复变函数习题全解及导学第二章02
- 格式:docx
- 大小:2.34 MB
- 文档页数:9
第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =⋅ 解:22222222()||()()()(),f z z z z z z z zx y x iy x x y iy x y =⋅=⋅⋅=⋅=++=+++这里2222(,)(),(,)().u x y x x y v x y y x y =+=+2222222,2,2,2.x y y x u x y x v x y y u xy v xy =++=++==要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =⋅仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+-解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=-226,6,33,y x y u xy v xy v x y =-==-四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析.3.确定下列函数的解析区域和奇点,并求出导数.(1) (,).az b c d cz d++至少有一不为零解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az b f z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++ 当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 4.若函数()f z 在区域D 内解析,并满足下列条件之一,试证()f z 必为常数. (1) ()f z 在区域D 内解析; (2) 2;v u =(3) arg ()f z 在D 内为常数;(4) (,,).au bv c a b c +=为不全为零的实常数 证 (1) 因为()f z 在D 中解析,所以满足C R -条件,,u v u vx y y x∂∂∂∂==-∂∂∂∂ 又()f z u iv =-也在D 中解析,也满足C R -条件()(),.u v u v x y y x∂∂-∂∂-==-∂∂∂∂ 从而应有0u u v v x y x y∂∂∂∂====∂∂∂∂恒成立,故在D 中,u v 为常数, ()f z 为常数. (2) 因()f z 在D 中解析且有2()f z u iu =+,由C R -条件,有2,2.u u u x y u u u yx ∂∂⎧=⎪∂∂⎪⎨∂∂⎪=-⎪∂∂⎩ 则可推出0u ux y∂∂==∂∂,即u C =(常数).故()f z 必为D 中常数.(3) 设()f z u iv =+,由条件知arctan v C u=,从而22(/)(/)0,0,1(/)1(/)v u v u y x v u v u ∂∂∂∂==++ 计算得2222()/0v u u u v ux x u v ∂∂-∂∂=+,2222()/0,v u u u v u y y u v ∂∂-∂∂=+ 化简,利用C R -条件得0,0.uu u v y x u u u v xy ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪-=⎪∂∂⎩ 所以0,u u x y ∂∂==∂∂同理0,v vx y∂∂==∂∂即在D 中,u v 为常数,故()f z 在D 中为常数.(4) 法一:设0,a ≠则()/,u c bv a =-求导得,,u b vu b vx a xy a y∂∂∂∂=-=-∂∂∂∂ 由C R -条件,,u b uv b v x a yx a y∂∂∂∂==∂∂∂∂ 故,u v 必为常数,即()f z 在D 中为常数.设0,0,0a b c =≠≠则bv c =,知v 为常数,又由C R -条件知u 也必为常数,所以()f z 在D 中为常数.法二:等式两边对,x y 求偏导得:00x x yy au bv au bv +=⎧⎨+=⎩,由C R -条件,我们有0,00x y x xy y au bu u a b bu au u b a -=-⎧⎛⎫⎛⎫=⎨ ⎪ ⎪+=⎝⎭⎩⎝⎭即, 而220a b +≠,故0x y u u ==,从而u 为常数,即有()f z 在D 中为常数.5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y∂∂'+=∂∂证: 设 222(),|()|,f z u iv f z u v =+=+222(),|()|()().u u u u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x yu u v v u u v v u v u v xx x x y y y y ∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u uv vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 6.由下列条件求解解析函数().f z u iv =+ (1)22()(4);u x y x xy y =-++ 解: 因22363,u v x xy y x y∂∂==+-∂∂所以 22(363)v x xy y dy =+-⎰22333(),x y xy y x ϕ=+-+又222263(),363,()3,v uxy y x x xy y x x x xϕϕ∂∂''=++=--=-∂∂而所以 则 3()x x C ϕ=-+.故222233222222223()()(4)(33)(1)()(1)()2(1)2(1)(1)()2(1)(1)(2)(1)f z u ivx y x xy y i x y xy y x C i x x iy y i x iy x y i xy i Ci z i x y xyi iz i Ci i z x y xyi Ci i z Ci=+=-++++--+=-+--+-+--+=---⋅-+=---+=-+(2) 23;v xy x =+解: 因23,2,v vy x x y∂∂=+=∂∂由()f z 解析,有 22,2().u v x u xdx x y x yφ∂∂====+∂∂⎰又23,u v y y x ∂∂=-=--∂∂而(),u y yφ∂'=∂所以()23,y y φ'=--则2()3.y y y C φ=--+ 故 22()3(23).f z x y y C i xy x =--+++ (3) 2(1),(2);u x y f i =-=- 解: 因2,2(1),u u y x x y ∂∂==-∂∂由()f z 的解析性,有2(1),v ux x y∂∂=-=--∂∂22(1)(1)(),v x dx x y φ=--=--+⎰又2,v u y y x ∂∂==∂∂而(),v y yφ∂'=∂所以2()2,(),y y y y C φφ'==+则22(1),v x y C =--++故22()2(1)((1)),f z x y i x y C =-+--++由(2)f i =-得(2)(1),f i C i =-+=-推出0.C =即2222()2(1)(21)(21)(1).f z x y i y x x i z z i z =-+-+-=-+-=--7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ), 1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩8.试解方程:(1) 1z e =+解:(2)312(cos sin )233i k ze i e ππππ+=+=+=ln 2(2)3,0,1, 2.i k e k ππ++==±±故ln 2(2),0,1, 2.3z i k k ππ=++=±±(2) ln ;2iz π=解: 2cossin.22iz ei i πππ==+=9.求下列各式的值。
