正方形(1)
- 格式:pdf
- 大小:31.75 KB
- 文档页数:2
5.3 .1正方形的判定正方形的定义:有一组邻边相等并且的平行四边形叫做正方形.正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用①或②进行判定.一、正方形的概念1.如图1所示,已知▱ABCD,对角线AC,BD相交于点O,∠BAO=∠DAO.(1)求证:平行四边形ABCD是菱形;图1(2)请添加一个条件使菱形ABCD为正方形.二、正方形的判定2.学习了正方形之后,王老师提出问题:要判断一个四边形是正方形,有哪些思路?甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角;乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等;丙同学说:判定四边形的对角线相等,并且互相垂直平分;丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且有一组邻边相等.上述四名同学的说法中,正确的是( )A.甲、乙B.甲、丙C.乙、丙、丁D.甲、乙、丙、丁3.如图2,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为____.图24.如图3,▱ABCD中,对角线AC,BD相交于点O,∠OBC=∠OCB.图3(1)求证:▱ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形并说明理由.5.如图4,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED. 求证:四边形ABCD是正方形.图4 第5题答图1.下列说法正确的是( )A.有一个角是直角的四边形是正方形B.有一组邻边相等的四边形是正方形C.有一组邻边相等的矩形是正方形D.四条边都相等的四边形是正方形2.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了( ) A.1次B.2次C.3次D.4次3.在▱ABCD中,对角线AC与DB相交于点O.要使四边形ABCD是正方形,还需添加一组条件.下列给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是____.4.如图5-3-1所示,已知▱ABCD,对角线AC,BD相交于点O,∠BAO=∠DAO.(1)求证:▱ABCD是菱形;(2)请添加一个条件使菱形ABCD为正方形.图5-3-15.如图5-3-2,等边三角形AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°.求证:矩形ABCD是正方形.图5-3-26.已知:如图5-3-3,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE∶∠BCE=2∶3,求证:四边形ABCD是正方形.图5-3-37.如图5-3-4,在Rt△ABC中,∠ACB=90°,AB=6,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连结CD,BE.(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?请说明你的理由;(2)在(1)的条件下,当∠A=____时四边形BECD是正方形.图5-3-41. 下列命题错误的是()A.有一组邻边相等的平行四边形叫做正方形B.有一组邻边相等的矩形是正方形C.有一组邻边相等并且有一个角是直角的平行四边形叫做正方形D.有一个角是直角的菱形是正方形2. 已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是()A.∠D=90°B. AB=CDC. AD=BC D. BC=CD3. 如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A. BC=ACB. CF⊥BFC. BD=DFD. AC=BF4. 顺次连结四边形ABCD各边中点所组成的四边形是正方形,则四边形ABCD的对角线()A.互相垂直但不相等 B.相等且互相垂直C.相等但不互相垂直 D.互相平分5. 如图是甲,乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以 D.甲可以,乙不可以6.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四名同学的答案都正确,则黑板上画的图形是 .7. 如图所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角沿折痕AE翻折上去,AB与AD边上的AF重合,则四边形ABEF就是一个大的正方形,他判定的方法是 .8. 矩形各内角的平分线所构成的四边形是形.9. 在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件. 下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD,其中正确的序号是 .10. 如图所示,在Rt△ABC中,CF为∠ACB的平分线,FD⊥AC于D,FE⊥BC于点E,试说明四边形CDFE是正方形.11.如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED. 点G是BC、AE延长线的交点,AG与CD相交于点F. 求证:四边形ABCD是正方形.。
