑴真命题;(2)假命题.反例:a=-1,b=-2;(3)真命题.【解析】【分析】(1)根据邻补角定义即可判断(1)的真假;(2)举反例说明即可;(3)根据有理数的分类即可判断(3)的真假.【详解】(1)根据邻补角的定义,得到“互为邻补角的两角之和等于180°”是真命题.(2)假命题.反例:a=﹣1,b=﹣2.(3)根据有理数分为正有理数、负有理数、0,得出“如果一个有理数既不是正数,也不是负数,那么它一定是0”是真命题.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果…那么…的形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.72.指出下列命题的题设和结论.(1)如果a+b=0,那么a=b=0;(2)如果a=b,那么a=b;(3)同旁内角互补,两直线平行.【答案】答案见解析【解析】【分析】每一个命题都一定能用如果…那么…的形式来叙述.如果前面的内容是题设,那么后面的内容是结论.【详解】(1)题设:a+b=0.结论:a=b=0.(2)题设:a=b.结论:a=b.(3)题设:同旁内角互补.结论:两直线平行.【点睛】本题考查了命题与定理,命题由题设和结论两部分组成,找题设和结论的关键是会把命题写成如果…那么…的形式.73.写出下列命题的逆命题,并判断这对命题的真假.(1)三边对应相等的两个三角形全等;(2)若a=b,则a2=b2;(3)若∠α+∠β=180°,则∠α与∠β至少有一个是钝角.【答案】(1)逆命题:全等三角形的对应边相等;原命题和逆命题都是真命题;(2)逆命题:若a2=b2,则a=b;原命题是真命题,逆命题是假命题;(3)逆命题:若∠α与∠β中至少有一个是钝角,则∠α+∠β=180°;原命题和逆命题都是假命题.【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,把四个选项中的命题的结论与条件互换可得到逆命题,然后利用全等三角形的判定与性质、反例判断各命题的真假即可.【详解】(1)逆命题:全等三角形的对应边相等;原命题和逆命题都是真命题;(2)逆命题:若a2=b2,则a=b;原命题是真命题,逆命题是假命题,如21-()=21,-1≠1;(3) 逆命题:若∠α与∠β中至少有一个是钝角,则∠α+∠β=180°;原命题是假命题,因为当∠α=∠β=90°,∠α与∠β都是直角时,∠α+∠β=180°;逆命题是假命题,如110°+80°=190°.【点睛】本题考查命题与定理.74.先把下列两个命题分别改写成“如果……那么……”的形式,再判断该命题是真命题还是假命题,如果是假命题,举出一个反例.(1)同旁内角互补,两直线平行;(2)一个角的补角一定是钝角.【答案】(1)见解析;(2)见解析.【解析】【分析】先弄清命题的题设与结论,然后根据要求进行改写即可.根据有关的性质与定理,即可判断命题的真假.(1)根据平行线的判定方法进行判断即可;(2)根据两个角的和为180度,举例说明即可.【详解】(1)如果两条直线被第三条直线所截得的同旁内角互补,那么这两条直线平行.是真命题.(2)如果一个角是另一个角的补角,那么这个角一定是钝角.是假命题.举反例不唯一,如:设∠1=60°,∠2=120°,∠1是∠2的补角,但∠1不是钝角.【点睛】本题考查了命题与定理,关键是掌握有关性质与定理,对命题的真假进行判断,正确的命题叫做真命题,错误的命题叫做假命题.75.将下列命题改写成“如果...那么...”形式,并判断命题的真假,若是假命题请举反例.(1)相等角是对顶角.(2)直角三角形的两个锐角互余.【答案】(1)见解析;(2)见解析【解析】【分析】先根据有关性质与定理,对命题的真假进行判断,如果是假命题,再举出反例即可.【详解】解:(1)如果两个角相等,那么这两个角是对顶角;假命题;反例:角平分线形成的两个角相等,但不是对顶角;(表述不唯一)(2)如果一个三角形是直角三角形,那么它的两锐角互余;真命题;【点睛】此题考查了命题与定理,关键是掌握有关性质与定理,对命题的真假进行判断,正确的命题叫真命题,错误的命题叫做假命题.76.判断下列命题的真假,若是假命题,请举出反例;若是真命题,请给出证明.①若a b >,则22a b >;②三个角对应相等的两个三角形全等.【答案】①见解析;②见解析【解析】【分析】①根据乘方法则举例即可;②根据全等三角形的概念、等边三角形的性质举例.【详解】①若a b >,则22a b >是假命题,例如:1a =-,2b =-,a b >,但22a b <;②三个角对应相等的两个三角形全等是假命题,例如:两个边长不相等的等边三角形不全等.【点睛】本题考查的是命题的真假判断,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.77.同学们知道:“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.”(1)请写出它的逆命题 ;该逆命题是一个 命题(填“真”或“假”)(2)若你的判断是真命题请写出证明过程(要求画图,并写出已知,求证).若是假命题,请说明理由.【答案】(1)在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半,真;(2)已知,在Rt △ABC 中,∠A =30°,∠ACB =90°.求证:BC =12AB . 【解析】【分析】(1)写出逆命题,并判断是真命题;(2)首先写出已知、求证,画出图形,借助等边三角形的判定和性质证明或借助三角形的外接圆证明.【详解】解:(1)原命题的逆命题为:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半,该逆命题是一个真命题;(2)已知,在Rt△ABC中,∠A=30°,∠ACB=90°.求证:BC=12AB.