第二章全纯函数§2.1习题1.研究下列函数的可微性: (i )();f z z = 解: 0z ≠时00000()()limlimz z z z z z f z f z z z z z →→--=--不存在 这是因为当0z x iy =+时,00000limlim y y y y →→=当0z x iy =+时,00000limlim x x x x →→==故0z ≠时,()f z 不可导.当0z =时,有()(0)i i z f z f r e z z reθθ-∆∆-∆===∆∆∆ 即知()f z z =在0z =也不可导. 从而()f z z =处处不可导. (ii) 2();f z z = 解:0z ≠时00220000()()lim lim z z z z z z f z f z z z z z →→--=--显然不存在. 这是因为当0z x iy =+时0022220000000000()()lim lim 2x x x x x y x y x x x x x x iy x iy x x →→+---+==+--- 当0z x iy =+时,0022220000000000()()2lim lim ()y y y y x y x y y y y y y x iy x iy y y i i→→+---+==+--- 0z =时可导,(0)0f '=.(iii )()Re ;f z z =00000()()Re Re limlimz z z z f z f z z z z z z z →→--=--显然不存在. 这是因为当0z x iy =+时,000lim1x x x x x iy x iy →-=+--.当0z x iy =+时,00000lim0y y x x x iy x iy →-=+--从而()Re f z z =处处不可导 (v) ()f z 为常数不妨设(),f z C =显然'()0f z = 故()f z C =在处处可导.2.设f 和g 都在0z 处可微,且'000()()0,()0f z g z g z ==≠证明:0'0'0()()lim ()()z z f z f z g z g z →=提示:0000()()()limlim ()()()z z z z f z f z f z g z g z g z →→-=- 0000000()()()lim()()()z z f z f z z z f z z z g z g z g z →'--=⋅='--4.设域G 和域D 关于实轴对称,证明:如果()f z 是D 上的全纯函数,那么()f z 是G 上的全纯函数. 提示:00()()()()limlim (),z z f z z f z f z z f z f z z G z z →→⎡⎤+-+-'==∈⎢⎥⎣⎦§2.2习题1.设D 是域,).(D H f ∈如果对每个,D z ∈都有'()0f z =,证明f 是一常数. 证明:因为'()0f z =,而'()f z =u vi x x∂∂+∂∂=0(定理2.2.4) 所以u x ∂∂=0, v x ∂∂=0,而u x ∂∂=v y ∂∂,u y ∂∂=v x ∂-∂.故u y ∂∂=0, vy∂∂=0. 因此f 是一个常数.3.设iy x z +=,证明xy z f =)(在z=0处满足Cauchy-Reimann 方程,但f 在z=0处不可微.提示: u =0v =.直接算偏导.8.设D 是域, ()f H D ∈,f 在D 中不取零值,证明: 对于任意p>0,有2222()p f z xy ⎛⎫∂∂+ ⎪∂∂⎝⎭=2p 2()p f z -2'()f z . 提示:∆=2222x y ∂∂+∂∂= 42z z∂∂∂,将()f z 写成12()()f z f z ⎡⎤⎣⎦, 利用f z ∂∂=0, f z ∂∂=0, fz ∂∂='f , f z∂∂='f ,计算.11.设D 是域,(]:D \ ,0f →-∞ 是非常数的全纯函数,则log ()f z 和Arg ()f z 是D 上的调和函数,而()f z 不是D 上的调和函数.提示: 2221log ()log ()2log|()|2f z f zf z z z∂∆=∆=∂∂21()()2|()|f z f z z f z z ⎛⎫∂∂= ⎪∂∂⎝⎭2()()2|()|f z f z z f z ⎛⎫'∂= ⎪∂⎝⎭()20()f z z f z ⎛⎫'∂== ⎪∂⎝⎭2a r g ()()()i f z f z e f z =对z 求偏导(a r g ())f z z ∂∂=12i '()()f z f z 2z z∂∂∂(a r g ())f z =042z z∂∂∂(())f z =12()'()f z f z - 如果()f z 调和,则'()f z ≡0,从而f 是常数,矛盾.12.设D,G 是域, :f D G →是全纯函数,证明:若u 是G 上的调和函数,则u f 是D 上的调和函数.证明: 因为u 是G 上的调和函数,局部存在全纯函数g ,s.t. Re u g =, 则g f 局部全纯,于是局部有Re()u f g f = ,从而u f 调和.15.举例说明:存在B(0,1)\{0}上的调和函数,它不是B(0,1)\{0}上全纯函数的实部. 解: ()log||u z z =是B(0,1)\{0}上的调和函数,它不是B(0,1)\{0}上全纯函数的实部. (反证) 假设存在B(0,1)\{0}上的全纯函数()f z ,使得Re ()log f z z =, 设()log ||()f z z iv z =+,()v z 是实值函数.则()()||f z iv z ez e =⋅,从而()()1,(0,1)\{0}f z iv z e e z B z==∀∈. 由题2.(iv) 可知()f z e z≡常数, 故存在θ∈ s.t. ()f z i e ze θ= 即()||iv z i z e ze θ⋅=()(arg )iv z i z e e θ+⇒=()2v z argz k θπ⇒=++.由()v z 的连续性可知k 是常数.于是()2argz v z k θπ=--在B(0,1)\{0}连续,不可能.16.设f u iv =+, 000z x iy =+.证明: (i) 如果极限000()()lim Rez z f z f z z z →--存在,那么()00,u x y x ∂∂和()00,vx y y ∂∂存在,并且相等.(ii) 如果极限000()()li m Imz z f z f z z z →--存在,那么()00,u x y y∂∂和()00,v x y x ∂∂存在,而且()00,ux y y∂∂=-()00,v x y x ∂∂. 证明:(i)()00,u x y x ∂∂=00000(,)(,)lim x x u x y u x y x x →-- ()0z x i y =+ ()()000,z x y ==00000(,)(,)lim Rex x f x y f x y x x →--=000()()lim Rez z f z f z z z →--()00,vx y y∂∂=00000(,)(,)limy y v x y v x y y y →-- =00000(,)(,)lim Imy y f x y f x y y y →-- ()0z x i y =+ =()000()()lim Imz z f z f z i z z →---=()00()()lim Im z z f z f z iz z →--=000()()lim Rez z f z f z z z →--(ii)利用[]Im ()Re ()f z if z =-,由(i)即得.1.求映射i z iz w +-=在11-=z 和i z =2处的转动角和伸缩率. 解:因为 z if z i-=+222()()f z i z i iz z i z i ∂+-+==∂++ 122'()(1)if z i =-+=1 1arg '()f z =arg(1)-=π 2221'()(2)22i i f z i ===- 2a r g '()2f z π=-2.设f 是域D 上的全纯函数,且'()f z 在D 上不取零值,试证:(i )对每一个00()u iv f D +∈,曲线0Re ()f z u =和曲线0Im ()f z v =正交; 证明:(i )0u u =和0v v =是uv 平面中的正交直线.因为()0f z '≠,故f 是保角的. 从而曲线0Re ()f z u =和曲线0Im ()f z v =的夹角等于直线0u u =和0v v =的夹角,等于2π1.验证z z e e =证明:令z x iy =+,则z x iy =-(cos sin )z x e e y i y =+(cos sin )z x e e y i y ⇒=- (cos sin )z x e e y i y =-所以z z e e =.3.证明:若1z e =,则必有2,0,1,.z k i k π==±… 证明:1z e =||1x z e e ⇔==,20z Arge y k π=+=0,2,x y k k π⇔==∈Z2z k i π⇔=,k ∈Z .4.设f 是整函数,()0 1.f =证明:(i)若'()(),();z f z f z z f z e =∈≡ 对每个成立则(ii) 若对每个,z ω∈ ,有()()()f z f z f ωω+=,且'(0)1f =,则()z f z e ≡. 证明:(i )''(())()()()()0.z z z z z f z e f z e f z e f z e f z e -----=-=-=()z f z e c -=,11,1c c ⨯==,故()z f z e ≡(ii) ()()()f z f z f ωω''+=,令0()()z f f ωω'=⇒=7.