《正方形(1)》基础型word版本
- 格式:doc
- 大小:32.50 KB
- 文档页数:2
三上数学《长方形和正方形》试题班级: 姓名:一、我会算363×2= 249×3= 543+327=79×6= 102+376= 539-247=516×3= 301-2020 20207=二、我会填1.封闭图形一周的长度,是它的( )。
2.长方形的对边( ),四个角都是( )角。
计算长方形的周长,必须量出它的( )和( )。
3.正方形的四条边( ),四个角都是( )角。
计算正方形的周长,必须量出它的( )。
4.平行四边形的对边( ),对角( )。
5.用一根长14米的铁丝围成一个长方形,这个长方形的长和宽分别可以是:( )和( )。
6.一张长方形纸正好可以裁成两张边长为3厘米的正方形纸,原来这张纸的周长是( )厘米。
三、选一选1.求长方形的周长用( )。
A.长+宽×2 B.(长+宽)×2 C.长×宽2.长方形的一组长边同时缩短到和短边同样长,就变成了( )。
A.正方形 B.平行四边形 C.四边形3.如右图,A,B两个图形,两个图形的周长( )。
A.A > B B.A < BC.B = A4.如图,将边长为 24厘米的正方形纸板剪成四块同样大小的长方形纸板,每块长方形纸板的周长是多少厘米?( )。
A.24厘米 B.30厘米C.12厘米 D.60厘米四、判断(1)四个角都是直角的四边形一定是正方形。
( )(2)两个周长是16分米的正方形拼成一个长方形,它的周长是32分米。
( )(3)周长相等的两个长方形,它们的形状都一样。
( )(4)长方形、正方形和平行四边形都是由四条线段围成的图形。
( )五、求下面图形的周长1.2.六、解决问题1、一个长方形的停车场宽60米,比长少2020它的周长是多少米?2、把一根铁丝围成一个长是6厘米、宽是4厘米的长方形;如果围成一个正方形,它的边长是多少?3、一块长方形菜地,长6米,宽4米。
个性化教学辅导教案1.在Rt△ABC中,∠BAC=90°,D是BC中点,E是AD中点,过A作AF∥BC①求证:△AEF≌△DEB;②求证:四边形ADCF是菱形;③若AB=5,AC=4,求菱形ADCF的面积.2.在矩形ABCD中,对角线AC、BD交于点O,AE⊥BD,垂足为E,且AE平分∠BAO.若DO=2,求AB和BC的长度.3.矩形ABCD中,对角线AC和BD相交于O,∠AOB=60°,AC=10,(1)求AB;(2)求AD;(3)求矩形ABCD的面积.【正方形性质】1.如图,直线l上有三个正方形a、b、c,若a、c的边长分别为1和2,则b的面积为()A.3 B.4 C.5 D.62.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是()A.90°B.80°C.70°D.60°3.如图,已知正方形ABCD的对角线交于O点,点E、F分别是AO、CO的中点,连接BE、BF、DE、DF,则下列结论中一定成立的是(把所有正确结论的序号都填在横线上)①BF=DE;②∠ABO=2∠ABE;③S△AED=S△ACD;④四边形BFDE是菱形.【正方形判定】1.关于□ABCD的叙述,正确的是()A.若AC⊥BD,则□ABCD是正方形B.若AC=BD,则□ABCD是正方形C.若AB⊥BC,则□ABCD是菱形D.若AB=BC,则□ABCD是菱形2.平行四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AC 平分∠BCD,②AC⊥BD,③OA=OC,④OB=OC,⑤∠BAD+∠BCD=180°,⑥AB=BC.从中任选两个条件,能使平行四边形ABCD为正方形的选法有()A.3种B.6种C.7种D.8种3.如图在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,请你添加一个条件,使四边形BECF是正方形.4.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足条件时,四边形BEDF是正方形.【正方形性质和判定综合】1.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30 B.34 C.36 D.402.如图,AC是四边形ABCD的对角线,∠B=90°,∠ADC=∠ACB+45°,BC=AB+,若AC=CD,则边AD的长为.[第1题][第2题]3.已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.(1)求证:AE=CE;(2)若将△ABE沿AB对折后得到△ABF;当点E在BD的何处时,四边形AFBE 是正方形?