2019年山东省济宁市高中阶段学校招生考试数学试卷(含答案)
- 格式:doc
- 大小:1.07 MB
- 文档页数:12
2019年⼭东省济宁市数学学业⽔平测试及答案济宁市2019年⾼中阶段学校招⽣考试数学试题第Ⅰ卷(选择题 30分)⼀、选择题(下列各题的四个选项中,只有⼀项符合题意,每⼩题3分,共30分)。
1、(2019·济宁)计算-1-2的结果是A.-1B.1C.-3D. 3 2、(2019·济宁)下列等式成⽴的是A.a 2+a 3=a 5B.a 3-a 2=aC.a 2.a 3=a 6D.(a 2)3=a 63、(2019·济宁)如果⼀个等腰三⾓形的两边长分别是5cm 和6cm ,那么此三⾓形的周长是A.15cmB.16cmC.17cmD. 16cm 或17cm 4、(2019·济宁)下列各式计算正确的是 A.532=+ B. 2222=+C. 22223=-D.5621012-=-5、(2019·济宁)已知关于x 的⽅程x 2+bx+a=0的⼀个根是-a (a ≠0),则a-b 值为 A.-1 B.0 C.1 D.26、(2019·济宁)如图,AE ∥BD ,∠1=120°,∠2=40°,则∠度数是A.10°B. 20°C.30°7、(2019·济宁)在x 2□2xy □y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平⽅式的概率是 A. 1 B.43 C. 21 D. 418、(2019·济宁)已知⼆次函数y=ax 2+bx+c 中,其函数y 与⾃变量x 之间的部分对应值如点A(x 1,y 1)、B(x 2,y 2)在函数的图象上,则当1A. y 1 > y 2B. y 1 < y 2C. y 1 ≥ y 2D. y 1 ≤ y 2 9、(2019·济宁)如图:△ABC 的周长为30cm ,把△ABC 的边折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边与点E ,连接AD ,若AE=4cm ,则△ABD 的周长是A. 22cmB.20cmC. 18cmD.15cm 10、(2019·济宁)如图,是某⼏何体的三视图及相关数据,则下⾯判断正确的是A. a>cB. b>cC. a 2+4b 2=c 2D. a 2+b 2=c 2第Ⅱ卷(⾮选择题 70分)⼆、填空题(每⼩题3分,共15分;只要求填写最后结果) 11、(2019·济宁)反⽐例函数 x-=的图象在第⼀、三象限,则m 的取值范围是。
2019年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求1.(3分)(2019•济宁)下列四个实数中,最小的是( ) A .2-B .5-C .1D .42.(3分)(2019•济宁)如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒3.(3分)(2019•济宁)下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.(3分)(2019•济宁)以下调查中,适宜全面调查的是( ) A .调查某批次汽车的抗撞击能力 B .调查某班学生的身高情况 C .调查春节联欢晚会的收视率 D .调查济宁市居民日平均用水量5.(3分)(2019•济宁)下列计算正确的是( ) A 2(3)3-=-B 3355-C 366=±D .0.360.6-=-6.(3分)(2019•济宁)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( )A .5005004510x x -= B .5005004510x x -= C .500050045x x-= D .500500045x x-= 7.(3分)(2019•济宁)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是( )A .B .C .D .8.(3分)(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--9.(3分)(2019•济宁)如图,点A 的坐标是(2,0)-,点B 的坐标是(0,6),C 为OB 的中点,将ABC ∆绕点B 逆时针旋转90︒后得到△A B C '''.若反比例函数ky x=的图象恰好经过A B '的中点D ,则k 的值是( )A .9B .12C .15D .1810.(3分)(2019•济宁)已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数⋯⋯依此类推,那么12100a a a ++⋯+的值是( ) A .7.5- B .7.5C .5.5D . 5.5-二、填空题:本大题共5小题,每小题3分,共15分。
2019年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求1.(3分)下列四个实数中,最小的是( )A .B .5-C .1D .42.(3分)如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是()A .65︒B .60︒C .55︒D .75︒3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.(3分)以下调查中,适宜全面调查的是( ) A .调查某批次汽车的抗撞击能力B .调查某班学生的身高情况C .调查春节联欢晚会的收视率D .调查济宁市居民日平均用水量 5.(3分)下列计算正确的是( )A 3=-B =C 6=±D .0.6-6.(3分)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( ) A .5005004510x x-= B .5005004510x x-=C .500050045x x-= D .500500045x x-= 7.(3分)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是( )A .B .C .D .8.(3分)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--9.(3分)如图,点A 的坐标是(2,0)-,点B 的坐标是(0,6),C 为OB 的中点,将ABC ∆绕点B 逆时针旋转90︒后得到△A B C '''.若反比例函数ky x=的图象恰好经过A B '的中点D ,则k 的值是( )A .9B .12C .15D .1810.(3分)已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数⋯⋯依此类推,那么12100a a a ++⋯+的值是( ) A .7.5-B .7.5C .5.5D . 5.5-二、填空题:本大题共5小题,每小题3分,共15分。