证明:证法一:如图1所示,延长BC到D,使CD=BC,连接AD,易证AD=AB,∠BAD=60°.∴△ABD为等边三角形,∴AB=BD,∴BC=CD=12AB,即BC=12AB.证法二:如图2所示,取AB的中点D,连接DC,有CD=12AB=AD=DB,∴∠DCA=∠A=30°,∠BDC=∠DCA+∠A=60°.∴△DBC为等边三角形,∴BC=DB=12AB,即BC=12AB.证法三:如图3所示,在AB上取一点D,使BD=BC,∵∠B=60°,∴△BDC为等边三角形,∴∠DCB=60°,∠ACD=90°﹣∠DCB=90°﹣60°=30°=∠A.∴DC=DA,即有BC=BD=DA=12 AB,∴BC=12 AB.证法四:如图3所示,作△ABC的外接圆⊙D,∠C=90°,AB为⊙O的直径,连DC,有DB=DC,∠BDC=2∠A=2×30°=60°,∴△DBC为等边三角形,∴BC=DB=DA=12AB,即BC=12AB.【点睛】本题考查了直角三角形30度角的性质和等边三角形的判定、互逆命题的定义,熟练掌握直角三角形30度角的性质的证明是关键.三、填空题78.阅读下列语句:①对顶角不相等;②今天天气很热!;③同位角相等;④画∠AOB的平分线OC;⑤这个角等于30°吗?在这些语句是,属于命题的是_______(填写序号).【答案】①③【解析】【分析】根据对一件事情做出判断的语句叫命题进行判断即可.【详解】解:根据命题的概念,知①③是命题;④⑤中,都没有作出判断,不是命题②是表示感受的句子,是感叹句,不是命题.故答案为①③.【点睛】本题考查了命题的概念,判断一件事情的语句,叫做命题.命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.79.将命题“全等三角形对应边上的中线相等”改写成“如果…那么…”的形式_____【答案】如果两个三角形全等,那么对应边上的中线相等【解析】【分析】“全等三角形对应边上的中线相等”的条件是:两个三角形全等,结论是:对应边上的中线相等.据此即可写出所求的形式.【详解】解:“全等三角形对应边上的中线相等”的条件是:两个三角形全等,结论是:对应边上的中线相等.则改写成“如果⋯那么⋯”的形式是:如果两个三角形全等,那么对应边上的中线相等.故答案是:如果两个三角形全等,那么对应边上的中线相等.【点睛】本题考查了命题的叙述,正确分清命题的条件和结论是把命题写成“如果…那么…”的形式的关键.80.能说明命题“若x2-x=0,则x=0”是假命题的一个反例为x= ________.【答案】1【解析】【分析】要证明一个命题是假命题只要举一个反例即可.【详解】解:当x=1时,x2-x=0也成立,所以证明命题“若x2-x=0,则x=0”是假命题的反例是:x=1;故答案为1【点睛】此题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题是假命题只要找到一个反例即可.。
人教版七年级数学下册第五章第三节命题、定理、证明复习试题(含答案)一、单选题1.下列命题是真命题的是()A.邻补角相等B.同位角相等C.两直线平行,同旁内角相等D.对顶角相等【答案】D【解析】【分析】根据邻补角的定义、平行线的性质、对顶角的性质判断即可.【详解】解:邻补角互补,A是假命题;两直线平行,同位角相等,B是假命题;两直线平行,同旁内角互补,C是假命题;对顶角相等,D是真命题;故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.下列各命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等【答案】C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选C.3.下列命题:①直角三角形的两个锐角互余;②同旁内角互补;③如果直线12l l.其中真命题的序号是()l l,直线23l l,那么13A.①②B.①③C.②③D.①②③【答案】B【解析】【分析】利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.【详解】解:①直角三角形的两个锐角互余,正确,是真命题;②两直线平行,同旁内角互补,故错误,是假命题;③如果直线12 l l ,直线23l l ,那 么13l l ,正确,是真命题; 故选:B .【点睛】本题主要考查了命题与定理,掌握命题与定理是解题的关键.4.下列命题中,真命题的个数有( )① 同一平面内,两条直线一定互相平行; ② 有一条公共边的角叫邻补角;③ 内错角相等. ④ 对顶角相等;⑤ 从直线外一点到这条直线的垂线段,叫做点到直线的距离.A .0个B .1个C .2个D .3个【答案】B【解析】【分析】【详解】解:①同一平面内两直线的位置关系有相交、平行、重合,故错误,不是真命题;②两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角互为邻补角,所以有一条公共边的角叫邻补角错误,不是真命题;③只有两条直线平行,内错角相等,所以只说内错角相等错误,不是真命题; ④对顶角相等是真命题;⑤从直线外一点到这条直线的垂线段,叫做点到直线的距离是假命题; 所以④为真命题;故选B .5.用反证法证明命题“a =,则0a ≥”时,第一步应假设( )Aa ≠ B .0a ≤C .0a <D .0a >【答案】C【解析】【分析】用反证法证明命题的真假,首先我们要假设命题的结论不成立,据此即可得出答案.【详解】∵用反证法证明命题的真假,首先我们要假设命题的结论不成立,∴反证法证明命题“a =,则0a ≥”时,第一步应假设0a <, 故选:C.【点睛】本题主要考查了反证法的运用,熟练掌握相关概念是解题关键.6.下列命题中,真命题是( )A .同位角相等B .平行于同一直线的两条直线互相平行C .两个锐角的和是锐角D .