机械原理课程设计-连杆机构B4
- 格式:doc
- 大小:339.00 KB
- 文档页数:24
2009 ~2010学年 第 二 学期一 二 三 四 五 六 七 八一、平面机构结构分析(15分)1. 在图1-1所示机构中,凸轮为一圆盘,铰链A 、B 、C共线,AB =BC =BD 。
(1)计算该机构自由度,请明确指出机构中的复合铰链、局部自由度或虚约束;(9分)(2)画出该机构的低副替代机构。
(3分)2. 试画出图1-2所示机构的基本杆组(必须将构件代号标注在基本杆组中),并确定机构的级别。
(3分)二、平面连杆机构分析与设计(30分)1. 确定图2-1所示机构在图示位置的全部瞬心。
若曲柄1的角速度ω1已知,写出计算构件3的角速度ω3的表达式;(8分)2. 画出机构在图示位置的传动角γ;(2分)3. 在图2-2所示机构中,已知1ϕ=45°,1ω=10rad/s ,逆时针方向,l AB =400mm ,封线密15 2 467 38 图1-24C B132ω1A图2-1B DC A J F E ' IG K O H 图1-1 Eγ=60°,试用相对运动图解法求构件2的角速度2ω、构件3的速度v 3和加速度a 3(要求列出矢量方程,画出速度多边形和加速度多边形);(10分)4.给定摇杆长度及两极限位置如图2-3所示,图中,μl =0.002m/mm ,要求机构的行程速比系数K =1.5,机架长度l AD =45mm ,试设计曲柄摇杆机构(直接在图2-3上作图,保留作图线,求出l AB 和l BC 的值)。
(10分)三、凸轮机构分析(10分)1. 试在图3中画出凸轮的理论轮廓曲线、基圆、从动件的最大行程h 、凸轮逆时针转至轮廓线上点A (点A 位于凸轮轮廓线的直线段上)与滚子接触时,从动件位移s 和机构压力角α;(6分)2. 凸轮的推程角Φ =?、回程角Φ'=?(4分)四、齿轮机构参数计算(10分)在图4所示齿轮机构中,己知各直齿圆柱齿轮模数均为2mm ,各轮的齿数分别为:z 1=15,z 2=32,z 2'=20,z 3=30。
第8章 连杆机构及其设计8.1 复习笔记本章主要介绍了平面四杆机构的类型及演化、基本知识和设计(作图法和解析法)。
学习时需要重点掌握不同条件下连杆机构的设计(作图法),常以分析作图题的形式考查。
除此之外,铰链四杆机构有曲柄的条件、急回运动、行程速度变化系数、传动角、死点等内容,常以选择题、填空题和判断题的形式考查,复习时需要把握其具体内容,重点记忆。
一、连杆机构及其传动特点(见表8-1-1)表8-1-1 连杆机构及其传动特点二、平面四杆机构的类型及应用1.四杆机构的基本形式(1)基本构架铰链四杆机构是平面四杆机构的基本形式,如图8-1-1所示。
台图8-1-1该机构各部分名称及含义见表8-1-2。
表8-1-2 铰链四杆机构(2)平面四杆机构的类型(见表8-1-3)表8-1-3 平面四杆机构的类型2.平面四杆机构的演化形式(1)改变构件的形状和运动尺寸如图8-1-2所示,曲柄摇杆机构中,将摇杆做成滑块形式,并将摇杆的长度增至无穷大,则演化成为曲柄滑块机构;曲柄滑块机构进一步演化为双滑块机构。
图8-1-2(2)改变运动副的尺寸通过改变运动副的尺寸,平面四杆机构可演化成具有其他特点功能的机构,如偏心轮机构。
将图8-1-3(a )所示的曲柄滑块机构中的转动副B 的半径扩大,使之超过曲柄AB 的长度,便得到如图8-1-3(b )所示的偏心轮机构。
图8-1-3(a)图8-1-3(b)(3)选用不同的构件为机架机构的倒置指选择运动链中不同构件作为机架以获得不同机构的演化方法,如图8-1-4所示。
图8-1-4 曲柄滑块机构的倒置(4)运动副元素的逆换将移动副两元素的包容关系进行逆换,并不影响两构件之间的相对运动,但却能演化成不同的机构或机构结构形式。
三、平面四杆机构的基本知识1.铰链四杆机构有曲柄的条件(见表8-1-4)表8-1-4 铰链四杆机构有曲柄的条件2.铰链四杆机构的急回运动和行程速度变化系数(见表8-1-5)表8-1-5 铰链四杆机构的急回运动和行程速度变化系数图8-1-5 四杆机构的极位夹角3.铰链四杆机构的传动角和死点(见表8-1-6)表8-1-6 铰链四杆机构的传动角和死点。
第五章 平面连杆机构及其设计 §5-1平面连杆机构的应用及传动特点§5-2平面四杆机构的类型和应用§5-3平面四杆机构的一些共性问题§5-4 平面四杆机构的设计1)低副便于加工、润滑;构件间压强小、磨损小、承载能力大、寿长;2)连杆机构型式多样,可实现转动、移动、摆动、平面复合运动等运动形式间的转换。
如:锻压机肘杆机构,单侧曲线槽导杆机构,汽车空气泵,可变行程滑块机构,等。