请证明你的结论.4.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E,连接DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.(3)在(2)的条件下,若AB=AC=2,求正方形ADCE周长.1.如图,一个正方形和两个等边三角形的位置如图所示,若∠2=50°,则∠1+∠3=()A.90°B.100°C.130°D.180°2.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.3.把边长为6 厘米的正方形ABCD沿对角线AC截成两个直角三角形,在两个三角形内按下图剪下两个内接正方形Ⅰ、Ⅱ,这两个正方形的面积比较()A.Ⅰ大B.Ⅱ大C.一样大D.无法确定谁大4.在直线l上依次摆放着五个正方形(如图所示).已知斜放置的两个正方形的面积分别是2、3,正放置的三个正方形的面积依次是S1、S2、S3,则S1+2S2+S3=.5.若以正方形ABCD的一边CD为边作等边三角形△CDE,则∠BED=°.6.已知正方形ABCD,E、F分别为边BC、CD上的点,DE=AF.求证:AF⊥DE.7.如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)试说明△BEC≌△DEC;(2)延长BE,交AD于F,∠BED=120°时,求∠EFD的度数.8.如图所示,点E、F分别为正方形ABCD边AB、BC的中点,DF、CE交于点M,CE的延长线交DA的延长线于G,试探索:(1)DF与CE的位置关系;(2)MA与DG的大小关系.【正方形性质】性质1:正方形的四个角都是直角,四条边相等;性质2:正方形的对角线相等且互相垂直平分;性质3:正方形既是矩形又是菱形,它具有矩形和菱形的所有性质。
长方形和正方形的个数1、数长方形个数如下图共有多少个长方形?第一种计算方法:向前数,也向往后数.以第1条竖线为一条边的长方形有5个:1~2、1~3、1~4、1~5、1~6; 以第2条竖线为一条边的长方形有5个:2~3、2~4、2~5、2~6、2~1; 以第3、第4、第5、第6条竖线为边的长方形也都有5个; 但每个长方形都数了2次,所以总共有:5×6÷2=5×3=5+5+5=15个有15个长方形。
第二种计算方法:先给单个的长方形按序编号,如图:单个长方形有5个:1、2、3、4、5由相邻2个长方形组合成的长方形有4个:12、23、34、45 由相邻3个长方形组合成的长方形有3个:123、234、345 由相邻4个长方形组合成的长方形有2个:1234、2345 由相邻5个长方形组合成的长方形有1个:12345 总共: 5+4+3+2+1=15个作业:如图,共有多少个平行四边形? 解:与数长方形的方法相同.1-2、2-3、3-4、4-5、5-6有5个; 1-3、2-4、3-5、4-6有4个; 1-4、2-5、3-6有3个; 1-5、2-6有2个; 1-6只有1个。
总数:5+4+3+2+1=15个65 4 3 2 11 2 3 54 65 4 3 21第三种计算方法:先数以每一条竖线为一条边的长方形个数,为了不重复,只向前数,不要往后数. 如图以第1条竖线(红线)为一条边的长方形有5个:1~2、1~3、1~4、1~5、1~6;以第2条竖线(绿线)为一条边的长方形有4个: 2~3、2~4、2~5、2~6; 以第3、第4、第5、第6竖线为一条边的长方形依次为3个、2个、1个、0个所以总共有:5+4+3+2+1=15个例:如下图共有多少个长方形?初看起来,长方形个数是上例的2倍,即30个。
细推敲就知道这个答案是错误的。
原图可以分解成三个图形:依照上例的方法,每一个图形都有15个长方形,所以原图形的长方形个数是:15×3=45个65 4 3 2 145 A BC 6 5 4 3 2 1 6 5432DF1 EA B C D D C E F A B E F2、数正方形个数(1)上图每一格都是正方形,图中共有多少个正方形?最佳算法:4单位长的正方形:1个;3单位长的正方形:2×2=4个;2单位长的正方形:3×3=9个;1单位长的正方形:4×4=16个;总共:1+4+9+16=30个正方形按对角线数:4+3+2+1=10;3+2+1=6;2+1=3;1.