和为180°的两个角互为邻补角【答案】B【分析】直接利用锐角的定义以及互为补角的定义分别分析得出答案.【详解】解:A、两直线平行,同位角相等,故此选项是假命题,不合题意;B、平行于同一直线的两条直线互相平行,是真命题;C、两个锐角的和不一定是锐角,故此选项是假命题,不合题意;D、和为180°的两个角互为补角,故此选项是假命题,不合题意;故选:B.【点睛】此题主要考查了命题与定理,正确掌握相关性质是解题关键.7.下面说法正确的个数有()①若m>n,则22;②由三条线段首尾顺次相接所组成的图形叫做ma mb三角形;③有两个角互余的三角形一定是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A.1 个B.2 个C.3 个D.4 个【答案】A【解析】【分析】利用不等式的性质、三角形的定义、直角三角形的判定、正多边形的定义及钝角三角形的定义分别判断后即可确定正确的选项.解:①若a>b,当m=0时,22ma mb,故原说法错误;=②由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,故原说法错误;③有两个角互余的三角形一定是直角三角形,故原说法正确;④各边都相等,各角也相等的多边形是正多边形,故原说法错误;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故原说法错误;故选A.【点睛】本题主要考查了命题与定理,掌握命题与定理是解题的关键.8.下列选项中,可以用来说明命题“若22>”是假命题的反例是a b>,则a b()A.2,a=b=-2D.2,0==a b=-=C.3,a=b=-1 B.2,1a b【答案】B【解析】分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.详解:∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选B.点睛:本题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可.这是数学中常用的一种方法.9.下列选项中可以用来说明命题“若x 2>1,则x >1”是假命题的反例是( )A .x =1B .x =﹣1C .x =2D .x =﹣2【答案】D【解析】【分析】根据有理数的乘方法则、假命题的概念解答.【详解】解:2(2)41-=>, 21-<,∴当2x =-时,说明命题“若21x >,则1x >”是假命题,故选D .【点睛】本题考查的是命题的真假判断,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.下列命题中是假命题的是( )A .对顶角相等B .同旁内角互补C .两点确定一条直线D .垂线段最短 【答案】B【解析】【分析】根据平行线的性质、对顶角的性质、直线的概念、垂线段的性质定理判断.【详解】A、对顶角相等,本选项说法是真命题;B、两直线平行,同旁内角才互补,故本选项说法是假命题;C、两点确定一条直线,本选项说法是真命题;D、垂线段最短,本选项说法是真命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.。
人教版七年级数学下册第五章第三节命题、定理、证明复习试题(含答案)用反证法证明“四边形中至少有一个内角大于或等于90︒”时,应先假设( )A .有一个内角小于90︒B .每一个内角都大于90︒C .有一个内角小于或等于90︒D .每一个内角都小于90︒【答案】D【解析】【分析】至少有一个内角大于或等于90°的反面是每一个内角都小于90°,据此即可假设.【详解】解:用反证法证明“四边形中至少有一个内角大于或等于90︒”时,应先假设:每一个内角都小于90°.故选:D .【点睛】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.32.下列选项中a 的值,可以作为命题“a 2>4,则a >2”是假命题的反例是( )A .a 3=B .a 2=C .a 3=-D .a 2=-【答案】C【解析】【分析】根据要证明一个命题结论不成立,可以通过举反例的方法来证明一个命题是假命题,然后对选项一一判断,即可得出答案.【详解】解:用来证明命题“若a2>4,则a>2”是假命题的反例可以是:a=-3,∵(-3)2>4,但是a=-3<2,∴当a=-3是证明这个命题是假命题的反例.故选C.【点睛】此题主要考查了利用举反例法证明一个命题是假命题.掌握举反例法是解题的关键.33.下列说法正确的是()A.两锐角分别相等的两个直角三角形全等B.两条直角边分别相等的两直角三角形全等C.一个命题是真命题,它的逆命题一定也是真命题D.经过旋转,对应线段平行且相等【答案】B【解析】【分析】A,B利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C利用命题与定理进行分析即可,D.利用旋转的性质即可解答;【详解】A、两个锐角分别相等的两个直角三角形不一定全等,故A选项错误;B、根据SAS可得,两条直角边分别相等的两个直角三角形全等,故B选项正确;C、一个命题是真命题,它的逆命题不一定是真命题.故C选项错误;D、经过旋转,对应线段相等,故D选项错误;故选:B.【点睛】此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.34.为了传承中华文化,激发学生的爱国情怀,提高学生的文学素养,某学校初二(8)班举办了“乐知杯古诗词”大赛.现有小璟、小桦、小花三位同学进入了最后冠军的角逐.决赛共分为六轮,规定:每轮分别决出第1,2,3名(不并列),对应名次的得分都分别为a,b,c(a>b>c且a,b,c均为正整数);选手最后得分为各轮得分之和,得分最高者为冠军.