设f 在\(,0]-∞ 中全纯,(1)0.f =证明: (i )若(]'()(),\,0,()log f z f z ez f z z -=∈-∞≡ 则;(ii)若()()()f z f z f ωω=+,(]\,0z ∈-∞ ,()0,ω∈∞,且'(1)1f =,则()log f z z ≡. 证明:(i )令()()f z F z ez =-,则'()'()()10f z F z e f z =⋅-=()F z c ⇒=(常数)令z=1,则(1)0110f e c -=-==F(1)=e.故()()log (1)1f z e z f z z f ⎫=⇒=⎬=⎭(ii)提示()()f z f z ωω''=,令1z =得1()f ωω'=.8.证明:32)(2++=z z z f 在()1,0B 中单叶.证明: 取()12120,1,z z B z z ∀∈≠,12()()f z f z -=1212()(2)z z z z -++()12121212,0,1()()0()()z z z z B f z f z f z f z ≠∈⇒-≠⇒≠,故)(z f 在()0,1B 中单叶.12.设f 在(]\,0-∞ 上全纯,(1)1,0.f μ=>证明:)(i 若(]'()(),\,0f z f z z zμ=∈-∞C ,则arg ();i z f z z e μμ≡ )(ii 若()()()f z f z f ωω=,(]\,0z ∈-∞C ,()0,ω∈∞,且'(1),f μ=则arg ()i z f z z e μμ≡证明:(i) 要证arg ()i zf z z eμμ=,即证log ()z f z e μ=()log ()0zf z eμ'=,及(1)1f =log ()||z i Argz f z e z e μμμ⇒==⋅.(ii) ()()()zf z f z f ωω'=令1ω=得()()zf z f z μ= 即()()f z f z zμ'= 14.证明:)(i cos()cos cos sin sin ;z z z ωωω+=⋅-⋅ )(ii sin()sin cos cos sin ;z z z ωωω+=⋅+⋅证明:(i) cos()sin()z i z ωω+++()i z e ω+= ()c o s c o s s i n s i n s i n c o s c os s i n z z i z zωωωω=-++ (1 ) 在上式中以z -,ω-代入,得cos()sin()z i z ωω+-+()cos cos sin sin sin cos cos sin z z i z z ωωωω=--+ (2) (1)+(2)得 cos()cos cos sin sin z z z ωωω+=-(1)(2)得 sin()sin cos cos sin z z z ωωω+=+19.证明: sin z ω=将半条形域:Re ,Im 022z z z ππ⎧⎫∈-<<>⎨⎬⎩⎭一一地映为上半平面.证明: sin cos()cos()22z z z ππω==-=-令2u z π=-,则cos w u =是由指数,(Re 0,Im 0),iu z e u u π=-<<>与Rokovsky 函数{}11(),((0,1)\0,0),2zz z B argz ωπ=+∈-<<的复合.故sin w z =将半条形区域{:Re ,Im 0}22z z z ππ∈-<<> 一一映成上半平面.20.证明(0,1)B 是2()(1)zf z z =-的单叶性域,并求出((0,1))f B . 证明: []1212122121()()()(1)(1)z z f z f z z z z z --=--- 给出f 的单叶性0z ≠时, 112()z f z z=+-由Rokovsky 函数的性质易得1((0,1))\(,]4f B =-∞-21.当z 按逆时针方向沿圆周{:2}z z =}旋转一圈后,计算下列函数辐角的增量:(iii) 124(23);z z +- (iv) 1211z z -⎛⎫⎪+⎝⎭. 解:(iii) 124(23)z z +-14[(3)(1)]z z =+⋅- 3-在圆周||2z =外,1在圆周||z =内所以当z 按逆时针方向沿圆周旋转一圈后, 辐角的增量为2π(iv) 11122221(1)(1)1(1)(1)1|1||1|z z z z z z z z ⎡⎤⎡⎤--+⎛⎫==-+⎢⎥⎢⎥ ⎪+++⎝⎭⎣⎦⎣⎦1z =±均在圆周||2z =内,所以辐角的增量为0.22.设1(),0 1.(1)p p z f z p z -=<<-证明:f 能在域[]\0,1D = 上选出单值的全纯分支.证明: 11()(1)1pp i p i z z f z e z e z z ππ-⎛⎫== ⎪+-⎝⎭只需考虑()1pz g z z ⎛⎫= ⎪-⎝⎭设γ是D 中的简单闭曲线,则当z 沿γ逆时针绕行一周时, 若γ内部不含[0,1],则辐角增量为0, 若[0,1]位于γ内部,则辐角增量为22()0p p ππ+-=.故g 从而f 能在域[]\0,1D = 上选出单值的全纯分支.23.证明: 21()z f z Log z ⎛⎫-= ⎪⎝⎭能在域(][]()\,10,1D =-∞-⋃ 上选出单值的全纯分支.证明: 21z z-将(][]()\,10,1-∞-⋃ 映入(]\,0-∞ ,而对数函数在(]\,0-∞ 上能选出全纯分支.24.设单叶全纯映射f 将域D 一一地映为G ,证明:G 的面积为2'().f z dxdy ⎰⎰证明:令iy x z +=,),(),()(y x iv y x u z f +=变换行列式(,)(,)u u v x v x y x ∂∂∂=∂∂∂ uy v y ∂∂∂∂= u v v ux y x y∂∂∂∂⋅-⋅∂∂∂∂= 22()()u v x x ∂∂+∂∂= 2u vix x∂∂+∂∂ = 2'()f z∴ 2'(,)||()(,)G DDu v S dxdy f z dxdy x y ∂==∂⎰⎰⎰⎰.25.设f 是域D 上的单叶全纯映射,)(),(βαγ≤≤=t t z 是D 中的光滑曲线, 证明:(())f t ωγ=的长度为''(())()f t t dt βαγγ⎰证明:''(())()d f t t dtωγγ= 故(())w f t γ=的长度为''(())()f t t dt βαγγ⎰26.设D 是z 平面上去掉线段[][]1,,1,i i -和射线z it = ()1t ≤<∞后得到的域,证明函数2(1)Log z -能在D 上分出单值的全纯分支.设f 是满足0)0(=f 的那个分支,试计算)2(f 的值.解: 取D 中任一简单闭曲线γ,则1±都不在γ内部,从而z 沿γ逆时针绕行一周时,21(1)(1)z z z -=-+辐角的增量为0,故能选出全纯分支.设22()log |1|(1)2f z z iarg z k π=-+-+. 由(0)00f k =⇒=, 故(2)log3(3)log3f iarg i π=+-=+.§2.5习题1. 试求把上半平面映为上半平面的分式线性变换,使得∞,0,1分别映为0,1,∞.解: 1()1T z z ω-==-2. 证明: 分式线性变换az b cz dω+=+把上半平面映为上半平面的充要条件是d c b a ,,,都是 实数,而且0>-bc ad .证明: 必要性:因为线性变换把实轴映为实轴, 故az b cz dω+=+中d c b a ,,,都是实数; 因为2()()ac bd ad bc i i cω++-=属于上半平面,故0>-bc ad . 充分性:对0,1,,z =∞都有()z ω∈R ,从而ω将实轴映为实轴,又Im ()0i ad bc ω=->,故将上半平面映为上半平面.4.试求把单位圆盘的外部{}1:>z z 映为右半平面{}:Re 0ωω>的分式线性变换,使得 (i)1,-i,-1分别变为i,0,-i;(ii)-i,i,1分别变为i,0,-i.解:(i)()z i T z z i ω+==- (ii)()(2)21z i T z i z i ω-==-+- 10.设()az b T z cz d +=+是一个分式线性变换,如果记a c ⎛ ⎝ 1b d -⎫⎪⎭=αγ⎛ ⎝ βδ⎫⎪⎭,那么1()z T z z αβγδ-+=+. 证明:a c⎛ ⎝ 1b d -⎫⎪⎭=d c ⎛ -⎝ b a -⎫⎪⎭=αλ⎛ ⎝ βδ⎫⎪⎭ ()az b T z cz d +=+()()czT z dT z az b ⇒+=+ 1()b dz z T z cz a z αβγδ--+⇒==-+ 从而证得1()z T z z αβγδ-+=+.11.设11111)(d c b a z T ++=,=)(2z T 2222d c b a ++是两个分式线性变换,如果记11a c ⎛ ⎝ 11b d ⎫⎪⎭22a c ⎛ ⎝ 22b d ⎫⎪⎭=a c ⎛ ⎝ b d ⎫⎪⎭那么12()()az b T T z cz d +=+ . 