正方形(一)教学目标::1、能说出正方形的定义和性质。
会运用正方形的概念和性质进行有关的论证和计算。
2、通过一般到特殊的研究方法,分析平行四边形、矩形、菱形、正方形的概念及性质之间的区别与联系。
3、在探究正方形性质的过程中,发现正方形的结构美和应用美,激发学生学习数学的热情。
教学重、难点:正方形的定义和性质;选择适当的方法解决有关正方形的问题。
教学过程:一、创设问题情境,搭建研究平台在小学学过的平行四边形、矩形、菱形、正方形这些特殊的四边形中,我们已学了平行四边形、矩形、菱形的定义、性质和判定,而正方形还没有研究过,根据小学学过的正方形的知识,同学们能说出它的哪些性质?正方形四条边相等;正方形四个角是直角;正方形的面积等于边长的平方;正方形是轴对称图形,也是中心称图形。
生活中有很多地方用到正方形,我们感到正方形很熟悉,但对已学过的平行四边形,矩形、菱形比较,对正方形还没有深入地研究,同学们不想知道它其中的奥妙吗?二、讲授新课把平行四边形的一个角变成直角,再移动一条短边,让一组邻边相等,此时平行四边形变成一个正方形的变化的全过程;同时再展现先移动一条短边,截成一组邻边相等的平行四边形,而把一个角变成直角,此时平行四边形变成正方形。
请同学们给出正方形的定义:一组邻边相等的矩形叫做正方形;一个角为直角的菱形叫做正方形;一组邻边相等且有一个角为直角的平行四边形叫正方形。
我们从它的定义可以发现,正方形是特殊的矩形,即邻边相等的矩形;也是特殊的菱形,即有一个角是直角的菱形;而矩形、菱形又是特殊的平行四边形,所以正方形也是特殊的平行四边形,即一个角是直角且一组邻边相等的平行四边形。
做一做:把一个长方形纸片如图那样折一下,即可折一个正方形纸片。
请你说明其中的道理。
学生活动:通过折叠裁剪,得出正方形,并观察其图形特征,明白制作原理:邻边相等的矩形是正方形。
类比平行四边形、矩形、菱形、的性质我们来研究正方形的性质,可以从正方形是特殊的平行四边形、矩形、菱形入手,分别从边、角、对角线三个方面进行归纳总结。
认识正方形:正方形的特点和画法正方形是平面几何学中基本且常见的图形之一。
作为一个四边形,正方形拥有独特的对称性和规范性,被广泛应用于日常生活和科学研究中。
下面将详细介绍正方形的特点以及如何绘制正方形。
一、正方形的特点1. 四边等长:正方形的四条边长度相等,这是正方形最基本的特点。
这一特性使得正方形在视觉上呈现出一种均衡和稳定的美感。
2. 四个直角:正方形的四个角都是直角,即每个角的度数为90度。
这一特性使得正方形在几何变换中保持稳定性,同时也方便进行角度的计算。
3. 对角线相等且垂直:正方形的两条对角线不仅长度相等,而且相互垂直并且平分对方。
这一特性使得正方形在解决一些几何问题时具有独特的优势。
4. 对称性:正方形既是轴对称图形也是中心对称图形,其对称性使其在某些实际应用中发挥重要作用。
例如,建筑设计、图形设计等领域经常利用正方形的对称性来实现美观和平衡。
二、如何画正方形1. 利用工具绘制:(1)直尺和圆规:首先,使用直尺画一条水平的线段,作为其中的一边;接着,利用圆规的定点作圆与该边中点为起点的一段射线交点作连线并与另一端连至中点,从而完成另外一边的绘制;最后,使用同样的方法绘制剩余两边,确保四条边长度相等且四个角均为直角。
(2)量角器和直尺:首先,使用直尺画一条水平的线段作为正方形的一边;然后,使用量角器在该边的一侧绘制一个90度的角;接着,从该角的顶点出发,绘制一条与第一条边等长的线段作为正方形的另一边;最后,重复以上步骤,完成剩余两边的绘制。
(3)网格纸:在网格纸上,找到一个起始点,确保该点的横坐标和纵坐标相等(例如(2,2));然后,沿着网格线绘制一个边长为网格单位长度的正方形。
由于网格纸本身具有等间距的特点,因此绘制出的正方形四条边长度自然相等。
(4)电子绘图软件:利用电子绘图软件如Photoshop、Illustrator等,可以轻松绘制出精确的正方形。
首先,选择矩形工具并设置宽度和高度相等;然后,在画布上单击并拖动以绘制出所需大小的正方形。
1.3正方形的性质与判定(1)正方形的性质一、学习目标1.在对平行四边形、矩形、菱形的认识基础上探索正方形的性质,并能运用正方形的性质进行证明与计算.2.进一步了解平行四边形、矩形、菱形及正方形之间的相互关系二、新课引入对称性边角对角线平行四边形菱形矩形菱形: 的平行四边形是菱形矩形: 的平行四边形是矩形3.有没有一种四边形既是菱形又是矩形呢?三、探究新知(一)正方形的定义探究一:矩形怎样变化后就成了正方形呢?结论: 的矩形叫做正方形.几何语言:探究二:菱形怎样变化后就成了正方形呢?结论: 的菱形叫做正方形.几何语言:探究小结什么样的平行四边形是正方形?正方形定义:的平行四边形叫做正方形.几何语言:(二)正方形的性质探究:正方形有什么性质?由正方形的定义可以得知,正方形既是有相等的矩形,又是有的菱形. 所以,正方形具有的性质,同时又具有的性质.正方形的性质对称性正方形既是______图形,又是______图形,正方形有______对称轴.边四条边几何语言:角四个角都是________.几何语言:对角线两条对角线互相_____且_______,并且每一条对角线平分________.几何语言:面积:即时练习:1.菱形,矩形,正方形都具有的性质是( )A.对角线相等且互相平分 B.对角线相等且互相垂直平分C.对角线互相平分 D.四条边相等,四个角相等2.如图,在正方形ABCD中,对角线AC与BD相交于点O(1)图中是等腰三角形有(2)若OA=2,求BD、AB的长3.如图,在正方形ABCD中,点F为对角线AC上一点,连接BF,DF。
找出图中的全等三角形,选择其中一对进行证明。