下表是三位选手在每轮比赛中的部分得分情况,根据题中所给信息,下列说法正确的是()A.小璟可能有一轮比赛获得第二名B.小桦有三轮比赛获得第三名C.小花可能有一轮比赛获得第一名D.每轮比赛第一名得分a为5【答案】D【解析】【分析】先根据三人总得分共26+11+11=48,可得每一轮的得分a+b+c=8,再根据小桦的等分能够得出c=1,进而可得到第一二两轮的具体排名,然后在对a、b的值分情况讨论,然后再逐个排除即可求得a,b的值,从而求解即可【详解】解:∵三人总得分共26+11+11=48,∴每一轮的得分a+b+c=48÷6=8,则对于小桦来说,小桦剩余的第一、三、四轮的总分是11-8=3分,又∵a>b>c且a,b,c均为正整数,∴c≥1,∴小桦第一、三、四轮的得分均为1分,且c=1,∴小花第一、二、四轮的得分均为b,∵a+b+c=8,c=1,∴a+b =7,又∵a>b>c且a,b,c均为正整数,∴b=2时,a=5,或b=3时a=4,当b=2,a=5时,则小花剩余第三、五、六轮的总分是:11-2×3=5(分)结合小桦这几轮的得分情况可知,小花这三轮的得分分别是2,1,2,此时小璟这三轮的得分分别是5,5,5,则小璟六轮的具体得分分别是:5,1,5,5,5,5,共26分,符合题意当b=3,a=4时,则小花剩余第三、五、六轮的总分是:11-3×3=2(分)<3分,不符合综上所述,a=5,b=2,c=1,(D正确)小璟有五轮得第一名,一轮得第三名;(A错误)小桦有一轮得第一名,一轮得第二名,四轮得第三名;(B错误)小花有五轮得第二名,一轮得第三名(C错误)故选:D【点睛】本题考查了合情推理的问题,考查了推理论证能力,考查了化归与转化思想,审清题意是正确解题的关键,属于中档题.35.下列命题中,真命题的是()A.两条直线被第三条直线,同位角相等B.若a⊥b,b⊥c,则a⊥cC.点p(x,y),若y=0,则点P在x轴上D a,则a=﹣l【答案】C【解析】【分析】根据平行线的性质对A进行判断;根据平行线的判定方法对B进行判断;根据x轴上点的坐标特征对C进行判断;根据二次根式的性质对D进行判断.【详解】A、两条平行直线被第三条直线,同位角相等,所以A选项为假命题;B、在同一平面内,若a⊥b,b⊥c,则a∥c,所以B选项为假命题;C、点p(x,y),若y=0,则点P在x轴上,所以C选项为真命题;D=a,则a=0或a=1,所以D选项为假命题.故选:C.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.36.下列命题中正确的有()个①平分弦的直径垂直于弦;②经过半径的外端且与这条半径垂直的直线是圆的切线;③在同圆或等圆中,圆周角等于圆心角的一半;④平面内三点确定一个圆;⑤三角形的外心到三角形的各个顶点的距离相等.A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据垂径定理的推论对①进行判断;根据切线的判定定理对②进行判断;根据圆周角定理对③进行判断;根据确定圆的条件对④进行判断;根据三角形外心的性质对⑤进行判断.【详解】①平分弦(非直径)的直径垂直于弦,错误;②经过半径的外端且与这条半径垂直的直线是圆的切线,正确;③在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;④平面内不共线的三点确定一个圆,错误;⑤三角形的外心到三角形的各个顶点的距离相等,正确;故正确的命题有2个故答案为:B.【点睛】本题考查了判断命题真假的问题,掌握垂径定理的推论、切线的判定定理、圆周角定理、确定圆的条件、三角形外心的性质是解题的关键.37.下列是假命题的是()A.两点之间,线段最短B.过一点有且只有一条直线与已知直线垂直C.直角三角形的两个锐角互余D.两条直线被第三条直线所截,同位角相等【答案】D【解析】【分析】【详解】解:A、两点之间,线段最短,所以A选项为真命题;B、过一点有且只有一条直线与已知直线垂直,所以B选项为真命题;C、直角三角形的两个锐角互余,所以C选项为真命题;D、两条平行直线被第三条直线所截,同位角相等,所以D选项为假命题.故选D.【点睛】本题考查命题与定理38.下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.两个相邻的内角相等的梯形是等腰梯形C.一组对边平行,另一组对边相等的四边形是等腰梯形D.平行于等腰三角形底边的直线截两腰所得的四边形是等腰梯形【答案】D【解析】【分析】根据等腰梯形的判定定理即可判断出A、B、C、D选项是否正确,【详解】解析:对于A选项, 应为两条对角线相等的梯形是等腰梯形;对于B选项, 为同一底上的两个内角相等的梯形是等腰梯形;对于C选项,应为一组对边平行,另一组对边不平行且相等的四边形是等腰梯形;故选D.【点睛】本题主要考查等腰梯形的判定.等腰梯形的判定:(1)一组对边平行,另一组对边不平行且相等的四边形是等腰梯形;(2)对角线相等的梯形是等腰梯形;(3)两腰相等的梯形是等腰梯形;(4)同一底边上的两个底角相等的梯形是等腰梯形39.容器中有A,B,C 3种粒子,若相同种类的两颗粒子发生碰撞,则变成一颗B粒子;不同种类的两颗粒子发生碰撞,会变成另外一种粒子.例如,一颗A粒子和一颗B粒子发生碰撞则变成一颗C粒子.现有A粒子10颗,B 粒子8颗,C粒子9颗,如果经过各种两两碰撞后,只剩1颗粒子.给出下列结论:①最后一颗粒子可能是A粒子②最后一颗粒子一定是C粒子③最后一颗粒子一定不是B粒子④以上都不正确其中正确结论的序号是( ).(写出所有正确结论的序号)A .①B .②③C .③D .①③ 【答案】D【解析】【分析】将问题抽象为有理数的符号法则即可解决.