证明: 12()()T T z =1212121212121212a a z ab bc z bd c a z c b d c z d d ++++++ 又 11a c ⎛ ⎝ 11b d ⎫⎪⎭22a c ⎛ ⎝ 22b d ⎫⎪⎭=a c ⎛ ⎝ b d ⎫⎪⎭∴121212121212a abc a a b bd c c b d d d +=⎧⎪+=⎨⎪+=⎩⇒1212121212121212a a z a b b c z b d az b c a z c b d c z d d cz d ++++=++++ 从而12()()az b T T z cz d +=+ .12.设Γ是过-1和1的圆周,z 和w 都不在圆周上.如果,1=zw 那么z 和w 必分别于Γ的内部或外部.证明:由圆的对称性知Γ的圆心必然在虚轴上,设圆周与虚轴交个交点为12z z ,. 又由平面几何知识知12||||1z z ⋅=,从而211z z =. 设z 在Γ内部,则z 位于走向1,1z ,-1的左边,因此分式线性变换1(x)T x =,将1()z T z =映为走向1(1)()(1)T T z T -,,,即1,2z ,-1的左边.注意()T Γ=Γ,走向1,2z ,-1的左边即Γ的外部,故1z 在Γ外部.15.求一单叶全纯映射,把除去线段[]i +1,0的第一象限映为上半平面.提示: 先作变换41z z =,再作412+=z z ,最后作变换23z z =可得.16. 求一单叶全纯映射,把半条形域:Re ,Im 022z z z ππ⎧⎫-<<>⎨⎬⎩⎭映为上半平面,且把2π,0,2π-分别映为1,-1,0. 提示: 先作变换1z iz = ,再作12z e z =,)1(21,33423z z z iz z +=-=.即11()2iz iz w ie ie=-+- 17.求一单叶全纯映射,把除去线段[]hi a a +,的条形域{}:0Im 1z z <<映为条形域{}:0Im 1w w <<,其中,a 是实数, 01h <<提示:先作变换1z z e π=,再作变换ππa a e z e z z +-=112便可得结论.19.求一单叶全纯映射,把除去线段[]2,1的单位圆盘的外部映为上半平面.提示:先作变换111z z z -=+,再作变换221324351,,,9z iz z z z z z ===+=即w =.。
第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。
p90第二章习题(一)[ 1, 6, 9, 14(3), 26 ]1. 设连续曲线C : z = z(t), t∈[α, β],有z’(t0) ≠ 0 (t0∈[α, β]),试证曲线C在点z(t0)有切线.【解】首先,因为当t →t0时,(z(t) -z(t0))/(t-t0) →z’(t0) ≠ 0,故| (z(t) -z(t0))/(t-t0) | → | z’(t0)| ≠ 0,因此存在δ> 0,使得∀t∈[α, β],当0 < | t-t0 | < δ时,有| (z(t) -z(t0))/(t-t0) |≠ 0,故| z(t) -z(t0) |≠ 0,即z(t) ≠z(t0).此时,存在唯一确定的过点z(t0)以及点z(t) (t ≠t0)的割线:(y(t) -y(t0))(X-x(t0)) + (x(t) -x(t0))(Y-y(t0)) = 0.此方程等价于(y(t) -y(t0))/(t-t0) · (X-x(t0)) + (x(t) -x(t0))/(t-t0) · (Y-y(t0)) = 0.当t→t0时,有y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0.因为z’(t0) ≠ 0,故y’(t0)2 + x’(t0)2≠ 0.直线y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0就是曲线C在点z(t0)处的切线.[这里采用的切线的定义:切线是指割线的极限位置的直线.在这个题目的证明中,我们主要说明两点:第一,当t充分接近t0 (t≠t0),有唯一确定的割线过点z(t0)和z(t);第二,当t →t0 (t≠t0)时,过z(t0)和z(t)的割线确实有“极限位置”] 6. 若函数f(z)在区域D内解析,且满足下述条件之一,试证f(z)在D内为常数.(6.1) 在D内f’(z) = 0;【解】设f(z) = u(x, y) + i v(x, y),(x, y)∈D.由f’(z) = 0及f’(z) = u x + i v x,知u x = v x = 0;由Cauchy-Riemann方程,v y = u x = 0,u y = -v x = 0;因u x = u y = 0,故u在区域D内为常数.因v x = v y = 0,故v在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.2) ( f(z))*在D内解析;【解】因f(z) = u(x, y) + i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = v y,v x = -u y;因( f(z))* = u(x, y) -i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = -v y,v x = u y;因此得到u x = u y = v x = v y = 0,所以u, v都在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.3) | f(z) |在D内为常数;【解】若| f(z) |在D内恒为零,则在D内f(z) = 0 (常数).若在D内| f(z) | = c > 0,则f(z) · ( f(z))* = c2.因f(z)在D内解析且f(z) ≠ 0,故( f(z))* = c2/ f(z)在D内解析.由(2)知f(z)在区域D内为常数.(6.4) Re( f(z))或Im( f(z))在D内为常数.【解】设f(z) = u(x, y) + i v(x, y).若u(x, y) = Re( f(z))在D内为常数,则u x = u y = 0.由Cauchy-Riemann方程,v x = -u y = 0,v y = u x = 0;所以v(x, y) = Im( f(z))也在D内为常数.故f(z)在区域D内为常数.9. 试证下面的定理:设f(z) = u(r, θ) + i v(r, θ),z = r e iθ,若u(r, θ), v(r, θ)在点(r, θ)是可微的,且满足极坐标的Cauchy-Riemann方程:∂u/∂r = (1/r)∂v/∂θ,∂v/∂r = (-1/r)∂u/∂θ(r > 0),则f(z)在点z是可微的,并且f’(z) = (cosθ-i sinθ)(∂u/∂r + i∂v/∂r) = (r/z)(∂u/∂r + i∂v/∂r).【解】注意到在点(r, θ)处,因为r > 0,r, θ也是(x, y)的可微函数,并且,r x = x/r = cosθ,r y = y/r = sinθ;θx = -y/r2 = - sinθ/r,θy = x/r2 = cosθ /r.所以u, v也是(x, y)的可微函数.由求导的链锁法则,我们有u x = u r·r x + uθ·θx = ((1/r)vθ)· cosθ + (-r v r) · (- sinθ/r)= vθ · (cosθ /r) + v r · sinθ= vθ ·θy + v r ·r y= v y;以及v x = v r·r x + vθ·θx = ((-1/r)uθ)· cosθ + (r u r) · (- sinθ/r)= uθ · (- cosθ /r) + u r · (- sinθ)= - (uθ ·θy + u r ·r y)= -u y;即满足Cauchy-Riemann方程,故f(z)在点z是可微的,且f’(a) = u x + i v x = (vθ · (cosθ /r) + v r · sinθ) + i (uθ · (- cosθ /r) + u r · (- sinθ))= (r u r · (cosθ /r) + v r · sinθ) + i ((-r v r) · (- cosθ /r) + u r · (- sinθ))= (cosθ-i sinθ)(∂u/∂r + i∂v/∂r)= (r/z)(∂u/∂r + i∂v/∂r).[ r = √(x2 + y2)在(x, y) ≠ (0, 0)处有连续的偏导数,所以是可微的.θ作为(x, y)函数在(x, y) ≠ (0, 0)处的可微性的证明如下(参考第一章习题13的解答):设D1 = { z∈ | Re(z) > 0},D2 = { z∈ | Im(z) > 0},D3 = { z∈ | Im(z) < 0},D4 = { z∈ | Re(z) < 0}.则 \{0} = D1⋂D2⋂D3⋂D4.在D1上,θ = arctan(y/x) + 2k1π;在D2上,θ = arccot(x/y) + 2k2π;在D3上,θ = arccot(x/y) -π + 2k3π;在D4上,θ = arctan(y/x) + π + 2k4π.