2019 年山东省济宁市中考数学试卷一、选择题:本大题共10 小题,每小题一项符合题目要求1.( 3 分)下列四个实数中,最小的是(3 分,共)30 分. 在每小题给出的四个选项中,只有A.﹣B.﹣ 5C. 1D.42.( 3 分)如图,直线a, b 被直线c, d 所截,若∠1=∠ 2,∠ 3= 125°,则∠ 4 的度数是()A. 65°B. 60°C. 55°3.( 3 分)下列图形中,既是轴对称图形,又是中心对称图形的是(D.75°)A.B.C.D.4.( 3 分)以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力B.调查某班学生的身高情况C.调查春节联欢晚会的收视率D.调查济宁市居民日平均用水量5.( 3 分)下列计算正确的是()A.=﹣ 3B.=C.=± 6D.﹣=﹣ 0.6 6.( 3 分)世界文化遗产“三孔”景区已经完成5基站布设,“孔夫子家”自此有了 5 网G G络. 5G网络峰值速率为4G网络峰值速率的10 倍,在峰值速率下传输500 兆数据, 5G网络比 4G网络快 45 秒,求这两种网络的峰值速率.设 4G网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是()A.﹣=45B.﹣= 45C.﹣=45D.﹣= 457.( 3 分)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.8.( 3 分)将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A.=(x ﹣ 4)2﹣ 6 B.y=(x﹣ 1)2﹣ 3 C.=(﹣ 2)2﹣ 2D.=(x﹣ 4)2﹣2y y x y9.( 3 分)如图,点 A 的坐标是(﹣2, 0),点B的坐标是( 0, 6),C为OB的中点,将△ABC绕点 B逆时针旋转90°后得到△ A′ B′C′.若反比例函数y=的图象恰好经过A′B 的中点,则的值是()DkA. 9B. 12C. 15D.1810.( 3 分)已知有理数a≠1,我们把称为 a 的差倒数,如: 2 的差倒数是=﹣ 1,﹣ 1的差倒数是=.如果a1=﹣2, a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数依此类推,那么a1+a2++a100的值是()A.﹣ 7.5B. 7.5C. 5.5D.﹣ 5.5二、填空题:本大题共 5 小题,每小题 3 分,共15 分。
分,在每小题给出的四个选项中,只分,共30一、选择题:本大题共10小题,每小题3 有一项符合题目要求),这四个数中,最小的数是( 11.(3分)(2016?济宁)在:0,﹣2,.2 C.1DA.0B.﹣B. 【答案】【解析】1,12,正数大于一切负数即可判定在0,负数都小于0,0,﹣试题分析:根据正数都大于2B. 这四个数中,最小的数是-2,故答案选.考点:有理数的大小比较)2.(3分)(2016?济宁)下列计算正确的是(1﹣1223562356=x .x)=x DxCx=x.Ax?x B.+x=x .(A.【答案】.考点:负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方AB⊥BC,∠1=55°,那么b上,且a∥b,点B在直线分)3.(3(2016?济宁)如图,直线)的度数是(∠2.50°.35° D.20°A B.30° C C.【答案】【解析】,∥b°,90°﹣∠1=35又因∵a°﹣所以∠ABC=90试题分析:由垂线的性质可得∠°,3=180 .°.故答案选∠再由平行线的性质可得∠2=3=35C 1.考点:平行线的性质个大小完全一样的正方体组成的,它的左视图分)(2016?济宁)如图,几何体是由34.(3 )是(. DA .B.. CD.【答案】.考点:简单几何体的三视图(2016?济宁)如图,在⊙O中,)=,∠AOB=40°,则∠ADC的度数是(35.(分).15°.20° B.30° C D.40°AC. 【答案】【解析】°,根据同圆或等圆中,同弧或等弧所对的,∠试题分析:已知,在⊙OAOB=40中,=1.CAOB=20∠圆周角相等,并且都等于所对圆周角的一半可得∠ADC=°,故答案选2.考点:圆周角定理2)2x+4y的值是((2016?济宁)已知x﹣2y=3,那么代数式3﹣6.(3分)9.6DC.A.﹣3 B.0A.【答案】【解析】;故答案选A.)(x﹣2y=3﹣2×3=﹣3﹣试题分析:已知x﹣2y=3,所以32x+4y=3﹣2.考点:求代数式的值,的周长是16cm(.3分)(2016?济宁)如图,将△ABE向右平移2cm得到△DCF,如果△ABE7 )那么四边形ABFD的周长是(21cm 20cm D.18cm C.16cm B..A C.【答案】C.选.考点:平移的性质,,2在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号18.(3分)(2016?济宁)的五位同学最后成绩如下表所示:5,4,3 参赛者编号 1 2 3 4 58688 8693成绩/分 96那么这五位同学演讲成绩的众数与中位数依次是()A.96,88, B.86,86 C.88,86 D.86,88【答案】D.【解析】试题分析:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,86出现两次,次数最多,是众数,中位数是中间的数为88,故答案选D.考点:中位数;众数.9.(3分)(2016?济宁)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()3.D C. B ..A B.【答案】.考点:轴对称图形的概念;概率轴的正半轴上,x是菱形,OB在O分)(2016?济宁)如图,为坐标原点,四边形OACB310.(的OF交于点BCF,则△A在第一象限内的图象经过点Asin∠AOB=,反比例函数y=,与)面积等于(40 ..30 DC.60 A.B80.【答案】D 4.考点:反比例函数的综合题分分,共15二、填空题:本大题共5小题,每小题3.的取值范围是分).(3(2016?济宁)若式子有意义,则实数x11 1.【答案】x≥【解析】 0试题分析:根据二次根式的性质可得x﹣1≥,即x≥1..考点:二次根式有意义的条件交AD,、CED(3分)(2016?济宁)如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为、E12.,使△AEH≌△CEB.,请你添加一个适当的条件:于点H) (添加其中任意一个即可EH=EB或AE=CE.【答案】AH=CB或【解析】.≌△CEB.可证△EH=EB;根据ASA添加AE=CEAEH添加试题分析:根据AASAH=CB或.考点:全等三角形的判定,DF=5GD=1,AG=2BE(2016?济宁)如图,AB∥CD∥EF,AF与相交于点G,且,分)(13.3.的值等于那么53. 【答案】5【解析】,根据平行线分线段成比例定理∥∥CDEF,GD=1,可得AD=3,再由AB 试题分析:已知AG=23BCAD . 可得5CEDF.考点:平行线分线段成比例定理地的速度比原来A地到BB两地相距160km,一辆汽车从14.(3分)(2016?济宁)已知A, km/h.提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是80.【答案】.考点:分式方程的应用9,…请你,,3分)1(2016?济宁)按一定规律排列的一列数:,1,,□,(15.11.仔细观察,按照此规律方框内的数字应为2. 【答案】9【解析】132911122…可以发现后一个,,试题分析:把整数1化为,(),,得,,2172211132,所以此规律方框内的94数的分子恰是前面数的分母,所以,第个数的分子是2,分母是2. 数字应为9.考点:规律探究题 557小题,共分三、解答题:本大题共2 b=.a=(2b)+a+b),其中﹣1,﹣((2016?济宁)先化简,再求值:6.16(分)aa222 a=+b【答案】原式=2a,当﹣==4时,原式,1b=. 6.考点:整式的化简求值日是父亲节,某商店老板统计了这四年父亲节当天15年6月(6分)(2016?济宁)201617.剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.解答下列问题:、图2请根据图1 1中的统计图补充完整;)近四年父亲节当天剃须刀销售总额一共是(15.8万元,请将图 2015年父亲节当天甲品牌剃须刀的销售额.(2)计算该店. 万元2)0.221(【答案】(1)图见解析;【解析】年的销售年的销售总额,即可求得20132015)将销售总额减去2012、2014、试题分析:(1 年的销售总额乘以甲品牌剃须刀所占百分比即可.2015(2)将额,补全条形统计图即可;(万元),1.3=1.61.21.75.820131解:试题解析:()年父亲节当天剃须刀的销售额为﹣﹣﹣补全条形图如图:7(万元)×17%=0.221.