总共:10+2(6+3+1)=30个正方形规律:1×1格:1个正方形;2×2格:1+4=5个正方形;3×3格:1+4+9=14个正方形;4×4格:1+4+9+16=30个正方形;5×5格:1+4+9+16+25=55个正方形;6×6格:1+4++9+16+25+36=91个正方形;7×7格:1+4++9+16+25+36+49=140个正方形……n×n格:100*100格:1+4++9+16+25+36+49+……+10000=100×(100+1)×(2×100+1)/6=338350个正方形(2)如右图,数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形).分析为叙述方便,我们规定最小正方形的边长为1个长度单位,又称为基本线段,图中共有五类正方形.①以一条基本线段为边的正方形个数共有:6×5=30(个).②以二条基本线段为边的正方形个数共有:5×4=20(个).1239个16个4个1个③以三条基本线段为边的正方形个数共有:4×3=12(个). ④以四条基本线段为边的正方形个数共有:3×2=6(个). ⑤以五条基本线段为边的正方形个数共有:2×1=2(个).所以,正方形总数为: 6×5+5×4+4×3+3×2+2×1=30+20+12+6+2=70(个). 小结:一般情况下,若一个长方形的长被分成m 等份,宽被分成n 等份,(长和宽上的每一份是相等的)那么正方形的总数为(n <m ):m n+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)·1显然上例是结论的特殊情况.3、长方形和正方形的个数比较正方形数:1×1+2×2+…n×n长方形数:(1+2+…+n)(1+2+…+n)1 1+4=5 1+4+9=141+4+9+16=3010×10=1006×6=36 3×3=91例如下图,平面上有16个点,每个点上都钉上钉子,形成4×4的正方形钉阵,现有许多皮筋,问能套出多少个正方形.分析这个问题与前面数正方形的个数是不同的,因为正方形的边不是先画好的,而是要我们去确定的,所以如何确定正方形的边长及顶点,这是我们首先要思考的问题.很明显,我们能围成上图Ⅰ那样正向正方形14个,除此之外我们还能围出图Ⅱ那样斜向正方形4个,图Ⅲ那样斜向正方形2个.但我们不可能再围出比它们更小或更大的斜向正方形,所以斜向正方形一共有4+2=6个,总共可以围出正方形有:14+6=20(个).我们把上述结果列表分析可知,对于n×n个顶点,可作出斜向正方形的个数恰好等于(n-1)×(n-1)个顶点时的所有正方形的总数.1.左图有几个正方形?如右图: 4个小的,1个大的,共有:4+1=5个.或2×2+1=5个2.上图共有几个长方形? 如右图所示有:3+3+3=9个 或3×3=9个2+2=413+3+3=9总共16+9+4+1=30个1例:图中有多少个正方形? 多少个长方形?(说明:按长方形的定义,正方形也属于长方形,但本例的长方形指长度与宽度不等的长方形)以竖线1为边的长方形有5个; 以竖线2为边的长方形有4个; 以竖线3为边的长方形有3个; 以竖线4为边的长方形有2个;以竖线5为边的长方形有1个; 共有5+4+3+2+1=15个长方形. 第二种算法:暂且把正方形也计在长方形之内,并重复地数,向前数,也向后数: 以竖线各竖线为边的长方形均有6个,考虑到重复计算,总共: 6×7/2=21再排除6个正方形,所以共有21-6=15个长方形例:图中多少个正方形?多少个长方形?(难度★★★★★)解:正方形6×2+5=17个长方形(6+5+4+3+2+1) ×3-17=63-17=46个(说明:按长方形的定义,正方形也属于长方形,但本例的长方形指长度与宽度不等的长方形) 或直接数长方形:(5+4+3+2+1)×2+(6+4+3+2+1)=30+16=463 2 145 67地板砖图案中共有多少个正方形?1个解:正方形:正方形总共:9+4+1+13+4+1=32个3×3+4=13个 3×3=9个2×2=4个2×2=4个1个。
正方形(基础)【学习目标】1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;2.掌握正方形的性质及判定方法.【要点梳理】【高清课堂特殊的平行四边形(正方形)知识要点】要点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.要点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.要点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.要点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.【典型例题】类型一、正方形的性质1、(2015•扬州校级一模)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形=2+.