不论在那个区域D j上,θ都有连续的偏导数,因此θ在 \{0}上是可微的.] 14. 试验证:(3) lim z→ 0 ( z–z cos z )/( z– sin z ) = 3.【解】因分母z– sin z的一阶导数1 – cos z在原点处的值为0,故此题不能直接用L’Hospital法则(第2题的结论).但可对lim z→ 0 sin z / z用L’Hospital法则.开始以为这个题目应该放在后面的章节,可是终究不甘心,考虑再三,退到sin z 最原始的定义,发现可以以它的实部和虚部为实变量展开.先用L’Hospital法则,lim z→ 0 sin z / z = cos 0 = 1,得到sin z = z + o(z),z→ 0.所以1 – cos z = 2 sin 2(z/2) = 2 ( z/2 + o(z) )2 = z2/2 + o(z2),z→ 0.而sin z = sin(x + i y) = exp( i (x + i y) ) – exp( –i (x + i y) )/(2 i)= (exp(–y)(cos x + i sin x) – exp(y)(cos x–i sin x))/(2 i)= (exp(y) + exp(–y)) sin x + i (exp(y) – exp(–y)) cos x )/2注意到当k + m≥ 3时,o(x k y m) = o(| z |3),z→ 0;故sin z = (1 + y2/2 + o(y3)) (x–x3/6 + o(x4) ) + i (y + y3/6 + o(y4)) (1 –x2/2 + o(x3))= (x + i y ) – (x3 + i 3x2y– 3xy2/2 –i y3 )/6 + o(z3) = z–z3/6 + o(z3),z→ 0.所以,( z–z cos z )/( z– sin z ) = z (1 – cos z )/( z– sin z )= z (z2/2 + o(z2))/(z3/6 + o(z3)) → 3,z→ 0.26. 试证:在将z平面适当割开后,函数f(z) = ( (1 – z ) z2 )1/3能分出三个单值解析分支.并求出在点z = 2取负值的那个分支在z = i处的值.【解】根据课本p83的结论,1和0是仅有的支点,∞不是支点.所以,将z平面沿从0到1的直线段I = { z∈ | Im(z) = 0, 0 ≤ Re(z) ≤ 1 }割开后,就能保证变点z不会单绕0或1转一周,因此在G= \I上函数f(z)就能分出三个单值解析分支.设g(z) = ((1 – z ) z2 )1/3是在点z = 2取负值的那个分支.设arg g(2) = π + 2kπ ( k∈ ).又设C是G内一条从2到i的任一曲线,当变点z沿着曲线C从2到i时,z的辐角的连续增量为∆C arg z = π/2 + 2k0π ( k0∈ ),因此∆C arg (z2 )= π + 4k0π,相应地,1 –z的辐角的连续增量为∆C arg (1 –z )= 3π/2 + 2k0π ( m∈ ),所以g(z)的辐角的连续增量为∆C arg g(z) = (π + 3π/4 + 6k0π)/3 = 7π/12 + 2k0π.根据课本p84的结论,g(i) = | g(i) | · exp( i ∆C arg g(z)) · exp( i arg g(2))= | ((1 –i )i2 )1/3 | · exp( i (7π/12 + 2k0π)) · exp( i (π + 2kπ))= - 21/6 · exp( 7πi/12 ).[从上述的做法中可以看出,我们不妨(事实上也常常地)取k, k0 = 0,并不会造成任何影响.这类题目用辐角的连续增量来考虑是方便的,否则就有可能陷入辐角难以选择的困境,因为那时我们已经忘记了要求辐角是随着变点z连续变化的.设z = r1 exp( iθ1),1 –z = r2 exp( iθ2),那么g(z) = (r12 r2 )1/3 exp( i (2θ1 + θ2 + 2kπ)/3) (k是0, 1, 2之一).当z = 2时,r1(2)= 2,r2(2)= 1;θ1(2) = 0,θ2(2)= π.由于g(2) = 21/3 exp( i (π + 2kπ)/3) < 0,故只能k = 1.当z = i时,r1(i)= 1,r2(i)= 21/2;θ1(i) = π/2,θ2(i) = 7π/4.所以g(i) = (21/2)1/3 exp( i (2(π/2) + 7π/4 + 2π)/3) = - 21/6 · exp( 7πi/12 ).但是,为什么θ2(i) = 7π/4而不是θ2(i) = –π/4 ?事实上,当初的θ1(2)和θ2(2)一旦选定,就决定了其这个单值解析分支中其他点的辐角选择,因为我们要求辐角是连续变化的.确定i的辐角θ1(i)时,要保证z从2到i的过程中,θ1(z)是连续变化的.故应该取θ1(i) = π/2.(增加了π/2)但1 –i的辐角θ2(i),则应该是从z = 2时θ2(2)= π开始连续变化到z = i时所得到的辐角θ2(i),也就是说,θ2从π开始增加了3π/4,因此θ2(i) = π + 3π/4 = 7π/4.特别强调的是:这里的θj(z)的连续变化,应该是随着同一个变点z来变化的.比如,如果我们认为z绕割线I反向地从2转到i,那么,θ1(i) = - 3π/2,这时,θ2(i) = π- 5π/4 = -π/4,显然,如此计算g(i)也会得到上述的结果.至此,我们应该可以看出,两种做法的本质是相同的.]∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞∙︒ℵℜ℘∇∏∑⎰ ⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,∃m∈ +,★〈α1, α2, ..., αn〉lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。
第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.2.下列函数在何处可导何处不可导何处解析何处不解析 (1) 2().f z z z =⋅ 解:22222222()||()()()(),f z z z z z z z zx y x iy x x y iy x y =⋅=⋅⋅=⋅=++=+++这里2222(,)(),(,)().u x y x x y v x y y x y =+=+2222222,2,2,2.x y y x u x y x v x y y u xy v xy =++=++==要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =⋅仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+-解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=-226,6,33,y x y u xy v xy v x y =-==-四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az b f z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++ 当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 4.若函数()f z 在区域D 内解析,并满足下列条件之一,试证()f z 必为常数. (1) ()f z 在区域D 内解析; (2) 2;v u =(3) arg ()f z 在D 内为常数;(4) (,,).au bv c a b c +=为不全为零的实常数 证 (1) 因为()f z 在D 中解析,所以满足C R -条件,,u v u vx y y x∂∂∂∂==-∂∂∂∂ 又()f z u iv =-也在D 中解析,也满足C R -条件()(),.u v u v x y y x∂∂-∂∂-==-∂∂∂∂ 从而应有0u u v v x y x y∂∂∂∂====∂∂∂∂恒成立,故在D 中,u v 为常数, ()f z 为常数. (2) 因()f z 在D 中解析且有2()f z u iu =+,由C R -条件,有2,2.u u u x y u u u yx ∂∂⎧=⎪∂∂⎪⎨∂∂⎪=-⎪∂∂⎩ 则可推出0u ux y∂∂==∂∂,即u C =(常数).故()f z 必为D 中常数. (3) 设()f z u iv =+,由条件知arctan v C u=,从而22(/)(/)0,0,1(/)1(/)v u v u y x v u v u ∂∂∂∂==++ 计算得2222()/0v u u u v u x x u v∂∂-∂∂=+,2222()/0,v u u u v u y y u v ∂∂-∂∂=+ 化简,利用C R -条件得0,0.uu u v y x u u u v xy ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪-=⎪∂∂⎩ 所以0,u u x y ∂∂==∂∂同理0,v vx y∂∂==∂∂即在D 中,u v 为常数,故()f z 在D 中为常数.