(2)1.3 年父亲节当天甲品牌剃须刀的销售额为0.221万元.答:该店2015.考点:条形统计图;折线统计图的坡度为米,坡面BC7.(分)(2016?济宁)某地的一座人行天桥如图所示,天桥高为618:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.:1 1;)求新坡面的坡角a( PM是否需要拆桥?请说明理由.米处((2)原天桥底部正前方8PB的长)的文化墙.PM不需要拆除,理由详见解析()30°;2)文化墙1【答案】(不需要拆除.2()文化墙PM CD=6,DCD过点C作⊥AB于点,则3 111BC∵坡面的坡度为:,新坡面的坡度为:,83 AD=6∴BD=CD=6,,3﹣6<﹣8BD=6,∴AB=AD∴文化墙PM不需要拆除.考点:解直角三角形的应用.19.(8分)(2016?济宁)某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【答案】(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.20.(8分)(2016?济宁)如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.BD=,求正方形ABCD)已知(1的边长;(2)猜想线段EM与CN的数量关系并加以证明.92. CM;(2),理由详见解析CN=【答案】(1)1 【解析】22,ABD是等腰直角三角形,再由勾股定理可得2AB=BD)试题分析:(1根据正方形的性质可得△AAS,利用∠BCNAFAB=1;(2)根据等腰三角形的性质可得CE⊥,再证得∠BAF=即可求得,根据相似三角∽△COMABF证得△≌△CBN,根据全等三角形的性质可得AF=CN,再证△ABF2形的性质和正方形的性质即可证得CMCN=.AF⊥,∴CE CBN=90°,∴∠AEN=∠,ANE=∠CNB∵∠ BCN,BAF=∴∠∠ CBN和△中,ABF在△,10.考点:四边形综合题的距离y=kx+by=kx+b,则点P到直线x(9分)(2016?济宁)已知点P(,y)和直线21.00证明可用公式计算.d= 2)到直线y=3x+7的距离.例如:求点P(﹣1, k=3,b=7.解:因为直线y=3x+7,其中的距离为:2)到直线y=3x+7所以点P(﹣1,d====.根据以上材料,解答下列问题:的距离;)到直线,﹣1y=x﹣1(1)求点P(1的位置关系y=与直线x+9,半径坐标为(0,5)r为2,判断⊙Q)已知⊙Q(2的圆心Q 并说明理由; y=﹣2x﹣6平行,求这两条直线之间的距离.与)已知直线(3y=﹣2x+4252. (【答案】;(2)(1)相切,理由见解析;3)2【解析】)先利用点到直线的到直线)根据点试题分析:(1Py=kx+b(2的距离公式直接计算即可;与直到直线Q距离公式计算出圆心y=的距离,然后根据切线的判定方法可判断⊙x+9Q 11 y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4线上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.试题解析:(1)因为直线y=x﹣1,其中k=1,b=﹣1,因为直线y=﹣2x+4与y=﹣2x﹣6平行,2.所以这两条直线之间的距离为考点:一次函数综合题;阅读理解题.2轴上,x)的顶点A在﹣6ax+c(a>0分)22.(11(2016?济宁)如图,已知抛物线m:y=ax,过交于点F,与抛物线m的对称轴:y=l﹣xx+与轴交于点Dn,并过点B(01),直线.,7)E点的直线BE与直线n相交于点(﹣7B 的解析式;)求抛物线m(1 的坐标;P为顶点的三角形的周长最小,求点P,上的一个动点,若以)(2P是lB,E?若存在,求点D,使以线段QFQ为直径的圆恰好经过点上是否存在一动点)抛物线(3m Q的坐标;若不存在,请说明理由.12 2);(3)点Q坐标为(9,4)或(15,16P【答案】(1)y=x﹣x+1;(2)点坐标为(3),.,解得a=9a+1x﹣3)﹣,则有﹣∴配方得y=a(2;y=x﹣x+1的解析式为A∴点坐29a+1=0标为(3,0),抛物线m 6,1)′为((2)∵点B关于对称轴直线x=3的对称点B 于点P,如图所示′交∴连接EBl设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得解得,x+y= ﹣则函数解析式为,把x=3代入解得y=坐标为(∴点P3,;)13 x+与x轴交于点y=(3)∵D﹣,∴点D坐标为(7,0),考点:二次函数综合题.14。
济宁市2019年高中段学校招生考试数 学 试 题1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第Ⅰ卷时,必须使用2B 铅笔把答题卡上相应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.4.答第Ⅱ卷时,必须使用0.5毫米黑色签字笔在答题卡上书写.务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.6.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求. 1.16的倒数是 A . 6 B . 6- C .16 D .16- 2. 单项式39mx y 与24nx y 是同类项,则m n +的值是A .2B .3C .4D .53. 下列图形是中心对称图形的是4.某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是A .41.610-⨯ B .51.610-⨯ C .76.810-⨯ D .56810-⨯5. 下列哪个几何体,它的主视图、俯视图、左视图都相同的是A B C D 6.1在实数范围内有意义,则x 满足的条件是 A .12x ≥ B .12x ≤ C .12x = D .12x ≠ 7. 计算()322323a a a a a -+-÷的结果为A .52a a -B .512a a-C .5aD .6a8. 将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除 汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是A.18 B. 16 C. 14D. 129. 如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1.将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ,则图中阴影部分的面积是A. 6πB. 3πC.122π-D. 1210. 如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB . 点P 从A出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束. 设运动时间为x ,弦BP 的长度为y ,那么下面图象中可能..表 示y 与x 的函数关系的是(第9题)(第10题)A. ① B.④ C .②或④ D. ①或③第Ⅱ卷(选择题 共70分)二、填空题:本大题共5小题,每小题3分,共15分. 11. 分解因式:222ma mab mb ++= .12. 请写出一个过(1,1),且与x 轴无交点的函数表达式: .13. 《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文.甲,乙二人原来各有多少钱?”设甲原有x 文钱,乙原有y 文钱,可列方程组为 . 14. 