其中正确的个数为()ABCDA.1B.2C.3D.4【思路点拨】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【答案与解析】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,∴S正方形ABCD=2+,④说法正确,∴正确的有①②④.故选C.【总结升华】本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.举一反三:【变式1】已知:如图,E为正方形ABCD的边BC延长线上的点,F是CD边上一点,且CE=CF,连接DE,BF.求证:DE=BF.【答案】证明:∵四边形ABCD 是正方形,∴BC=DC ,∠BCD=90° ∵E 为BC 延长线上的点, ∴∠DCE=90°, ∴∠BCD=∠DCE . 在△BCF 和△DCE 中,B C D C B C F D C E C F C E =⎧⎪∠=∠⎨⎪=⎩, ∴△BCF≌△DCE(SAS ), ∴BF=DE .【高清课堂 特殊的平行四边形(正方形) 例1】 【变式2】(2015•咸宁模拟)如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .75°B .60°C .55°D .45° 【答案】B ;提示:∵四边形ABCD 是正方形, ∴∠BAD=90°,AB=AD ,∠BAF=45°, ∵△ADE 是等边三角形, ∴∠DAE=60°,AD=AE ,∴∠BAE=90°+60°=150°,AB=AE , ∴∠ABE=∠AEB=(180°﹣150°)=15°, ∴∠BFC=∠BAF+∠ABE=45°+15°=60°; 故选:B .2、如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连接AG ,点E 、F 分别在AG 上,连接BE 、DF ,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.【思路点拨】要证明△ABE≌△DAF,已知∠1=∠2,∠3=∠4,只要证一条边对应相等即可.要求EF的长,需要求出AF和AE的长.【答案与解析】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∵∠1=∠2,∠3=∠4,∴△DAF≌△ABE.(2)解:∵四边形ABCD是正方形,∠AGB=30°,∴AD∥BC,∴∠1=∠AGB=30°,∵∠1+∠4=∠DAB=90°,∵∠3=∠4,∴∠1+∠3=90°,∴∠AFD=180°-(∠1+∠3)=90°,∴DF⊥AG,∴DF=11 2A D=∴A F∵△ABE≌△DAF,∴AE=DF=1,1【总结升华】通过证三角形全等得到边和角相等,是有关四边形中证边角相等的最常用的方法.而正方形的四条边相等,四个角都是直角为证明三角形全等提供了条件.举一反三:【变式】如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC为边做正方形ABEF 和正方形BCMN连接FN,EC.求证:FN=EC.【答案】证明:在正方形ABEF中和正方形BCMN中,AB=BE=EF,BC=BN,∠FEN=∠EBC=90°,1∵AB=2BC,即BC=BN=A B21∴BN=B E,即N为BE的中点,2∴EN=NB=BC,∴△FNE≌△ECB,∴FN=EC.要点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).类型二、正方形的判定3、如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE ⊥BC于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由.【答案与解析】解:是正方形,理由如下:作DG⊥AB于点G.∵ AD平分∠BAC,DF⊥AC,DG⊥AB,∴ DF=DG.同理可得:DG=DE.∴ DF=DE.∵ DF⊥AC,DE⊥BC,∠C=90°,∴四边形CEDF是矩形.∵ DF=DE.∴四边形CEDF是正方形.【总结升华】(1)本题运用了“有一组邻边相等的矩形是正方形”来判定正方形.(2)证明正方形的方法还可以直接通过证四条边相等加一个直角或四个角都是直角来证明正方形.举一反三:【变式】如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.