xloagN
底数不变
2020/10/16
5
探究1:当a>0且a≠1时,loga(-2), loga0存在吗?为什么?由此能得到 什么结论?
零和负数没有对数,真数必须大于0
2020/10/16
6
探究2:根据对数定义,logal和logaa (a>0且a≠1)的值分别是多少?
loga1=0 logaa=1
18
其他重要公式2:
loga NlloogcgcN a ( a ,c ( 0 , 1 ) ( 1 , )N , 0 )
证明:设 loagNp
由对数的定义可以得: Nap, locN gloca g p, lo cN g plo ca ,g
plogc N即证得 logc a
loga NlloogcgcN a
g53lo
1 g5 3
(5)lg0.000001
(7)lg5lg2
(2)lg1020 (4)log26log23 算, 又会有什么样的运算性质呢?
2020/10/16
13
证明:①设 loag Mp, loagNq,
由对数的定义可以得:Map, Naq ∴MN= a p aq apq lo aM gN p q
即证得
log a (MN) log a M log a N (1)
2020/10/16 这个公式叫做换底公式
19
其他重要公式3:
logablo1gba a,b (0,1 ) (1 ,)
证明:由换底公式 logaNlloogcgcN a 取以b为底的对数得: logabllooggbbba
lobgb1, loagblo1bga
还可以变形,得
loab g •loba g 1