一、平面连杆机构的优点和应用平面连杆机构:各构件全部用低副联接而成的平面机构(低副机构).例如:四足机器人(图片、动画)、内燃机中的曲柄滑块机构、汽车刮水器、缝纫机踏板机构、仪表指示机构等。
曲柄滑块机构摆动导杆机构常见平面连杆机构:铰链四杆机构(雷达天线,飞剪,搅拌机)锻压机肘杆机构可变行程滑块机构3)可用于远距离操纵、重载机构,如:自行车手闸机构,挖掘机等。
4)连杆曲线丰富,可实现特定的轨迹要求,如:搅拌机构,鹤式起重机等。
挖掘机搅拌机构鹤式起重机二、平面连杆机构的缺点1)运动副中的间隙会造成较大累积误差,运动精度较低。
2)多杆机构设计复杂,效率低。
3)多数构件作变速运动,其惯性力难以平衡,不适用于高速。
多杆机构大都是四杆机构组合或扩展的结果。
本章介绍四杆机构的分析和设计。
六杆机构及六杆机构的实际应用一、 铰链四杆机构的基本型式和应用铰链四杆机构:全部用回转副联接而成的四杆机构。
连架杆——与机架相联的构件;周转副——组成转动副的两个构件作整周相对转动的转动副;曲柄1——作整周定轴回转的构件;摇杆3——作定轴摆动的构件;转动副摆转副(C、D)周转副(A、B)铰链四杆机构分为:曲柄摇杆机构、双曲柄机构和双摇杆机构。
1.曲柄摇杆机构铰链四杆机构中,若两连架杆中有一个为曲柄,另一个为摇杆,则称为曲柄摇杆机构。
实现转动和摆动的转换。
雷达天线俯仰机构缝纫机踏板机构应用(动画演示):雷达天线俯仰角调整机构,飞剪机构,搅拌机构,摄影机抓片机构、缝纫机踏板机构等。
机械原理课程设计编程说明书设计题目: 牛头刨床的设计及运动分析(1)指导老师: 席本强, 郝志勇设计者: 迟宇学号: **********班级: 液压09-1班2011年6月30号辽宁工程技术大学机械原理课程设计任务书五、要求:1)作机构的运动简图(A4或A3图纸)。
2)用C语言编写主程序调用子程序, 对机构进行运动分析, 并打印出程序及计算结果。
3)画出导轨4的角位移, 角速度, 角加速度的曲线。
4)编写设计计算说明书。
指导教师:开始日期: 2010年6月26日完成日期: 2010年6月30日目录1.设计要求及参数 (1)2.数学模型 (2)3.程序框图 (4)4.程序清单及运行结果 (5)5.设计总结 (14)6.参考文献 (14)一、设计要求及参数已知: 曲柄每分钟转数n2, 各构件尺寸及重心位置, 且刨头导路X-X位于导杆端点B所作圆弧的平分线上, 数据见下表要求:(1)作机构的运动简图(2)用C语言编写主程序调用子程序, 对机构进行运动分析, 动态显示, 并打印程序及运算结果。
(3)画出导轨4的角位移Ψ, 角速度Ψ’, 角加速度Ψ”。
(4)编写设计计算说明书二、数学模型如图四个向量组成封闭四边形, 于是有0321=+-Z Z Z按复数式可以写成a (cos α+isin α)-b(cos β+isin β)+d(cos θ3+isin θ3)=0(1)由于θ3=90º, 上式可化简为a (cos α+isin α)-b(cos β+isin β)+id=0(2)根据(2)式中实部、虚部分别相等得acos α-bcos β=0(3)asin α-bsin β+d=0(4)(3)(4)联立解得 β=arctan acosaasinad + (5)b=2adsina d2a 2++ (6)将(2)对时间求一阶导数得ω2=β’=baω1cos(α-β)(7)υc =b ’=-a ω1sin(α-β)(8)将(2)对时间求二阶导数得ε3=β”=b1[a ε1cos(α-β)- a ω21sin(α-β)-2υc ω2] (9)a c =b ”=-a ε1sin(α-β)-a ω21cos(α-β)+b ω22(10)ac 即滑块沿杆方向的加速度, 通常曲柄可近似看作均角速转动, 则ε1=0。
机械原理课程设计说明书设计题目:压床机构设计班级 :B042114学号 :B**********:**完成日期:2013年1月一、机构简介 (2)1.压床机构简介 (2)2.设计内容 (3)(1)机构的设计及运动分折 (3)(2)凸轮机构构设计 (3)二、执行机构的选择 (4)方案一 (4)(1)运动分析 (4)(2)工作性能 (4)(3)机构优、缺点 (5)方案二 (5)(1)运动分析 (5)(2)工作性能 (6)(3)机构优、缺点 (6)方案三 (6)(1)运动分析 (7)(2)工作性能 (7)(3)机构优、缺点 (7)选择方案 (7)三、主要机构设计 (8)1、连杆机构的设计 (8)2、凸轮机构设计 (8)四、机构运动分析 (13)五、原动件原则 (16)六、传动机构的选择 (16)七、运动循环图 (18)八、心得体会 (19)九、参考文献 (20)一、机构简介1.压床机构简介压床机械是被应用广泛的锻压设备它是由六杆机构中的冲头(滑块)向下运动来冲压机械零件的。