如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(a ,b ), 则a 与b 的数量关系为 .15.如图,正六边形111111A B C D E F 的边长为1,它的6条对角线又围成一个正六边形222222A B C D E F ,如此继续下去,则六边形444444F E D C B A 的面积是 .三、解答题:本大题共7小题,共55分. 16.(6分)解方程: 211.22x x x=---(第14题)(第15题)17.(6分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:(第17题)(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?的中点,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.(第19题)20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD ,使AD 与BC 重合, 得到折痕EF ,把纸片展平;再一次折叠纸片,使点 A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN ,MN . 请你观察图1,猜想∠MBN 的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN 剪下,如图2.折叠该纸片,探究MN 与BM 的数量关系.写出折叠方案, 并结合方案证明你的结论.21.(9分)已知函数2(25)2y mx m x m =--+-的图象与x 轴有两个公共点.(1)求m 的取值范围,写出当m 取范围内最大整数时函数的解析式; (2)题(1)中求得的函数记为C 1①当1n x ≤≤-时,y 的取值范围是13y n ≤≤-,求n 的值;②函数C 2:22()y x h k =-+的图象由函数C 1的图象平移得到,其顶点P 落在以原.设函数C 1的图象顶点为M ,求点P 与点M距离最大时函数C 2的解析式.图2(第20题)图1 (第20题)22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P 是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P为△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线C:y=()0x>上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M, 试说明点P是△MON的自相似点;当点M的坐标是),点N的坐标是)时,求点P的坐标;(2)如图3,当点M的坐标是(,点N的坐标是()2,0时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点,?若存在,请直接写出这两点的坐标;若不存在,请说明理由.(第22题)(第22题)济宁市二○一七年高中段学校招生考试数学试题参考答案及评分标准说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题 (每小题3分,共30分)11. 2()m a b +; 12. 1y x =(答案不唯一); 13. 148,2248.3x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩;14. 0a b +=;三、解答题(共55分)16.解:方程两边乘(2)x -,得221x x =-+.………………………………2分解得 1x =-.…………………………………4分检验:当1x =-时,20x -≠.…………………………………………5分 所以原分式方程的解为1x =-. ………………………………………6分 17.解:(1) 40………………………………………………………………1分(2)(每填对一图得2分)(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.……………6分 18.解:(1)()30w x y =-⋅()()3060x x =-⋅-+2901800x x =-+-所以w 与x 的函数关系式为:2901800w x x =-+-(30≤x ≤60)…………2分(2)()2290180045225w x x x =-+-=--+. ………………………………3分∵﹣1<0,∴当x =45时,w 有最大值.w 最大值为225.………………………………4分 答:销售单价定为45元时,每天销售利润最大,最大销售利润225元.……5分 (3)当w =200时,可得方程()245225200x --+=.解得 x 1=40,x 2=50.………………………………………………………6分 ∵50>48,∴x 2=50不符合题意,应舍去.答:该商店销售这种健身球每天想要获得200元的销售利润,销售单价应定为40元. ……………………………………………………………7分19.证明:(1)连接OD,∵D 是BC 的中点,∴BD DC = ∴BOD BAE ∠=∠ ∴OD ∥AE ,∵DE ⊥AC ,∴90.ADE ∠=∴90.AED ∠= ∴OD ⊥DE .∴DE 是⊙O 的切线.……………………………………………………………4分 (2)过点O 作OF ⊥AC 于点F ,∵10,AC = ∴1110 5.22AF CF AC ===⨯= ∵∠OFE=∠DEF=∠ODE=90°, ∴四边形OFED 是矩形, ∴FE=OD=12AB .∵12AB =,∴FE=6 ∴AE=AF+FE=5+6=11.……………………………………………………… 8分 20. 解:(1)30MBN ∠=………………………………………………………… 1分 证明:连接AN, ∵直线EF 是AB 的垂直平分线,点N 在EF 上,∴AN =BN .由折叠可知,BN=AB, ∴△ABN 是等边三角形. ∴60ABN ∠=. ∴1302NBM ABM ABN ∠=∠=∠=.…………………………… 3分 (2)1.2MN BM =………………………………………………………………… 4分 折纸方案:如图,折叠三角形纸片BMN ,使点N 落在BM 上,并使折痕经过点M ,得到折痕MP,同时得到线段PO. …………………………………………………………… 6分 证明:由折叠知MOP MNP ≅, ∴1,30.2MN OM OMP NMP OMN B =∠=∠=∠==∠ 90.MOP MNP ∠=∠= ∴90.BOP MOP ∠=∠= ∵OP OP =,∴MOP BOP ≅ ∴MOP MNP ≅.∴1.2MO BO BM ==∴1.2MN BM =…………………………………………………………8分 21. 解:(1)由题意可得:()()20,25420.m m m m ≠⎧⎪⎨---->⎡⎤⎪⎣⎦⎩解得:25,12m <且0,m ≠ 当2m =时,函数解析式为:22y x x =+.……………………… 3分(2)函数22y x x =+图象开口向上,对称轴为1,4x =-∴当14x <-时,y 随x 的增大而减小. ∵当1n x ≤≤-时,y 的取值范围是13y n ≤≤-,∴ 223n n n +=-.∴ 2n =-或0n =(舍去).∴2n =- .……………………………………………………… 6分(3)∵221122,48y x x x ⎛⎫=+=+- ⎪⎝⎭∴图象顶点M 的坐标为11,48⎛⎫-- ⎪⎝⎭,由图形可知当P 为射线MO 与圆的交点时,距离最大.∵点P 在直线OM 上,由11(0,0),(,)48O M --可求得直线解析式为:1,2y x =, 设P (a,b ),则有a=2b , 根据勾股定理可得()2222PO b b =+求得2,1a b ==.∴PM 最大时的函数解析式为()2221y x =-+.…………………………… 9分 22.