【详解】解:③∵相同种类的两颗粒子发生碰撞,则变成一颗B 粒子;不同种类的两颗粒子发生碰撞,会变成另外一种粒子,∵设B 粒子为1,A 、C 粒子为-1,碰撞为乘法运算,∵()19811-⨯=-1,故最后一颗粒子一定不是B 粒子,∵③是正确的;①10颗A 粒子,8颗C 粒子,8颗B 粒子,同种粒子两两碰撞,得到13颗B 粒子,再所有B 粒子一一碰撞,得到一颗B 粒子,和剩下的1颗C 粒子碰撞,得到A 粒子,∵最后一颗粒子可能是A 粒子;∵①是正确的,②是错的.故选:D .【点睛】本题考查了有理数的符号法则,读懂题意是解题的关键.40.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A.三角形中有一个内角小于或等于60°B.三角形中有两个内角小于或等于60°C.三角形中有三个内角小于或等于60°D.三角形中没有一个内角小于或等于60°【答案】D【解析】【分析】熟记反证法的步骤,直接选择即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即假设三角形中没有一个内角小于或等于60°.故选:D.【点睛】此题主要考查了反证法的步骤,解此题关键要懂得反证法的意义及步骤.。
人教版七年级数学下册第五章第三节命题、定理、证明复习试题(含答案)下列命题,是真命题的是()A.同位角相等B.相等的角是同位角C.对顶角相等D.相等的角是对顶角【答案】C【解析】【分析】根据同位角和对顶角的概念判断即可.【详解】A、两直线平行,同位角相等,故错误;B、例如对顶角,故错误;C、正确;D、相等的角不一定是对顶角,故错误.故选C.【点睛】此题考查命题与定理,解题关键在于掌握各性质定理.52.下列命题正确的是()A.矩形对角线互相垂直B.方程214x==的解为14x xC.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【答案】D【解析】【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6-2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【详解】A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选D.【点睛】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.53.用三个不等式a b>,0ab>,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0 B.1 C.2 D.3【答案】D【解析】【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【详解】解:命题①,如果,0a b ab >>,那么11a b<. ∵a b >,∴0a b ->,∵0ab >,∴0a b ab ->,整理得11b a >,∴该命题是真命题.命题②,如果11,,a b a b><那么0ab >. ∵11,a b <∴110,0.b a a b ab --<<∵a b >,∴0b a -<,∴0ab >. ∴该命题为真命题.命题③,如果110,ab a b><,那么a b >. ∵11,a b <∴110,0.b a a b ab --<<∵0ab >,∴0b a -<,∴b a < ∴该命题为真命题.故,选D【点睛】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.54.给出下列4个命题:①同旁内角互补;②相等的角是对顶角;③等角的补角相等;④两直线平行,同位角相等.其中,假命题的个数为( )A .1B .2C .3D .4【答案】B【解析】【分析】根据平行线的判定方法对①进行判断;据对顶角的定义对②进行判断;根据平行线的性质对④进行判断;根据补角的定义对③进行判断.【详解】两直线平行,同旁内角互补,所以①错误;相等的角不一定是对顶角,所以②错误;等角的补角相等,所以③正确;两条平行直线被第三条直线所截,同位角相等,所以④正确;;故选B.【点睛】本题主要考查了平行线的性质及判定,对顶角的性质等,熟练掌握各性质定理是解答此题的关键.55.下列语句不是命题的是( )A.熊猫没有翅膀B.点到直线的距离 C.对顶角相等D.小明是七年级学生【答案】B【解析】【分析】根据命题的定义分别进行判断.【详解】熊猫没有翅膀、对顶角相等和小明是七年级学生都是命题,而点到直线的距离为一个名称,它不是命题.故选B.【点睛】本题考查了命题的概念,正确理解的定义是正确解题的关键.56.下列命题中,是真命题的是()A.同位角相等B.相等的角是对顶角C.有且只有一条直线与已知直线垂直D.互为补角的两个角的和为180°【答案】D【解析】【分析】利用平行线的性质、对顶角的定义、垂线的性质、补角的定义分别对每个选项进行判断后即可确定正确的选项.【详解】解:A.只有两直线平行同位角才相等,故错误,是假命题;B.和相等的角不一定是对顶角,故错误,是假命题;C. 过一点有且只有一条直线与已知直线垂直,故错误,是假命题;D. 互为补角的两个角的和为180°,正确,是真命题.故选D.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.57.下列命题中,属于真命题的是( )A.同位角互补B.多边形的外角和小于内角和C.平方根等于本身的数是1 D.同一平面内,垂直于同一条直线的两条直线平行【解析】【分析】分别根据同位角的定义、多边形外角与内角的关系、平方根的定义及平行线的判定定理对各选项进行逐一判断即可.【详解】A. 同位角不能确定其关系,故是假命题;B. 三角形的外角和大于内角和,故是假命题;C. 平方根等于本身的数是0,故是假命题;D. 同一平面内,垂直于同一条直线的两条直线平行,符合平行线的判定定理,故是真命题。