其执行机构主要由连杆机构和凸轮机构组成。
图1为压床机械传动系统示意图。
电动机经联轴器带动三级齿轮减速传动装置后,带动冲床执行机构(六杆机构,见图2)的曲柄转动,曲柄通过连杆,摇杆带动冲头(滑块)上下往复运动,实现冲压零件。
在曲柄轴的另一端,装有供润滑连杆机构各运动副的油泵凸轮机构。
2.设计内容(1)机构的设计及运动分折已知:中心距x1、x2、y, 构件4 的上、下极限角,滑块的冲程H,比值CB/BO4、CD/CO4,各构件质心S 的位置,曲柄转速n1。
要求:将连杆机构放在直角坐标系下,编制程序,并画出运动曲线,打印上述各曲线图。
(2)机构的动态静力分析已知:各构件的重量G 及其对质心轴的转动惯量Js(曲柄2 和连杆5的重力和转动惯量略去不计),阻力线图(图9—7)以及连杆机构设计和运动分析中所得的结果。
要求:通过建立机构仿真模型,并给系统加力,编制程序求出外力,并作曲线,求出最大平衡力矩和功率。
第2章 机构的结构分析(P29)2-12:图a 所示为一小型压力机。
图上,齿轮1与偏心轮1’为同一构件,绕固定轴心O 连续转动。
在齿轮5上开有凸轮轮凹槽,摆杆4上的滚子6嵌在凹槽中,从而使摆杆4绕C 轴上下摆动。
同时,又通过偏心轮1’、连杆2、滑杆3使C 轴上下移动。
最后通过在摆杆4的叉槽中的滑块7和铰链G 使冲头8实现冲压运动。
试绘制其机构运动简图,并计算自由度。
解:分析机构的组成:此机构由偏心轮1’(与齿轮1固结)、连杆2、滑杆3、摆杆4、齿轮5、滚子6、滑块7、冲头8和机架9组成。
偏心轮1’与机架9、连杆2与滑杆3、滑杆3与摆杆4、摆杆4与滚子6、齿轮5与机架9、滑块7与冲头8均组成转动副,滑杆3与机架9、摆杆4与滑块7、冲头8与机架9均组成移动副,齿轮1与齿轮5、凸轮(槽)5与滚子6组成高副。
故解法一:7=n 9=l p 2=h p12927323=-⨯-⨯=--=h l p p n F解法二:8=n 10=l p 2=h p 局部自由度1='F11210283)2(3=--⨯-⨯='-'-+-=F p p p n F h l(P30) 2-17:试计算如图所示各机构的自由度。
图a 、d 为齿轮-连杆组合机构;图b 为凸轮-连杆组合机构(图中在D 处为铰接在一起的两个滑块);图c 为一精压机机构。
并问在图d 所示机构中,齿轮3与5和齿条7与齿轮5的啮合高副所提供的约束数目是否相同?为什么?解: a) 4=n 5=l p 1=h p11524323=-⨯-⨯=--=h l p p n Fb) 5=n 6=l p 2=h p12625323=-⨯-⨯=--=h l p p n F12625323=-⨯-⨯=--=h l p p n Fc) 5=n 7=l p 0=h p10725323=-⨯-⨯=--=h l p p n Fd) 6=n 7=l p 3=h p13726323=-⨯-⨯=--=h l p p n F(C 可看做是转块和导块,有1个移动副和1个转动副)齿轮3与齿轮5的啮合为高副(因两齿轮中心距己被约束,故应为单侧接触)将提供1个约束。
机械原理课程设计任务书题目:连杆机构设计B4-b姓名:GHGH班级:机械设计制造及其自动化2006级7班设计参数设计要求:1.用解析法按计算间隔进行设计计算;2.绘制3号图纸1张,包括:(1)机构运动简图;(2)期望函数与机构实现函数在计算点处的对比表;(3)根据对比表绘制期望函数与机构实现函数的位移对比图;3.设计说明书一份;4.要求设计步骤清楚,计算准确。
说明书规范。
作图要符合国家标。
按时独立完成任务。
目录第1节 平面四杆机构设计 .................................................................... 3 1.1连杆机构设计的基本问题 ................................................................. 3 1.2作图法设计四杆机构 ......................................................................... 3 1.3 解析法设计四杆机构 ........................................................................ 