解:(1)在△ONP 和△OMN 中,∵∠ONP=∠OMN ,∠NOP=∠MON∴△ONP ∽△OMN∴点P 是△M0N 的自相似点 (2)分过点P 作PD ⊥x 轴于D 点.tan MNPOD ON∠== ∴60AON ∠=. ∵ONP OMN ≅,∴90MON ∠=, ∴90OPN ∠=. 在Rt △OPN 中,3cos 60OP ON ==31cos 60224OD OP ===.33sin 60224PD OP === . ∴3(,)44P .……………………… 4分(2)①如图2,过点M 作MH ⊥x 轴于H 点,∵M ,(2,0)N11∴OM =OM的表达式为y x =.2ON = ∵1P 是△M0N 的自相似点,∴△1PON ∽△NOM 过点1P 作1PQ ⊥x 轴于Q 点, ∴111, 1.2PO PN OQ ON === ∵1P 的横坐标为1,∴1y ==∴1P ⎛ ⎝⎭. -------------------6分如图3,△2P NM ∽△NOM ,∴2P N MN ON MO=∴2P N = . ∵2P,x =∴2x =,∴22,3P ⎛⎝⎭. 综上所述,P ⎛ ⎝⎭或⎛ ⎝⎭.-------------------------------------------------------9分 (3)存在,M N .-------------------------------------------------------------11分图3。
2019年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.2.下列计算正确的是()A.x2•x3=x5B.x6+x6=x12 C.(x2)3=x5D.x﹣1=x3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C. D.5.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.97.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学)A.96,88, B.86,86 C.88,86 D.86,889.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40二、填空题:本大题共5小题,每小题3分,共15分11.若式子有意义,则实数x的取值范围是.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.三、解答题:本大题共7小题,共55分16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.17.2019年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2019年父亲节当天甲品牌剃须刀的销售额.18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.19.某地2019年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2019年在2019年的基础上增加投入资金1600万元.(1)从2019年到2019年,该地投入异地安置资金的年平均增长率为多少?(2)在2019年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.2019年山东省济宁市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.【考点】有理数大小比较.【分析】根据有理数大小比较的法则解答.【解答】解:∵在0,﹣2,1,这四个数中,只有﹣2是负数,∴最小的数是﹣2.故选B.2.下列计算正确的是()A.x2•x3=x5B.x6+x6=x12 C.(x2)3=x5D.x﹣1=x【考点】负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式利用同底数幂的乘法,合并同类项,幂的乘方及负整数指数幂法则计算,即可作出判断.【解答】解:A、原式=x5,正确;B、原式=2x6,错误;C、原式=x6,错误;D、原式=,错误,故选A3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°【考点】平行线的性质.【分析】由垂线的性质和平角的定义求出∠3的度数,再由平行线的性质即可得出∠2的度数.【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠3=180°﹣90°﹣∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:C.4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C. D.【考点】简单几何体的三视图.【分析】观察几何体,找出左视图即可.【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是,故选D5.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【考点】代数式求值.【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.7.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm【考点】平移的性质.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可【解答】解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选C.8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学)A.96,88, B.86,86 C.88,86 D.86,88【考点】众数;中位数.【分析】找出五位同学演讲成绩出现次数最多的分数即为众数,将分数按照从小到大的顺序排列,找出中位数即可.【解答】解:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,则这五位同学演讲成绩的众数与中位数依次是86,88,故选D9.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.【考点】概率公式;利用轴对称设计图案.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【考点】反比例函数与一次函数的交点问题.【分析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b 的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.【解答】解:过点A 作AM ⊥x 轴于点M ,过点F 作FN ⊥x 轴于点N ,如图所示.设OA=a ,BF=b ,在Rt △OAM 中,∠AMO=90°,OA=a ,sin ∠AOB=,∴AM=OA •sin ∠AOB=a ,OM==a ,∴点A 的坐标为(a , a ).∵点A 在反比例函数y=的图象上,∴a ×a==48, 解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6.∵四边形OACB 是菱形,∴OA=OB=10,BC ∥OA ,∴∠FBN=∠AOB .在Rt △BNF 中,BF=b ,sin ∠FBN=,∠BNF=90°,∴FN=BF •sin ∠FBN=b ,BN==b ,∴点F 的坐标为(10+b , b ).∵点B 在反比例函数y=的图象上,∴(10+b )×b=48,解得:b=,或b=(舍去).