【答案】(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),∴∠AOC=2∠COD,∠CO B=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC(已知),∴OD⊥AC,AD=DC(等腰三角形的“三线合一”的性质),∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF是矩形;(2)当∠AOC=90°时,四边形CDOF是正方形;理由如下:∵∠AOC=90°,AD=DC,∴OD=DC;又由(1)知四边形CDOF是矩形,则四边形CDOF是正方形;因此,当∠AOC=90°时,四边形CDOF是正方形.要点四、特殊平行四边形之间的关系或者可表示为:要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.类型三、正方形综合应用4、如图,在平面直角坐标系xoy 中,边长为a (a 为大于0的常数)的正方形ABCD 的对角线AC 、BD 相交于点P ,顶点A 在x 轴正半轴上运动,顶点B 在y 轴正半轴上运动(x 轴的正半轴、y 轴的正半轴都不包含原点O),顶点C 、D 都在第一象限.(1)当∠BAO =45°时,求点P 的坐标;(2)求证:无论点A 在x 轴正半轴上、点B 在y 轴正半轴上怎样运动,点P 都在∠AOB 的平分线上;【答案与解析】解:(1)当∠BAO =45°时,∠PAO =90°,在Rt △AOB 中,OA =2AB =2a ,在Rt △APB 中,PA =2AB =2a .∴ 点P 的坐标为,22⎛⎫⎪ ⎪⎝⎭. (2)如图过点P 分别作x 轴、y 轴的垂线垂足分别为M 、N ,则有∠PMA =∠PNB =∠NPM =∠BPA =90°,∵∠BPN +∠BPM =∠APM +∠BPM =90° ∴∠APM =∠BPN ,又PA =PB , ∴ △PAM ≌△PBN , ∴ PM =PN ,又∵ PN ⊥ON ,PM ⊥OM于是,点P 在∠AOB 的平分线上.【总结升华】根据题意作出辅助线,构造全等的直角三角形是解题关键.【巩固练习】一.选择题1. 正方形是轴对称图形,它的对称轴共有()A.1条 B.2条 C.3条 D.4条2. (2015•漳州一模)正方形具有而菱形不一定具有的性质是()A.四条边相等B.对角线互相垂直平分C.对角线平分一组对角D.对角线相等3. 如图,正方形ABCD的边长为4c m,则图中阴影部分的面积为( )2c m.A.6B.8C.16D.不能确定4. 顺次连结对角线互相垂直的四边形各边的中点,所得的四边形是 ( )A. 矩形B. 菱形C. 正方形D. 梯形5.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A1- B.3-116.如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个 B.6个 C.8个 D.10个二.填空题7.若正方形的边长为a,则其对角线长为______,若正方形ACEF的边是正方形ABCD的对角线,则正方形ACEF与正方形ABCD的面积之比等于______.8. 如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_________.9. 如图,将边长为2c m的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A B C''',若两个三角形重叠部分的面积是12c m,则它移动的距离A A'等于____c m.10. 如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交AD、BC于E、F,则阴影部分的面积是_______.11. 如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是______.12.(2015•长春)如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.三.解答题13.已知:如图,正方形ABCD中,点E、M、N分别在AB、BC、AD边上,CE=MN,∠MCE=35°,求∠ANM的度数.14.(2015•铁力市二模)如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E;PF⊥CD于点F,连接EF,给出下列五个结论:①AP=EF;②AP⊥EF;③∠PFE=∠BAP;④PD=EC;⑤PB2+PD2=2PA2,正确的有几个?.15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后,得到正方形EFCG,EF 交AD于H,求DH的长.