人教版七年级数学下册第五章第三节命题、定理、证明复习试题(含答案)一、单选题1.下列命题中,真命题是()A.当路程一定时,时间与速度成正比例B.“全等三角形的面积相等”的逆命题是真命题C是最简二次根式D.到直线AB的距离等于1厘米的点的轨迹是平行于直线AB且和AB距离为1cm的一条直线【答案】C【解析】【分析】利用路程、速度、时间的关系、全等三角形的性质、最简二次根式的定义及轨迹的定义分别判断后即可确定正确的选项.【详解】A、当路程一定时,时间与速度成反比例,故本选项错误;B、“全等三角形的面积相等”的逆命题是面积相等的三角形全等,是假命题,故本选项错误;C是最简二次根式,故本选项正确;D、空间内与直线AB距离等于1厘米的点的轨迹是平行于直线AB且和AB 距离为1cm的无数条直线,故本选项错误;故选:C .【点睛】本题考查命题与定理,解题的关键是根据相关知识点判断每个命题的真假.2.下列说法中:①3243-->,②|a|一定是正数,③无理数一定是无限小数,④16.8万精确到十分位,⑤(﹣8)2的算术平方根是8.其中正确的是( )A .①②③B .④⑤C .②④D .③⑤【答案】D【解析】试题解析::∵-34<-23,∴①错误;∵|a|是非负数,∴②错误;∵无理数一定是无限小数,∴③正确;∵16.8万精确到千位,∴④错误;∵(-8)2的算术平方根是8,∴⑤正确;∴正确的有③⑤.故选D .3.下列说法中,正确的是A .直线一定比射线长B .角的两边越长,角度就越大C .a 一定是正数,-a 一定是负数D .-1是最大的负整数【答案】D【解析】试题解析:A 、直线与射线是无限长的,故A 错误;B 、角度与角的两边长短无关,故B 错误;C、大于零的数是正数,小于零的数是负数,故C错误;D、-1是最大的负整数,故D正确.故选D.4.下列命题中:①三点确定一个圆;②三角形的外心到三角形三顶点的距离相等;③三角形的内心到三角形的三边的距离相等;④经过半径外端的直线是圆的切线,其中真命题的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】【分析】分别根据圆周角定理和外心的性质以及不在同一直线上的三点确定一个圆等知识点进行判断,进而得出答案.【详解】①三个不在一条直线上的点确定一个圆,故此选项错误;②三角形的外心到三角形三个顶点的距离相等,故此选项正确;③三角形的内心到三角形的三边的距离相等,故此项正确;④经过半径外端的直线且垂直半径的直线是圆的切线,故此项错误,综上所述,答案选B.【点睛】此题主要考查了命题与定理,正确把握有关定理是解题关键.5.下列句子中,属于命题的是()A.直线AB和CD垂直吗B.作线段AB的垂直平分线AOB=︒C.同位角相等,两直线平行D.画∠45【答案】C【解析】【分析】分别根据命题的定义进行判断.【详解】A、直线AB和CD垂直吗?这是疑问句,不是命题,所以A选项错误;B、作线段AB的垂直平分线,这是描叙性语言,不是命题,所以B选项错误;C. 同位角相等,两直线平行是命题,所以C选项正确;AOB=︒,这是描叙性语言,不是命题,所以D选项错误.D、画∠45故选C【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.a>”是假命题的反例的6.下列选项中,可以用来证明命题“若0a>,则0是( )A.a=-1 B.a=0 C.a=1 D.a=2【答案】A【解析】【分析】根据选取的a的值符合题设,但不满足结论即可作为反例,由此即可解答.【详解】a>”是假当a=-1时,a=1>0,但-1<0,即可判定命题“若0a>,则0命题.故选A.【点睛】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.对于命题“若a2>b2,则a>b.”下列关于a,b的值中,能说明这个命题是假命题的是()A.a=2,b=3 B.a=﹣3,b=2 C.a=3,b=﹣2D.a=﹣2,b=3【答案】B【解析】【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【详解】当a=2,b=3时,a2>b2不成立,故A选项不符合题意;当a=-3,b=2时,a2>b2,但a>b不成立,故B选项符合题意;当a=3,b=-2时,a2>b2,而a>b成立,故C选项不符合题意;当a=-2,b=-3时,a2>b2不成立,故D选项不符合题意.故选B.【点睛】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.8.下列命题是真命题是()A.4的平方根是2B.有两边和一角对应相等的两个三角形全等C.方程x2=x的解是x=1D.顺次连接任意四边形各边中点所得到的四边形是平行四边形【答案】D【解析】【分析】根据平方根、全等三角形的判定、方程、平行四边形的判定解答即可.【详解】A、4的平方根是±2,错误;B、有两边和夹角对应相等的两个三角形全等,错误;C、方程x2=x的解是x=1或x=0,错误;D、顺次连接任意四边形各边中点所得到的四边形是平行四边形,正确;故选D.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.下列说法中,正确的说法有()①对角线互相平分且相等的四边形是菱形;②一元二次方程x2﹣3x﹣4=0的根是x1=4,x2=﹣1;③依次连接任意一个四边形各边中点所得的四边形是平行四边形;④一元一次不等式2x+5<11的正整数解有3个;⑤八边形内角和是外角和的4倍.A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据菱形的判定定理、一元二次方程的解法、中点四边形的判定方法、一元一次不等式的整数解、多边形的内角和及外角和的知识结合各项进行判断即可得出答案.