∴FN=,BN=﹣5,MN=OB+BN ﹣OM=﹣1.S △AOF =S △AOM +S 梯形AMNF ﹣S △OFN =S 梯形AMNF =(AM+FN )•MN=(8+)×(﹣1)=×(+1)×(﹣1)=40.故选D .二、填空题:本大题共5小题,每小题3分,共15分11.若式子有意义,则实数x 的取值范围是 x ≥1 .【考点】二次根式有意义的条件.【分析】根据二次根式的性质可以得到x﹣1是非负数,由此即可求解.【解答】解:依题意得x﹣1≥0,∴x≥1.故答案为:x≥1.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB等(只要符合要求即可),使△AEH≌△CEB.【考点】全等三角形的判定.【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【考点】平行线分线段成比例.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是80km/h.【考点】分式方程的应用.【分析】设这辆汽车原来的速度是xkm/h,由题意列出分式方程,解方程求出x的值即可.【解答】解:设这辆汽车原来的速度是xkm/h,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.故答案为:80.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.【考点】规律型:数字的变化类.【分析】把整数1化为,可以发现后一个数的分子恰是前面数的分母,分析即可求解.【解答】解:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是3,故答案为:.三、解答题:本大题共7小题,共55分16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣2ab+a2+2ab+b2=2a2+b2,当a=﹣1,b=时,原式=2+2=4.17.2019年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2019年父亲节当天甲品牌剃须刀的销售额.【考点】条形统计图;折线统计图.【分析】(1)将销售总额减去2019、2019、2019年的销售总额,求出2019年的销售额,补全条形统计图即可;(2)将2019年的销售总额乘以甲品牌剃须刀所占百分比即可.【解答】解:(1)2019年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),补全条形图如图:(2)1.3×17%=0.221(万元).答:该店2019年父亲节当天甲品牌剃须刀的销售额为0.221万元.18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)由新坡面的坡度为1:,可得tanα=tan∠CAB==,然后由特殊角的三角函数值,求得答案;(2)首先过点C作CD⊥AB于点D,由坡面BC的坡度为1:1,新坡面的坡度为1:.即可求得AD,BD的长,继而求得AB的长,则可求得答案.【解答】解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.19.某地2019年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2019年在2019年的基础上增加投入资金1600万元.(1)从2019年到2019年,该地投入异地安置资金的年平均增长率为多少?(2)在2019年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【考点】一元二次方程的应用.【分析】(1)设年平均增长率为x,根据:2019年投入资金给×(1+增长率)2=2019年投入资金,列出方程组求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2019年到2019年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.【考点】正方形的性质.【分析】(1)根据正方形的性质以及勾股定理即可求得;(2)根据等腰三角形三线合一的性质证得CE⊥AF,进一步得出∠BAF=∠BCN,然后通过证得△ABF≌△CBN得出AF=CN,进而证得△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN=CM.【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=CM.证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF∽△COM,∴=,∴==,即CN=CM.21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【考点】一次函数综合题.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;(2)利用轴对称求最短路径的方法,首先通过B点关于l的对称点B′来确定P点位置,再求出直线B′E的解析式,进而得出P点坐标;(3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D 点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q坐标.【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)∴连接EB′交l于点P,如图所示设直线EB ′的解析式为y=kx+b ,把(﹣7,7)(6,1)代入得解得,则函数解析式为y=﹣x+把x=3代入解得y=,∴点P 坐标为(3,);(3)∵y=﹣x+与x 轴交于点D ,∴点D 坐标为(7,0),∵y=﹣x+与抛物线m 的对称轴l 交于点F ,∴点F 坐标为(3,2),求得FD 的直线解析式为y=﹣x+,若以FQ 为直径的圆经过点D ,可得∠FDQ=90°,则DQ 的直线解析式的k 值为2,设DQ 的直线解析式为y=2x+b ,把(7,0)代入解得b=﹣14,则DQ 的直线解析式为y=2x ﹣14,设点Q 的坐标为(a ,),把点Q 代入y=2x ﹣14得=2a ﹣14解得a 1=9,a 2=15.∴点Q 坐标为(9,4)或(15,16).2019年6月25日。
2019年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求1.(3分)下列四个实数中,最小的是()A.﹣B.﹣5C.1D.42.(3分)如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是()A.65°B.60°C.55°D.75°3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力B.调查某班学生的身高情况C.调查春节联欢晚会的收视率D.调查济宁市居民日平均用水量5.(3分)下列计算正确的是()A.=﹣3B.=C.=±6D.﹣=﹣0.6 6.(3分)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是()A.﹣=45B.﹣=45C.﹣=45D.﹣=457.(3分)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.8.(3分)将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣2 9.(3分)如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y=的图象恰好经过A′B的中点D,则k的值是()A.9B.12C.15D.1810.(3分)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是()A.﹣7.5B.7.5C.5.5D.﹣5.5二、填空题:本大题共5小题,每小题3分,共15分。