(4) 法一:设0,a ≠则()/,u c bv a =-求导得,,u b vu b vx a xy a y∂∂∂∂=-=-∂∂∂∂ 由C R -条件,,u b uv b v x a yx a y∂∂∂∂==∂∂∂∂ 故,u v 必为常数,即()f z 在D 中为常数.设0,0,0a b c =≠≠则bv c =,知v 为常数,又由C R -条件知u 也必为常数,所以()f z 在D 中为常数.法二:等式两边对,x y 求偏导得:0x x y y au bv au bv +=⎧⎨+=⎩,由C R -条件,我们有0,00x y x xy y au bu u a b bu au u b a -=-⎧⎛⎫⎛⎫=⎨ ⎪ ⎪+=⎝⎭⎩⎝⎭即, 而220a b +≠,故0x y u u ==,从而u 为常数,即有()f z 在D 中为常数.5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y∂∂'+=∂∂证: 设 222(),|()|,f z u iv f z u v =+=+222(),|()|()().u u u u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x yu u v v u u v v u v u v xx x x y y y y ∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u uv vu v x yx y∂∂∂∂=+==+=∂∂∂∂V V则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 6.由下列条件求解解析函数().f z u iv =+ (1)22()(4);u x y x xy y =-++ 解: 因22363,u v x xy y x y∂∂==+-∂∂所以 22(363)v x xy y dy =+-⎰22333(),x y xy y x ϕ=+-+又222263(),363,()3,v uxy y x x xy y x x x xϕϕ∂∂''=++=--=-∂∂而所以 则 3()x x C ϕ=-+.故222233222222223()()(4)(33)(1)()(1)()2(1)2(1)(1)()2(1)(1)(2)(1)f z u ivx y x xy y i x y xy y x C i x x iy y i x iy x y i xy i Ci z i x y xyi iz i Ci i z x y xyi Ci i z Ci=+=-++++--+=-+--+-+--+=---⋅-+=---+=-+(2) 23;v xy x =+ 解: 因23,2,v vy x x y∂∂=+=∂∂由()f z 解析,有 22,2().u v x u xdx x y x yφ∂∂====+∂∂⎰又23,u v y y x ∂∂=-=--∂∂而(),u y yφ∂'=∂所以()23,y y φ'=--则2()3.y y y C φ=--+ 故 22()3(23).f z x y y C i xy x =--+++ (3) 2(1),(2);u x y f i =-=- 解: 因2,2(1),u u y x x y ∂∂==-∂∂由()f z 的解析性,有2(1),v ux x y∂∂=-=--∂∂22(1)(1)(),v x dx x y φ=--=--+⎰又2,v u y y x ∂∂==∂∂而(),v y yφ∂'=∂所以2()2,(),y y y y C φφ'==+则22(1),v x y C =--++故22()2(1)((1)),f z x y i x y C =-+--++由(2)f i =-得(2)(1),f i C i =-+=-推出0.C =即2222()2(1)(21)(21)(1).f z x y i y x x i z z i z =-+-+-=-+-=--7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx px px y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩8.试解方程:(1) 1z e =+解: (2)312(cos sin )233i k ze i eππππ+=+=+=ln 2(2)3,0,1, 2.i k e k ππ++==±±故ln 2(2),0,1, 2.3z i k k ππ=++=±±(2) ln ;2iz π=解: 2cossin.22iz e i i πππ==+=9.求下列各式的值。
By 宋朝红2.1 复变函数的极限2.2 复变函数的连续性2.3 导数2.4 解析函数2.5 调和函数Math HZAU第二章导数zz f z z f z Δ)()Δ(lim 000Δ−+→1 导数与微分定义:设函数w=f(z)在包含z 0的某邻域D 内有定义,点z 0+⊿z ∈D. 如果极限存在, 则称f (z )在z 0可导, 此极限值就称为f (z )在z 0的导数, 记作0000Δ0(Δ)()d ()lim .d Δ|z z z f z z f z w f z z z=→+−′==如果f (z )在区域D 内处处可导, 则称f(z)在D内可导.例1求f (z )=z 2的导数例3讨论函数f (z )=|z|2的可导性函数可导一定连续,但连续却不一定可导例2问:函数f (z )=x +2yi 是否可导?求导公式与法则①常数的导数c ′=(a+ib )′=0.②(z n )′=nz n-1(n 是自然数).③设函数f (z ),g (z ) 均可导,则[f (z )±g (z )]′=f ′(z )±g ′(z ),[f (z )g (z )]′= f ′(z )g (z )+ f (z )g ′(z )----实函数中求导法则的推广)0)((,)()(')()()('')()(2≠−=⎥⎦⎤⎢⎣⎡z g z g z g z f z g z f z g z f④复合函数的导数( f [g (z )])′=f ′(w )g ′(z ),其中w=g (z )。
.0)()()()(10处可导点外)处在复平面上(除分母为导;在整个复平面上处处可由以上讨论z Q z P z R z a z a a z P nn =+++=⇒"⑤反函数的导数,其中: w=f (z )与z=ϕ(w )互为单值的反函数,且ϕ′(w )≠0。
)('1)('w z f ϕ=例3求f (z )=Arcsinz=-iLn (iz+ )的导数。
第二章 解析函数(一)1.证明:0>∃δ,使{}0001/),(t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的对应去心邻域内无重点,即能够联结割线)()(10t z t z ,是否就存在数列{}01t t n →,使)()(01t z t z n =,于是有 0)()(lim)(0101001=--='→t t t z t z t z n n t t n此与假设矛盾. 01001),(t t t t t >⇒+∈δ 因为 [])()(arg )()(arg010101t z t z t t t z t z -=--所以 []])()(lim arg[)()(arglim )()(arg lim 0101010101010101t t t z t z t t t z t z t z t z t t t t t t --=--=-→→→因此,割线确实有其极限位置,即曲线C 在点)(0t z 的切线存在,其倾角为)(arg 0t z '.2.证明:因)(),(z g z f 在0z 点解析,则)(),(00z g z f ''均存在.所以 )()()()()()(lim )()()()(lim )()(lim 00000000000z g z f z z z g z g z z z f z f z g z g z f z f z g z f z z z z z z ''=----=--=→→→ 3.证明:()()()()()3322,0,0,,0,00x y x y u x y x y x y ≠⎧-⎪=+⎨⎪=⎩()()()()()3322,0,0,,0,00x y x y v x y x y x y ≠⎧+⎪=+⎨⎪=⎩于是()()()00,00,00,0limlim 1x x x u x u xu xx →→-===,从而在原点()f z 满足C R -条件,但在原点,()()()()()'0,00,0x x u iv u iv f f z z z +-+-=()()()()()()333311i x y i zx y z ⎡⎤+--+⎣⎦=⎡⎤+⎣⎦当z 沿0y x =→时,有()()()'212f f z i z x --+= 故()f z 在原点不可微.4.