3 第2节 设计介绍 .................................................................................... 5 2.1按预定的两连架杆对应位置设计原理 ............................................. 5 2.2 按期望函数设计 ................................................................................ 6 第3节 连杆机构设计 ............................................................................ 8 3.1连杆机构设计 ..................................................................................... 8 3.2变量和函数与转角之间的比例尺 ..................................................... 8 3.3确定结点值 ......................................................................................... 8 3.4 确定初始角0α、0ϕ ........................................................................... 9 3.5 杆长比m,n,l 的确定 ...................................................................... 13 3.6 检查偏差值ϕ∆ ................................................................................. 13 3.7 杆长的确定 ...................................................................................... 13 3.8 连架杆在各位置的再现函数和期望函数最小差值ϕ∆的确定 ..... 15 总结 ........................................................................................................... 18 参考文献 ................................................................................................... 19 附录 .. (20)第1节平面四杆机构设计1.1连杆机构设计的基本问题连杆机构设计的基本问题是根据给定的要求选定机构的型式,确定各构件的尺寸,同时还要满足结构条件(如要求存在曲柄、杆长比恰当等)、动力条件(如适当的传动角等)和运动连续条件等。
根据机械的用途和性能要求的不同,对连杆机构设计的要求是多种多样的,但这些设计要求可归纳为以下三类问题:(1)预定的连杆位置要求;(2)满足预定的运动规律要求;(3)满足预定的轨迹要求;连杆设计的方法有:解析法、作图法和实验法。
1.2作图法设计四杆机构对于四杆机构来说,当其铰链中心位置确定后,各杆的长度也就确定了。
用作图法进行设计,就是利用各铰链之间相对运动的几何关系,通过作图确定各铰链的位置,从而定出各杆的长度。
根据设计要求的不同分为四种情况:(1) 按连杆预定的位置设计四杆机构(2) 按两连架杆预定的对应角位移设计四杆机构(3) 按预定的轨迹设计四杆机构(4) 按给定的急回要求设计四杆机构1.3 解析法设计四杆机构在用解析法设计四杆机构时,首先需建立包含机构各尺度参数和运动变量在内的解析式,然后根据已知的运动变量求机构的尺度参数。
现有三种不同的设计要求,分别是:(1) 按连杆预定的连杆位置设计四杆机构(2) 按预定的运动轨迹设计四杆机构(3) 按预定的运动规律设计四杆机构1) 按预定的两连架杆对应位置设计2) 按期望函数设计本次连杆机构设计采用解析法设计四杆机构中的按期望函数设计。
下面在第2节将对期望函数设计四杆机构的原理进行详细的阐述。
第2节 设计介绍2.1按预定的两连架杆对应位置设计原理如下图所示:设要求从动件3与主动件1的转角之间满足一系列的对应位置关系,即θi 3=)(1θi f i=1, 2,… ,n 其函数的运动变量为θi 由设计要求知θ1、θ3为已知条件。