☆绝密级 试卷类型A2019年山东济宁市高中阶段学校招生考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共10页.第Ⅰ卷2页为选择题,30分;第Ⅱ卷8页为非选择题,70分;共100分.考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上. 每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其他答案.3.答第Ⅱ卷时,将密封线内的项目填写清楚,并将座号填写在第8页右侧,用钢笔或圆珠笔直接答在试卷上.考试结束,试题和答题卡一并收回.第I卷(选择题 共30分)一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题3分,共30分) 1. 4的算术平方根是A . 2B . -2C . ±2D . 162. 据统计部门报告,我市去年国民生产总值为238 770 000 000元, 那么这个数据用科学记数法表示为 A . 2. 3877×10 12元 B . 2. 3877×10 11元 C . 2 3877×10 7元 D . 2387. 7×10 8元3.若一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是 A . 直角三角形 B . 锐角三角形 C . 钝角三角形 D . 等边三角形 4.把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+ C .2(3)x x y - D .23()x x y -5.已知⊙O 1与⊙O 2相切,⊙O 1的半径为9 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是 A .1 cm B .5 cmC .1 cm 或5 cmD .0.5cm 或2.5cm6.若0)3(12=++-+y y x ,则y x -的值为A .1B .-1C .7D .-77.如图,是张老师出门散步时离家的距离y 与时间x 之间的函数关系的图象,若用黑点表示张老师家的位置,则张老ABC北东(第10题)师散步行走的路线可能是8.如图,是有几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是 A . 3个 B . 4个 C . 5个 D . 6个9.如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A .6cmB .35cmC .8cmD .53cm10. 在一次夏令营活动中,小霞同学从营地A 点出发,要到距离A 点1000m 的C 地去,先沿北偏东70︒方向到达B 地,然后再沿北偏西20︒方向走了500m 到达目的地C ,此时小霞在营地A 的 A . 北偏东20︒方向上 B . 北偏东30︒方向上 C . 北偏东40︒方向上 D . 北偏西30︒方向上☆绝密级 试卷类型A∙∙∙∙ABCDyxO(第7题)(第8题)(第9题)剪去(第13题)济宁市二○一一年高中阶段学校招生考试数 学 试 题第Ⅱ卷(非选择题 共70分)二、填空题(每小题3分,共15分;只要求填写最后结果)11.在函数4y x =+中, 自变量x 的取值范围是 .12.若代数式26x x b -+可化为2()1x a --,则b a -的值是 .13. 如图,PQR ∆是ABC ∆经过某种变换后得到的图形.如果ABC ∆中任意一点M 的坐标为(a ,b ),那么它的对应点N 的坐标为 .14.某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是 .15.如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 . 三、解答题(共55分,解答应写出文字说明、证明过程或推演步骤) 16.(5分)计算:084sin 45(3)4-︒+-π+-得分评卷人得分评卷人A BCD · ·MNα(第15题)17.(5分)上海世博会自2019年5月1日到10月31日,历时184天.预测参观人数达7000万人次.如图是此次盛会在5月中旬入园人数的统计情况. (1)请根据统计图完成下表.众数 中位数 极差 入园人数/万(2)推算世博会期间参观总人数与预测人数相差多少? 18.(6分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201020091⨯ . 得分 评卷人得分评卷人得分评卷人如图,AD 为ABC ∆外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线交AD 于点E ,连接BD ,CD . (1) 求证:BD CD =;(2) 请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由. 20.(7分)如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1. (1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.得分评卷人得分评卷人OMxyA(第20题)ABCEFD(第19题)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.得分评卷人22.(8分)数学课上,李老师出示了这样一道题目:如图1,正方形ABCD 的边长为12,P 为边BC 延长线上的一点,E 为DP 的中点,DP 的垂直平分线交边DC 于M ,交边AB 的延长线于N .当6CP =时,EM 与EN 的比值是多少?经过思考,小明展示了一种正确的解题思路:过E 作直线平行于BC 交DC ,AB 分别于F ,G ,如图2,则可得:DF DEFC EP=,因为DE EP =,所以DF FC =.可求出EF 和EG 的值,进而可求得EM 与EN 的比值. (1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了DP MN =的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.23.(10分)如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的得分评卷人(第22题)左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.☆绝密级 试卷类型A济宁市二○一一年高中阶段学校招生考试数学试题参考答案及评分标准AxyB OCD(第23题)说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数. 一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案ABBDCCDBBC二、填空题11.4x ≥-; 12.5; 13.(a -,b -); 14.16; 15.tan tan m n αα-⋅. 三、解答题16.解:原式2224142=-⨯++ ································································· 4分 5= ··························································································· 5分 17.