证明:(1)当0≠z 时,即y x ,至少有一个不等于0时,或有y x u u ≠,,或有y x u u ≠-,故z 至多在原点可微. (2)在C 上处处不满足C R -条件.(3)在C 上处处不满足C R -条件. (4)221yx yix z z z z ++==,除原点外, 在C 上处处不满足C R -条件. 5.解:(1) y x y x v xy y x u 22),(,),(==,此时仅当0==y x 时有 xy v xy u x v y u x y y x 22,22-=-===== 且这四个偏导数在原点连续,故)(z f 只在原点可微. (2) 22),(,),(y y x v x y x u ==,此时仅当y x =这条直线上时有 00,22=-=====x y y x v u y v x u且在y x =这四个偏导数连续,故)(z f 只在y x =可微但不解析. (3) 333),(,2),(y y x v x y x u ==,且 00,9622=-=====x y y x v u y v x u 故只在曲线0212312=-x y 上可微但不解析.(4) 32233),(,3),(y y x y x v xy x y x u -=-=在全平面上有 xy v xy u y x v y x u x y y x 66,33332222-=-=-=-==-=且在全平面上这四个偏导数连续,故可微且解析. 6.证明:(1)y y x x iu v iv u z f D yi x z -=+='=∈+=∀)(0,(2)设().f z u iv =+则()f z u iv =-,由()f z 与()f z 均在D 内解析知,,x y y x u v u v ==-,,x y y x u v u v =-=结合此两式得0x y x y u u v v ====,故,u v 均为常数,故)(z f 亦为常数. (3)若0)(=≡C z f ,则显然0)(≡z f ,若0)(≠≡C z f ,则此时有0)(≠z f ,且2)()(C z f z f ≡,即)()(2z f C z f ≡也时解析函数,由(2)知)(z f 为常数. (4)设().f z u iv =+,若C y x u ≡),(,则0,0≡≡y x u u ,由C R -条件得 0,0≡=≡-=x y y x u v u v 因此v u ,为常数, 则)(z f 亦为常数.7.证明:设,f u iv g i f p iQ =+==+则,,f u iv g v iu =-=-由 ()f z 在D 内解析知,x y y x u v u v ==-从而 ,x x y v y y x p v u Q p v u Qx ==-====- 因而()g z 亦D 内解析.8.解:(1)由32233),(,3),(y y x y x v xy x y x u -=-=,则有 222233,6,6,33y x v xy v xy u y x u y x y x -==-=-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 22236)33()(z xyi y x i v u z f x x =+-=+='(2) ()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-⋅=- ()cos sin cos x x y u e x y y y y v =-+= ()sin sin cos x y x u e x y y y y v =--+=- 故()f z 在z 平面上解析,且()()()'cos 1sin sin 1cos x xf z e y x y y ie y x y y =⋅+-+⋅+-⎡⎤⎡⎤⎣⎦⎣⎦(3)由xshy y x v xchy y x u cos ),(,sin ),(==,则有xchy v xshy v xshy u xchy u y x y x cos ,sin ,sin ,cos =-===故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z xshyi xchy i v u z f x x cos sin cos )(=-=+=' (4)由xshy y x v xchy y x u sin ),(,cos ),(-==,则有xchy v xshy v xshy u xchy u y x y x sin ,cos ,cos ,sin -=-==-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z xshyi xchy i v u z f x x sin cos sin )(-=--=+=' 9.证明:设,i z x yi re θ=+=则cos ,sin ,x r y r θθ== 从而cos sin ,sin cos r x y x y u u u u u r u r θθθθθ=+=-+cos sin ,sin cos ,r x y x y v u v v v r v r θθθθθ=+=-+再由11,r r u v v u r rθθ==-,可得,x y y x u v u v ==-,因此可得()f z 在点z 可微且()()()'11cos sin sin cos x y r r f z u iu r u u i r u u r r θθθθθθ=-=--+()()1cos sin sin cos r i u i u rθθθθθ=--+()()cos sin sin cos r r i u i v θθθθ=-++ ()()cos sin r r i u iv θθ=-+ ()()1cos sin r r r r ru iv u iv i zθθ=+=++10.解:(1)x y i x z i e e e 2)21(22--+--== (2)222222y zxyiy zz e e e -+-==(3) 22222211x yi xy ix iyx yx yx y ze eeee--++++===⋅所以22221Re cos x yx y x y z e e ++⎛⎫= ⎪⎝⎭11.证明:(1)因为)sin (cos y i y e e e e e x yi x yi z z +=⋅==+ 因此 )sin (cos y i y e e x z -=而)sin (cos y i y e e e e e x yi x yi z z -=⋅==--,得证.(2)因为 ie e z iziz 2sin --=所以 z ie e i e e z iziz z i z i sin 22sin =+=-=---(3)因为2cos iziz e e z -+=所以z e e e e z iziz z i z i cos 22cos =+=+=--12.证明:分别就m 为正整数,零,负整数的情形证明,仅以正整数为例当1=m 时,等式自然成立. 假设当1-=k m 时,等式成立.那么当k m =时,kz z k z k z e e e e =⋅=-1)()(,等式任成立. 故结论正确.13.解:(1) )1sin 1(cos 333i e e e e i i +=⋅=+(2) ()()()11cos 12i i i i e e i ---+-=()112i i i e e-+++=cos11sin1122e i e e e ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭14.证明:(1)由于z z g z z f ==)(,sin )(在点0=z 解析 且01)0(,0)0()0(≠='==g g f 因此 11cos sin lim0===→z z zz z(2)由于0)(,1)(=-=z g e z f z 在点0=z 解析,且01)0(,0)0()0(≠='==g g f因此 11lim0==-=→z z z z e ze(3)由于z z z g z z z z f sin )(,cos )(-=-=在点0=z 解析, 且1)0(,0)0()0(,0)0()0(,0)0()0(='''=''=''='='==g g f g f g f 因此 3cos 1sin cos 1lim sin cos lim00=-+-=--→→zzz z z z z z z z z 15.证明:2cos iziz e e z -+=)cos()cos(cos nb a b a a +++-+=222)()()()(nb a i nb a i b a i b a i ia ia e e e e e e +-++-+-++++++ =⎥⎦⎤⎢⎣⎡--⋅+--⋅+-+ib bn i ia ib b n i ia e e e e e e 111121)1()1(=)2cos(2sin 21sinnb a b bn ++=右边同理证明(2).16.