例2:求下列各式中x的值 :
2 (1) log 64 x 3 (3) lg100 x
(2) log x 8 6
2
(4) ln e x 2 (1)解: ∵ log 64 x 3 2 2 2 3 3 64 3 =x x 64 3Βιβλιοθήκη ( ) 4求真数
2
2. 设 loga2 = m, loga3 = n, 求a2m+3n 的值(a>0, a≠1).
课堂小结
= N b = logaN 其中, a>0, a≠1, N>0, b∈R
b a
负数和零没有对数
求下列各式中 x的范围. (1) log2 ( x 10); (2) log2 x 1 ( x 2); (3) log( x 1) ( x 1) .
2
对数的性质
计算下列各式的值,尝试归纳一些结论: (1) log0.1 0.1 ( 2) log (3) l g1 (5) log3 9 (7 )3
对 数 x loga N , (a 0; a 1);
(不能,这是因为a>0,ax=N>0)
结论:对数式中真数要大于零。
(也就是说零和负数没有对数!)
真数大于零
两个重要对数:
1、常用对数: 以10为底的对数
log10 N
简记为
lg N
(e≈2.71828…) 你记住了吗?
2、自然对数: 以e为底的对数
问题剖析
上述有关国民生产总值的实际问题,其本质就 是从方程1.08x=2中求出未知数“x”的值.
即已知“底数”和“幂”的值,求“指数”.
而这个过程,就是“对数”定义产生的依据.