(1)24,24,16 ······················································································· 3分 (2)解:17000184(2182232426293034)10-⨯⨯⨯++⨯++++ 700018.4249=-⨯70004581.62418.4=-=(万)答:世博会期间参观总人数与预测人数相差2418.4万 ································ 5分18.(1)111n n -+ ························································································· 1分 (2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n . ·················· 3分(3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ···································································· 5分 19.(1)证明:∵AD 为直径,AD BC ⊥,∴BD CD =.∴BD CD =. ························································ 3分(2)答:B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. ························ 4分理由:由(1)知:BD CD =,∴BAD CBD ∠=∠.∵DBE CBD CBE ∠=∠+∠,DEB BAD ABE ∠=∠+∠,CBE ABE ∠=∠, ∴DBE DEB ∠=∠.∴DB DE =. ························································· 6分 由(1)知:BD CD =.∴DB DE DC ==.∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. ··························· 7分20.解:(1) 设A 点的坐标为(a ,b ),则kb a=.∴ab k =.∵112ab =,∴112k =.∴2k =. ∴反比例函数的解析式为2y x=. ···················································· 3分(2) 由212y x y x⎧=⎪⎪⎨⎪=⎪⎩ 得2,1.x y =⎧⎨=⎩ ∴A 为(2,1). ······································ 4分 设A 点关于x 轴的对称点为C ,则C 点的坐标为(2,1-). 令直线BC 的解析式为y mx n =+.∵B 为(1,2)∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴BC 的解析式为35y x =-+. ························································· 6分 当0y =时,53x =.∴P 点为(53,0). ·········································· 7分 21.(1)解:设甲工程队每天能铺设x 米,则乙工程队每天能铺设(20x -)米.根据题意得:35025020x x =-. ·························································· 2分 解得70x =.检验: 70x =是原分式方程的解.答:甲、乙工程队每天分别能铺设70米和50米. ····································· 4分 (2)解:设分配给甲工程队y 米,则分配给乙工程队(1000y -)米.由题意,得10,70100010.50yy ⎧≤⎪⎪⎨-⎪≤⎪⎩解得500700y ≤≤. ······························ 6分所以分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米; 方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米. ················· 8分22.(1)解:过E 作直线平行于BC 交DC ,AB 分别于点F ,G ,则DF DE FC EP =,EM EF EN EG=,12GF BC ==. ∵DE EP =,∴DF FC =. ····························································· 2分 ∴116322EF CP ==⨯=,12315EG GF EF =+=+=.∴31155EM EF EN EG ===. ································································· 4分 (2)证明:作MH ∥BC 交AB 于点H , ······················································ 5分则MH CB CD ==,90MHN ∠=︒.∵1809090DCP ∠=︒-︒=︒,∴DCP MHN ∠=∠.∵90MNH CMN DME CDP ∠=∠=∠=︒-∠,90DPC CDP ∠=︒-∠,∴DPC MNH ∠=∠.∴DPC MNH ∆≅∆. ········································ 7分∴DP MN =. ············································································ 8分23.(1)解:设抛物线为2(4)1y a x =--.∵抛物线经过点A (0,3),∴23(04)1a =--.∴14a =. ∴抛物线为2211(4)12344y x x x =--=-+. ……………………………3分 (2) 答:l 与⊙C 相交. …………………………………………………………………4分 证明:当21(4)104x --=时,12x =,26x =. ∴B 为(2,0),C 为(6,0).∴223213AB =+=.设⊙C 与BD 相切于点E ,连接CE ,则90BEC AOB ∠=︒=∠.∵90ABD ∠=︒,∴90CBE ABO ∠=︒-∠.又∵90BAO ABO ∠=︒-∠,∴BAO CBE ∠=∠.∴AOB ∆∽BEC ∆. ∴CE BC OB AB =.∴62213CE -=.∴8213CE =>.…………………………6分 ∵抛物线的对称轴l 为4x =,∴C 点到l 的距离为2.∴抛物线的对称轴l 与⊙C 相交. ……………………………………………7分(3) 解:如图,过点P 作平行于y 轴的直线交AC 于点Q . (第22题) H B C D E M N A P A x y B O htt CD (第23题)E P Q可求出AC 的解析式为132y x =-+.…………………………………………8分 设P 点的坐标为(m ,21234m m -+),则Q 点的坐标为(m ,132m -+). ∴2211133(23)2442PQ m m m m m =-+--+=-+. ∵22113327()6(3)24244PAC PAQ PCQ S S S m m m ∆∆∆=+=⨯-+⨯=--+, ∴当3m =时,PAC ∆的面积最大为274.此时,P 点的坐标为(3,34-). …………………………………………10分。