【详解】对角线互相平分且相等的四边形是矩形,①是假命题;一元二次方程x2﹣3x﹣4=0(x﹣4)(x+1)=0x﹣4=0或x=1=0x1=4,x2=﹣1,②是真命题;依次连接任意一个四边形各边中点所得的四边形是平行四边形,③是真命题;一元一次不等式2x+5<112x<6,x <3,∴一元一次不等式2x+5<11的正整数解有2个,④是假命题;八边形内角和是(8﹣2)×180°=1080°,外角和是360°,∴八边形内角和是外角和的3倍,⑤是假命题,故选B .【点睛】本题考查了菱形的判定定理、一元二次方程的解法、中点四边形的判定方法、一元一次不等式的整数解、多边形的内角和及外角和,涉及的知识点较多,注意基本知识的掌握,难度一般.10.下列命题中,属于假命题的是( )A .定义都是真命题B .单项式-247x y 的系数是-4 C .若|x -1|+(y -3)2=0,则 x =1,y =3D .线段垂直平分线上的任意一点到线段两端的距离相等【答案】B【解析】【分析】根据单项式的系数,非负数的性质以及线段的垂直平分线的性质对所给选项一一判断,判断为假的就是假命题.【详解】A. 定义都是真命题,是真命题.B. 单项式-247x y 的系数是4.7-是假命题. C. 若21(3)0x y -+-=,则 x =1,y =3, 是真命题.D. 线段垂直平分线上的任意一点到线段两端的距离相等,是真命题.【点睛】考查真命题,假命题的判断,能够判断真假的陈述句就是命题,判断为真的就是真命题,判断为假的就是假命题.。
人教版七年级数学下册第五章第三节命题、定理、证明复习试题(含答案)定理1:同角(等角)的补角________;定理2:同角(等角)的余角________;定理3:三角形的任意两边之和________第三边;定理4:对顶角________.【答案】相等,相等,大于,相等【解析】【分析】根据余补角性质定理,三角形的三边关系,对顶角定理,即可得到答案.【详解】解:定理1:同角(等角)的补角相等;定理2:同角(等角)的余角相等;定理3:三角形的任意两边之和大于第三边;定理4:对顶角相等;故答案为:相等;相等;大于;相等;【点睛】本题考查了余补角性质定理,三角形的三边关系,对顶角定理,解题的关键是熟练掌握课本的性质定理.62.请举反例说明命题“对于任意实数x,255++的值总是整数”是假x x命题,你举的反例是x=______.(写出一个的值即可)(答案不唯一)【答案】12【解析】【分析】根据题意可知,当x 取分数时,代数式255x x ++得到的值不是整数,即可得解.【详解】 解:当1x 2=时,原式=2113155224+⨯+=(); 故答案为:12 【点睛】本题考查了命题与定理的知识,在判断一个命题为假命题时,可以举出反例.63.命题:“邻补角的和是180°”的条件是_________,结论是_________,它是一个_________命题.【答案】两个角是邻补角 , 这两个角的和是180° , 真【解析】【分析】根据命题“邻补角的和是180°”,可以把它写成如果…那么…的形式,从而可以写出题设和结论,本题得以解决.【详解】解:命题“邻补角的和是180°”可以写成命题:如果两个角是邻补角,那么这两个角的和是180°,这是一个真命题;∴条件是两个角是邻补角,结论是这两个角的和是180°,这是一个真命题; 故答案为:两个角是邻补角,这两个角的和是180°,真.【点睛】本题考查命题与定理,解题的关键是明确命题的定义,可以把它写成如果…那么…的形式.64.如果a>b,则a2>b2 .请你选出一对a、b的值说明这个命题不正确,你给出的值是___________________【答案】−1、−2【解析】【分析】举出一个反例:a=-1,b=-2,说明命题“若a>b,则a2>b2”是错误的即可.【详解】当a=−1,b=−2时,满足a>b,但是a2<b2,∴命题“若a>b,则a2>b2”是错误的。
人教版七年级数学下册第五章第三节命题、定理、证明复习
试题(含答案)
下列命题是真命题的是()
A.如果一个数的相反数等于这个数本身,那么这个数一定是0
B.如果一个数的倒数等于这个数本身,那么这个数一定是1
C.如果一个数的平方等于这个数本身,那么这个数一定是0
D.如果一个数的绝对值等于这个数本身,那么这个数一定是0
【答案】A
【解析】
【分析】
根据相反数是它本身的数为0;倒数等于它本身是±1;平方等于它本身的数为1和0;绝对值等于它本身的数为0和正数进行分析即可.【详解】
解:A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;
B、如果一个数的倒数等于这个数本身,那么这个数一定是1或-1,故是假命题;
C、如果一个数的平方等于这个数本身,那么这个数一定是0或1,故是假命题;
D、如果一个数的绝对值等于这个数本身,那么这个数一定是0和正数,故是假命题;
故选:A.
【点睛】
此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题
为假命题.
32.下列说法正确的是()
A.有两条边和一个角对应相等的两个三角形全等
B.矩形的对角线互相垂直平分
C.正方形既是轴对称图形又是中心对称图形
D.一组对边平行,另一组对边相等的四边形是平行四边形
【答案】C
【解析】
【分析】
分别根据全等三角形的判定、矩形的性质、正方形的性质以及平行四边形的判定解答即可.
【详解】
解:A.有两条边和它们的夹角对应相等的两个三角形全等,故本选项不合题意;
B.矩形的对角线相等且互相平分,故本选项不合题意;
C.正方形既是轴对称图形又是中心对称图形,正确,故本选项符合题意;
D.两组对边分别平行(或两组对边分别相等)的四边形是平行四边形,故本选项不合题意.
故选:C.
【点睛】
本题考查的知识点是全等三角形的判定、矩形的性质、正方形的性质以及平行四边形的判定定理,掌握以上知识点是解此题的关键.
33.下列说法中,正确
的是( )
..
A.图形的平移是指把图形沿水平方向移动.
B.平移前后图形的形状和大小都没有发生改变.