四、例题讲解例如图,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间有怎样的关系?请说明理由.五、课堂小结1.正方形的定义的平行四边形叫做正方形.2.正方形的性质:边:________都相等且________.角:四个角都是________.对角线:两条对角线互相________且________,并且每一条对角线平分________.对称性:正方形既是________图形,又是________图形,正方形有________对称轴.面积:正方形的面积等于等于3.平行四边形、菱形、矩形、正方形之间的关系六、检测反馈评价1.正方形面积为36,则对角线的长为。
1. 正方形的定义2. 正方形的性质:1)边 2)角 3)对角线 4)对称性 课前热身:1. 已知:如图,正方形ABCD 中,CM =CD ,MN ⊥AC ,连结CN ,则∠DCN =_______=____∠B ,∠MND =_________=____∠B .2. 在正方形ABCD 中,AB =12 cm ,对角线AC 、BD 相交于O ,则△ABO 的周长是( )A 、12+122B 、12+62C 、12+2D 、24+623. 已知正方形BDEF 的边长是正方形ABCD 的对角线,则S 正方形BDEF ∶S 正方形ABCD = 。
第1题图 第4题图 第5题图 4. 如图,已知正方形ABCD 的面积为256,点F 在CD 上,点E 在CB 的延长线上,且AE ⊥AF ,AF =20,则BE 的长为 。
5. 如图,四边形ABCD 为正方形,以AB 为边向正方形外作等边三角形ABE ,CE 与DB 相交于点F ,则∠AFD = 。
精讲精练:例1、在正方形ABCD 的边BC 的延长线上取一点E ,使CE =CA ,连接AE 交CD 于F ,求AFD 的度数。
变式:如图,已知正方形ABCD 中,E 是CD 边上的一点,F 为BC 延长线上一点,CE =CF . (1)求证:△BEC ≌△DFC ;(2)若∠BEC =60°,求∠EFD 的度数.MN BC A DE B C A D F例2:如图下,在四个正方形拼接成的图形中,以这十个点中任意三点为顶点,共能组成 个等腰直角三角形。
变式:如图上,△ABC 是一个等腰直角三角形,DEFG 是其内接正方形,H 是正方形的对角线交点;那么,由图中的线段所构成的三角形中相互全等的三角形的对数为( )A 、12B 、13C 、26D 、30例3:如上图,以边长1的正方形的对角线为边长作第二个正方形,以第二个正方形的对角线为边长作第三个正方形,……,如此做下去得到第n 个正方形.设第n 个正方形的面积为S n ,通过运算找规律,可以猜想出S n =变式⑴、如上图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…,根据以上操作,若要得到2011个小正方形,则需要操作的次数是 。
正方形(一)
教学目标::
1、能说出正方形的定义和性质。
会运用正方形的概念和性质进行有关的论证和计算。
2、通过一般到特殊的研究方法,分析平行四边形、矩形、菱形、正方形的概念及性质之间
的区别与联系。
3、在探究正方形性质的过程中,发现正方形的结构美和应用美,激发学生学习数学的热情。
教学重、难点:正方形的定义和性质;选择适当的方法解决有关正方形的问题。
教学过程:
一、创设问题情境,搭建研究平台
在小学学过的平行四边形、矩形、菱形、正方形这些特殊的四边形中,我们已学了平
行四边形、矩形、菱形的定义、性质和判定,而正方形还没有研究过,根据小学学过的正方
形的知识,同学们能说出它的哪些性质?
正方形四条边相等;正方形四个角是直角;正方形的面积等于边长的平方;正方形是轴对称图形,也是中心称图形。
生活中有很多地方用到正方形,我们感到正方形很熟悉,但对已学过的平行四边形,
矩形、菱形比较,对正方形还没有深入地研究,同学们不想知道它其中的奥妙吗?
二、讲授新课
把平行四边形的一个角变成直角,再移动一条短边,让一组邻边相等,此时平行四边形变成一个正方形的变化的全过程;同时再展现先移动一条短边,截成一组邻边相等的平行四边形,而把一个角变成直角,此时平行四边形变成正方形。
请同学们给出正方形的定义:一组邻边相等的矩形叫做正方形;一个角为直角的菱形叫做正方形;一组邻边相等且有一个角为直角的平行四边形叫正方形。
我们从它的定义可以发现,正方形是特殊的矩形,即邻边相等的矩形;也是特殊的菱形,即有一个角是直角的菱形;而矩形、菱形又是特殊的平行四边形,所以正方形也是特殊的平行四边形,即一个角是直角且一组邻边相等的平行四边形。
做一做:把一个长方形纸片如图那样折一下,即可折
一个正方形纸片。
请你说明其中的道理。
学生活动:通过折叠裁剪,得出正方形,并观察其图
形特征,明白制作原理:邻边相等的矩形是正方形。
类比平行四边形、矩形、菱形、的性质我们来研究正方形的性质,可以从正方形是特殊的平行四边形、矩形、菱形入手,分别从边、角、对角线三个方面进行归纳总结。
学生活动:(讨论后发现)边:正方形四条边都相等;对边平行;
角:正方形四个角都是直角;
对角线:正方形两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
由此发现正方形的性质概括了平行四边形、矩形、菱形关于边、角、对角线的全部性质。
在利用这些性质解决问题时,要根据需要选择相应的结论,做到“对症下药”。
三、应用举例:
【例4】求证正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形。
师生共析:因为是正方形,所以两条对角线互相垂直平分,且每条对角线平分一组对角。
平
分可以产生线段等量关系和角的等量关系,垂直可以产生直角,于是可以得到四个全等的等腰直角三角形。