有θ2为未知。
又因为机构按比例放大或缩小,不会改变各机构的相对角度关系,故设计变量应该为各构件的相对长度,如取d/a=1 , b/a=l c/a=m , d/a=n 。
故设计变量l 、m 、n 以及θ1、θ3的计量起始角0α、0ϕ共五个。
如图所示建立坐标系Oxy ,并把各杆矢量向坐标轴投影,可得)cos()cos(cos αθϕθθ+-++=m n l)cos()sin(sin 01032αθϕθθ+-++=i i i m n l为消去未知角θi 2,将上式 两端各自平方后相加,经整理可得yx)2/()1()cos()()cos()cos(22201030301n n m m l n m i i i i -+++-+--+=+-αθϕθϕθαθ令p 0=m,p 1=-m/n,p 2=)2/()1(222n l n m -++,则上式可简化为:p p p iiii 210313001)cos()cos()cos(+-+-+=+-αθϕθϕθαθ 2-2式 2-2 中包含5个待定参数p 0、p 1、p 2、α0、及ϕ0机构最多可以按两连架杆的5个对应位置精度求解。
2.2 按期望函数设计如上图所示,设要求设计四杆机构两连架杆转角之间实现的函数关系)(x f y = (成为期望函数),由于连架杆机构的待定参数较少,故一般不能准确实现该期望函数。
设实际实现的函数为月)(x F y =(成为再现函数),再现函数与期望函数一般是不一致的。
设计时应该使机构的再现函数尽可能逼近所要求的期望函数。
具体作法是:在给定的自变量x 的变化区间x 0到x m 内的某点上,使再现函数与期望函数的值相等。
从几何意义上)(x F y =与)(x f y =两函数曲线在某些点相交。
这些点称为插值结点。
显然在结点处:0)()(=-x f x F故在插值结点上,再现函数的函数值为已知。
这样,就可以按上述方法来设计四杆机构。
这种设计方法成为插值逼近法。
在结点以外的其他位置,)(x F y =与)(x f y =是不相等的,其偏差为)()(x F x f y -=∆偏差的大小与结点的数目及其分布情况有关,增加插值结点的数目,有利于逼近精度的提高。
但结点的数目最多可为5个。
至于结点位置分布,根据函数逼近理论有m i x x x x x m m i 2)12(cos )(21)(2100π---+=2-3试中i=1,2, … ,3,n 为插值结点数。
本节介绍了采用期望函数设计四杆机构的原理。
那么在第3节将 具体阐述连杆机构的设计。
第3节 连杆机构设计3.1连杆机构设计设计参数表注:本次采用编程计算,计算间隔0.5° 3.2变量和函数与转角之间的比例尺根据已知条件y=㏑x(1≦x ≦2)为铰链四杆机构近似的实现期望函数, 设计步骤如下:(1)根据已知条件10=x ,2=x m ,可求得00=y ,693.0=y m 。
(2)由主、从动件的转角范围m α=60°、m ϕ=85°确定自变量和函数与转角之间的比例尺分别为:︒=-=60/1/)(0ααmmx x u ︒=-=85/693.0/)(0ϕϕm m y y u 3.3确定结点值设取结点总数m=3,由式2-3可得各结点处的有关各值如表(3-1)所示。
表(3-1) 各结点处的有关各值3.4 确定初始角0α、0ϕ通常我们用试算的方法来确定初始角0α、0ϕ,而在本次连杆设计中将通过编程试算的方法来确定。
具体思路如下: 任取0α、0ϕ,把0α、0ϕ取值与上面所得到的三个结点处的αi、ϕi 的值代入P134式8-17P P P i i i i 20103103001)cos()cos()cos(+-+-+=+-αθϕθϕθαθ从而得到三个关于P 0、P 1、P 2的方程组,求解方程组后得出P 0、P 1、P 2,再令P 0=m,P 1=-m/n, P 2=)2/()1(222n l n m -++。
然求得后m,n,l 的值。
由此我们可以在机构确定的初始值条件下找 到任意一位置的期望函数值与再现函数值的偏差值ϕ∆。
当 ︒<∆1ϕ时,则视为选取的初始、角度0α0ϕ满足机构的运动要求。