【答案与解析】一.选择题1.【答案】D;【解析】正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.2.【答案】D;【解析】正方形的性质:正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等,并且每一条对角线平分一组对角;菱形的性质:菱形的四条边相等,对角线互相垂直平分,并且每一条对角线平分一组对角;因此正方形具有而菱形不一定具有的性质是:对角线相等;故选:D.3.【答案】B;【解析】阴影部分面积为正方形面积的一半.4.【答案】A;5.【答案】D;【解析】利用勾股定理求出CM即ME的长,有DM=DE,所以可以求出DE1,进而得到DG的长.6.【答案】C ;二.填空题7.,2∶1 ;【解析】正方形ACEF 与正方形ABCD 1.8.【答案】AC =BD 或AB⊥BC;【解析】∵在四边形ABCD 中,AB =BC =CD =DA∴四边形ABCD 是菱形∴要使四边形ABCD是正方形,则还需增加一个条件是AC =BD 或AB⊥BC .9.【答案】1;【解析】移动距离为B C x '=,重叠部分面积为CE ×1B C '=,所以()21x x -=,得()210x -=,所以1x =.10.【答案】1;【解析】由题可知△DEO≌△BFO,阴影面积就等于三角形BOC 面积.11.1-;【解析】1D E D C ''==,重叠部分面积为)121112⨯⨯⨯=.12.【答案】5;【解析】解:过E 作EM ⊥AB 于M ,∵四边形ABCD 是正方形,∴AD=BC=CD=AB ,∴EM=AD ,BM=CE ,∵△ABE 的面积为8, ∴×AB ×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.三.解答题13.【解析】解:作NF⊥BC 于F .∵ABCD 是正方形,∴CD =BC =FN则在Rt △BEC 和Rt △F MN 中,∠B=∠NFM=90°,C E M N B C F N=⎧⎨=⎩ ∴Rt △BEC≌Rt △FMN∴∠MNF=∠MCE=35°∴∠ANM=90°-∠MNF=55°14.【解析】解:①正确,连接PC ,可得PC=EF ,PC=PA ,∴AP=EF ;②正确;延长AP ,交EF 于点N ,则∠EPN=∠BAP=∠PCE=∠PFE ,可得AP ⊥EF ; ③正确;∠PFE=∠PCE=∠BAP ;④错误,PD=PF=CE ;⑤正确,PB 2+PD 2=2PA 2.所以正确的有3个:①②③.15.【解析】解:如图,连接CH ,∵正方形ABCD 绕点C 按顺时针方向旋转30°,∴∠BCF=30°,则∠DCF=60°,在Rt△CDH 和Rt△CFH 中,C H C H CD C F=⎧⎨=⎩ ∴Rt△C DH ≌Rt△CF H , ∴∠DCH=∠FCH=12∠DCF=30°,在Rt △CDH 中,DH =x ,CH =2x ,CD 3=,∴DH知识赠送以下资料英语万能作文(模板型)Along with the advance of the society more and more problems are brought to our attention, one of which is that....随着社会的不断发展,出现了越来越多的问题,其中之一便是____________。
《正方形(1)》基础型
一、单项选择题(共1题,共17分)
1. 如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()
A.45o B.55o C.60o D.75o
二、填空题(共5题,共83分)
1.如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任意作一条直线分别交AD、BC于E、F,则阴影部分的面积是.
2.如图,矩形内有两个相邻的正方形,面积分别是4和2,那么矩形内阴影部分的面积为 .
3. 如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD于点E,则DE =______.
4.如图,正方形ABCD的对角线长为E为AB上一点,若EF⊥AC于F,EG⊥BD于G,则EF+EG= .
5.如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C= 度.。