C.“相等的角是对顶角”是一个真命题
D.“直角都相等”是一个假命题
【答案】B
【解析】
图形的平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移,平移前后图形的形状和大小都没有发生改变.而相等的角不一定是对顶角,C是一个假命题,直角都相等是真命题.故选B
34.下列命题的逆命题不成立的是()
A.两直线平行,同旁内角互补B.如果两个实数相等,那么它们的平方相等
C.平行四边形的对角线互相平分D.全等三角形的对应边相等
【答案】B
【解析】
【分析】
把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,
正确,成立;
选项B ,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;
选项C ,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;
选项D ,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;
故选B .
【点睛】
本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
35.下列命题中,真命题是( )
A .若1a b
>,则a b > B .当
a a =
C .四边形的内角和与外角和相等
D .垂直于同一直线地两条直线平行
【答案】C
【解析】
【分析】
根据不等式的性质判断A ,根据二次根式的性质判断B ,根据四边形外角和和内角和判断C ,根据平行线的性质判断D.
【详解】
A :不知道b 是否大于0,故A 错误;
B a ,故B 错误;
C :四边形的内角和为360°,四边形的外角和为360°,故C 正确;
D :在同一平面内,垂直于同一条直线的两条直线平行,故D 错误; 故答案选择C.
【点睛】
本题考查的是命题,即判断正误,正确的即为真命题,错误的即为假命题
36.在下列命题中:①过一点有且只有一条直线与已知直线平行;②平方根与立方根相等的数有1和0;③在同一平面内,如果a b ⊥,b c ⊥,则a c ⊥;④直线c 外一点A 与直线c 上各点连接而成的所有线段中,最短线段的长是5cm ,则点A 到直线c 的距离是5cm ;⑤无理数包括正无理数、零和负无理数.其中真命题的个数是( )
A .1个
B .2个
C .3个
D .4个
【答案】A
【解析】
【分析】
利用平行公理、平方根与立方根的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.
【详解】
①过直线外一点有且只有一条直线与已知直线平行,故①是假命题;
②平方根与立方根相等的数只有0,故②是假命题;
③在同一平面内,如果a b ⊥,b c ⊥,,则a ∥c ,故③是假命题;
④直线c 外一点A 与直线c 上各点连接而成的所有线段中,最短线段的长是5cm,则点A 到直线c 的距离是5cm ,故④是真命题;
⑤无理数包括正无理数和负无理数,故⑤是假命题;
故选A.
【点睛】
本题考查命题与定理,解题的关键是熟练掌握平行公理、平方根与立方根的定义、两直线的位置关系等知识.
37.下列命题是假命题的是( )
A .两条直线被第三条直线所截,内错角相等
B .在同一平面内,垂直于同一条直线的两条直线互相平行
C .不相等的角不是对顶角;
D .若一个角的两边分别与另一个角的两边平行,那么这两个角相等或互补
【答案】A
【解析】
【分析】
根据平行线的性质、对顶角性质对各项分别进行分析判断即可.
【详解】
A :两条直线被第三条直线所截,内错角相等,故选项是假命题;
B :在同一平面内,垂直于同一条直线的两条直线互相平行,故选项是真命题;
C:不相等的角不是对顶角,故选项是真命题;
D:若一个角的两边分别与另一个角的两边平行,那么这两个角相等或互补,故选项是真命题;
故选:A.
【点睛】
本题主要考查了命题的真假判断,熟悉各个章节的基础概念是解题关键.
38.下列各命题都成立,而它们的逆命题不能成立的是().
A.两直线平行,同位角相等B.全等三角形的对应角相等
C.四边相等的四边形是菱形D.直角三角形中,斜边的平方等于两直角边的平方和
【答案】B
【解析】
A、逆命题是同位角相等,两直线平行,成立;
B、逆命题是对应角相等的三角形是全等三角形,不成立;
C、逆命题是菱形是四边相等的四边形,成立;
D、逆命题是一条边的平方等于另外两条边的平方和的三角形是直角三角形,成立.
故选B.
39.下列语句不是命题的是()
A.连结AB B.对顶角相等
C.相等的角是对顶角D.同角的余角相等
【答案】A
【解析】
【分析】
根据命题的概念判断即可.
【详解】
解:A、连结AB,不是命题,符合题意;
B、对顶角相等,是命题,不符合题意;
C、相等的角是对顶角,是命题,不符合题意;
D、同角的余角相等,是命题,不符合题意;
故选:A.
【点睛】
本题是对命题概念的考查,比较简单.
40.下列命题的逆命题是真命题的是( )
A.两直线平行,同位角相等
B.等边三角形是锐角三角形
C.如果两个实数是正数,那么它们的积是正数
D.全等三角形的对应角相等
【答案】A
【解析】
【分析】
先写各选项的逆命题,再根据平行线的性质、三角形的概念、有理数的运算、全等三角形的判定定理逐项判断即可.
【详解】
A、逆命题:同位角相等两直线平行
由平行线的判定可知,逆命题正确,则是真命题
B、逆命题:锐角三角形是等边三角形
锐角三角形不一定是等边三角形,逆命题错误,则是假命题
C、逆命题:如果两个实数的积是正数,那么它们是正数
反例:2(1)2
-⨯-=,但2-和1-都是负数,逆命题错误,则是假命题
D、逆命题:对应角相等的三角形全等
由三角形全等的判定定理可知,逆命题错误,则是假命题
故选:A.
【点睛】
本题考查了命题的相关概念、平行线的性质、三角形的概念、有理数的运算、全等三角形的判定定理,正确写出各选项的逆命题是解题关键.。