具体程序如下:#include<stdio.h> #include<math.h>#define PI 3.1415926#define t PI/180void main(){int i;float p0,p1,p2,a0,b0,m,n,l,a5;float A,B,C,r,s,f1,f2,k1,k2,j;float u1=1.0/60,u2=0. 93/685,x0=1.0,y0=0.0; float a[3],b[3],a1[6],b1[3];FILE *p;if((p=fopen("d:\\zdp.txt","w"))==NULL) {printf("can't open the file!");exit(0);}a[0]=4.02;a[1]=30;a[2]=55.98;b[0]=7.97;b[1]=49.68;b[2]=80.83;printf("please input a0: \n");scanf("%f",&a0);printf("please input b0: \n");scanf("%f",&b0);for(i=0;i<3;i++){a1[i]=cos((b[i]+b0)*t);a1[i+3]=cos((b[i]+b0-a[i]-a0)*t);b1[i]=cos((a[i]+a0)*t);}p0=((b1[0]-b1[1])*(a1[4]-a1[5])-(b1[1]-b1[2])*(a1[3]-a1[4]))/((a1[0]-a1[1])*(a1[4]-a1[5])-(a1[1]-a1[2])*(a1[3]-a1[4]));p1=(b1[0]-b1[1]-(a1[0]-a1[1])*p0)/(a1[3]-a1[4]);p2=b1[0]-a1[0]*p0-a1[3]*p1;m=p0;n=-m/p1;l=sqrt(m*m+n*n+1-2*n*p2);printf("p0=%f,p1=%f,p2=%f,m=%f,n=%f,l=%f\n",p0,p1,p2,m,n,l); fprintf(p,"p0=%f,p1=%f,p2=%f,m=%f,n=%f,l=%f\n",p0,p1,p2,m,n,l); printf("\n");fprintf(p,"\n");for(i=0;i<5;i++){printf("please input one angle of fives(0--60): ");scanf("%f",&a5);printf("when the angle is %f\n",a5);fprintf(p,"when the angle is %f\n",a5);A=sin((a5+a0)*t);B=cos((a5+a0)*t)-n;C=(1+m*m+n*n-l*l)/(2*m)-n*cos((a5+a0)*t)/m;j=x0+u1*a5;printf("A=%f,B=%f,C=%f,j=%f\n",A,B,C,j);s=sqrt(A*A+B*B-C*C);f1=2*(atan((A+s)/(B+C)))/(t)-b0;f2=2*(atan((A-s)/(B+C)))/(t)-b0;r=(log(j)-y0)/u2;k1=f1-r;k2=f2-r;printf("r=%f,s=%f,f1=%f,f2=%f,k1=%f,k2=%f\n",r,s,f1,f2,k1,k2); fprintf(p,"r=%f,s=%f,f1=%f,f2=%f,k1=%f,k2=%f\n",r,s,f1,f2,k1,k2); printf("\n\n"); fprintf(p,"\n\n"); } }结合课本P135,试取0α=86°,0ϕ=24°时: 程序运行及其结果为:p0=0.601242,p1=-0.461061,p2=-0.266414,m=0.601242,n=1.304040,l=1.938257when the angle is 0.000000r=0.000000,s=1.409598,f1=-125.595070,f2=-0.296147,k1=-125.595070,k2=-0.296147when the angle is 4.020000r=7.954308,s=1.538967,f1=-130.920624,f2=7.970002,k1=-138.874939,k2=0.015694when the angle is 30.000000r=49.732372,s=1.924767,f1=-152.252411,f2=49.680004,k1=-201.984787,k2=-0.052368when the angle is 55.980000r=80.838707,s=1.864505,f1=-161.643921,f2=80.830002,k1=-242.482635,k2=-0.008705when the angle is 60.000000r=85.018051,s=1.836746,f1=-162.288574,f2=84.909149,k1=-247.306625,k2=-0.108902由程序运行结果可知:当取初始角0α=86°、0ϕ=24°时︒<∆1ϕ(ϕ∆=k1(k2))所以所选初始角符合机构的运动要求。