证明:(1) z i e e i i e e i e e iz zz z z iz i iz i sinh 222)sin()()(=-⋅=-=-=--- (2) z e e e e iz z z iz i iz i cosh 22)cos()()(=+=+=-- (3) z i ie e i e e iz iziz iz iz sin 22)sinh(=-⋅=-=-- (4) z z iz i iz cos )cos()cos()cosh(=-=⋅=(5) z i zz i iz iz iz tanh cosh sinh )cos()sin()tan(===(6) z i zzi iz iz iz tan cos sin )cosh()sinh()tanh(===17.证明:(1) 1)(sin )(cos )(222222=+=+=-iz iz ishz z ch z sh z ch(2) 111sec 2222222=+=+=+zch zsh z ch z sh z ch z th z h (3) )sin()sin()cos()cos()cos()(21212121iz iz iz iz iz iz z z ch -=+=+ 2121shz shz chz chz +=18.证明:(1) xshy i xchy iy x yi x yi x z cos sin )sin(cos )cos(sin )sin(sin +=+=+= (2) xshy i xchy iy x yi x yi x z sin cos )sin(sin )cos(cos )cos(cos +=-=+= (3) y x y xsh y xch xshy i xchy z 22222222sinh sin cos sin cos sin sin +=+=+= (4) y x y xsh y xch xshyi xchy z 22222222sinh cos sin cos sin cos cos +=+=-=19.证明: chz e e e e shz zz z z =+='-='--2)2()( shz e e e e chz zz z z =-='+='--2)2()( 20.解:(1) )31arg(31ln )31ln(i i i i z +++=+= )23(2ln ππk i ++= ),1,0( ±=k(2)由于2ln iz π=,则有i i e z i=+==2sin2cos2πππ(3)由于)2(1ππk e e i z +=-=,故)2(ππk i z +=(4)z z sin cos -=,即1tan -=z ,所以ππk i i i z +-=+-=411ln21 (5) 设,z x iy =+由12tgz i =+得()()sin 122cos iz iz iz iz zi e e i e e z--=+→-=-+ 2255iz i e →=-+22cos 25y e x -→=-,1sin 25x =41ln 5,54y e y -→==且1112,222tg x x arctg π⎡⎤⎛⎫=-=-+ ⎪⎢⎥⎝⎭⎣⎦11ln 5224z arctg i π⎡⎤⎛⎫→=-++ ⎪⎢⎥⎝⎭⎣⎦21.证明:因)1arg(1ln )1ln()1ln(-+-=-=-θθθi i i re i re re z ,所以)cos 21ln(21)sin ()1(ln 1ln )]1Re[ln(222θθθθr r r re re z i i -+=+-=-=- 22.解: 32)(3)()(πθk z ik ez r z w +=,)2,1,0;2)(0;(=<<∈k z G z πθ利用i i w -=)(定2,=k k ,再计算)(2i w -23.解: 2,22ππii e i e ==-,由32)2(-=-w 定1,=k k ,再计算i e i w π451)(=24.解: )24(2ln )]2)1(arg(1[ln )1ln()1(πππk i k i i i i i i ieeei +-+++++===+)24(2ln ππk i ee+-⋅= ),2,1,0( ±±=kππk i k i i i i e e e e 23ln )]23(arg 3[ln 3ln 3-++⋅=== ),2,1,0( ±±=k25.解:z 在z 平面上沿0=z 为圆心,1>R 为半径的圆周C 从A 走到B ,经过变换4z w =,其象点w 在w 平面上沿以0=w 为心,14>R 为半径的象圆周从A '走到B ',刚好绕1+=w w 的支点-1转一整周,故它在B '的值为B w '+1.因此 1)()(4+-=-=R z f z f AB.26.证明:()f z = 0,1,∞由于 3|12+,故()f z 的支点为0,1z =,因此在将z 平面沿实轴从0到期割开后,就可保证变点z 不会单绕0或者说转一周,于是在这样割开后的z 平面上()f z 就可以分出三个单值解析分支. 另由已知 ()arg f z π=得()()arg c i f z i f i e π∆=()2arg 1arg 3c c i z z ⎡⎤∆-+∆⎣⎦=32342i ππ⎡⎤+⋅⎢⎥⎣⎦=712i π=.(二)1.证明:由()21z f z z =-得()()2'2211z f z z +=-,从而于是()f z 在D 必常数()()()()()()22'2222111111z z f z z z f z z z z+-+⋅==---()4242121Re mz I z i z z-+=+- 所以 ()()4'421Re 12Re zf z z f z z z ⎛⎫-⋅= ⎪ ⎪+-⎝⎭由于1z <,因此410,z ->且()24422212Re 1210z z z z z+-≥+-=->故()()'Re 0f z z f z ⎛⎫⋅> ⎪ ⎪⎝⎭.2.证明:同第一题221Im 2111)()(1zzi z z z z f z f z -+-=-+='''+. 3.证明:题目等价域以下命题:设1,E E 为关于实轴对称的区域,则函数在E 内解析)(z f ⇒在1E 内解析.设)(z f 在E 内解析,对任意的10E z ∈,当1E z ∈时,有E z E z ∈∈,0,所以 )()()(lim )()(lim0000000z f z z z f z f z z z f z f z z z z '=--=--→→ 这是因为)(z f 在E 内解析,从而有)()()(lim0000z f z z z f z f z z '=--→,由0z 的任意性可知, )(z f 在1E 内解析. 4.证明:(1)由于)(21),(21z z iy z z x -=+=,根据复合函数求偏导数的法则,即可得证. (2))(21)(21x vy u i yv x u z v i z u z f ∂∂+∂∂+∂∂-∂∂=∂∂+∂∂=∂∂所以x vy u y v x u ∂∂-=∂∂∂∂=∂∂,,得0=∂∂zf 5.证明: x y sh y sh x y xch yi x z 222222sin )sin 1(sin )sin(sin +=-+=+= 所以 z x y sh shy sin sin 22=+≤ 而 z y shy Im =≥ ,故左边成立.右边证明可应用z sin 的定义及三角不等式来证明. 6.证明:有 R ch y ch y sh y sh x z 2222221sin sin ≤=+≤+= 即 chR t ≤sin又有 R ch y ch y sh y x z 2222221sinh cos cos ≤=+≤+= 7.证明:据定义,任两相异点21,z z 为单位圆1<z ,有212221212121)32()32()()(z z z z z z z z z f z f -++-++=--0112222121=-->--≥++=z z z z 故函数)(z f 在1<z 内是单叶的.8.证明:因为)(z f 有支点-1,1,取其割线[-1,1],有 (1) 10182)(,8)(arg ie c ei f z f ππ-=-=∆(2) i c c e i f z f i z f 852)(,85)(arg ,811)(arg 32πππ=--=∆-=∆ 9.解: 因为)(z f 有支点∞±,,1i ,此时支割线可取为:沿虚轴割开],[i i -,沿实轴割开],1[+∞,线路未穿过支割线,记线路为C ,)]arg())(arg()1arg([21)(arg i z i z z z f c c c c ⋅∆+--∆+-∆=∆2]0[21ππ-=-=故 i z f 5)(-=.10.证明:因为()f z =0,1,z =∞,由题知()f z 的支点为0,1,z =于是在割去线段0Re 1≤≤的平面上变点就不可能性单绕0或1转一周,故此时可出两二个单值解析分支,由于当z 从支割线上岸一点出发,连续变动到1z =-时,只z 的幅角共增加2π,由已知所取分支在支割线上岸取正值,于是可认为该分支在上岸之幅角为0,因而此分支在1z =-的幅角为2π,故()21i f π-==,i f 162)1(-=-''.。