流式细胞仪的临床应用
- 格式:docx
- 大小:19.14 KB
- 文档页数:4
流式细胞仪在医学检验中的应用流式细胞术(flow cytometry,FCM)是一种能够对单个细胞或生物微颗行定量分析和分选的检测手段,具有快速、高精度、高准确性、多参数和高通量等优点,是目前先进的细胞定量分析技术之一。
近年来,FCM的发展日新月异,技术不断有新的突破,新型仪器不断涌现,同时,FCM 在医学及其他科学的应用更加广泛和深入,涵盖了从基础研究到临床诊断的多个方面,涉及免疫学、血液学、肿瘤学等。
图1. 流式细胞术工作原理图一、流式细胞术的研究进展1. 流式细胞仪的进展近年来,随着将多种不同波长的新型激光器与新型荧光染料的新型染色剂相结合,流式细胞仪性能不断提升,体现在分析速度的提高、灵敏度和精密度的提升,以及激光通道和参数的增多。
此外,流式细胞仪不断打破传统的界限,实现了多学科的交叉发展,诞生了一些新理念、新技术融合的仪器。
例如,微流控芯片流式细胞仪,是基于微机电技术的一种小型流式细胞仪,具有结构简单、操作方便、体积小、价格低廉等特点;声波聚焦流式细胞仪是采用超声波原理将细胞聚焦于流动室的中轴上,代替传统的流体动力,实现高通量、高精确度分析;质谱流式细胞仪将传统流式细胞仪与质谱分析技术相结合,采用同位素标记特异性抗体,利用质谱原理对单细胞进行多参数检测的流式技术,可以克服荧光素发光光谱相互干扰导致的波谱重叠、影响分辨的问题;将传统的流式细胞仪的荧光信号与荧光显微镜的形态学结合,形成了成像流式细胞仪,检测者可以目睹到每个细胞或颗粒的形态。
质谱流式细胞仪和成像流式细胞仪可以被称为二代流式细胞仪。
2. 流式细胞术的进展FCM主要用于分析荧光标记的细胞和颗粒,也是目前广泛的应用领域。
但是,新近研究打破了这一界限,实现了流式细胞仪由检测荧光标记的细胞,到可以检测无需荧光标记细胞的飞跃,这种技术对细胞无损坏、避免了荧光染料的干扰,将进一步提升FCM的应用范围和价值。
有学者研究出一种新的FCM,称为实时变形性流式细胞术(real-time deformability cytometry,RT-DC),利用肿瘤细胞等细胞的内在特性——变形能力,对无标记的目标细胞分析,这种无标记的分析方法为流式细胞分析增加了新的可能。
流式细胞术的原理和应用1. 引言流式细胞术(Flow Cytometry)是一种广泛应用于生命科学研究和临床诊断的技术。
通过使用流式细胞仪,可以对生物细胞进行快速、精准的多参数分析,为科学家和医生提供了大量的有关细胞的信息。
流式细胞术已成为生物学领域的重要工具,被广泛应用于细胞分析、免疫表型分析、药物筛选等领域。
2. 原理流式细胞术基于细胞在封闭流动系统中单个通过的原理。
其基本流程包括样本制备、细胞标记、细胞检测和数据分析。
2.1 样本制备样本制备是流式细胞术的第一步,它需要将待检测的细胞样本制备成单细胞悬浮液。
这可以通过细胞培养、组织切片或体液等方式获得细胞样本。
重点是要避免细胞凝聚和聚集,以确保细胞在流式细胞仪中单个通过。
2.2 细胞标记细胞标记是流式细胞术的关键步骤之一。
它使用荧光染料或抗体等标记物与目标细胞发生特异性反应。
荧光染料可以通过不同的通道发出不同波长的荧光信号,从而实现多参数分析。
细胞表面标记的抗体通常与荧光素共价结合,以产生可检测的荧光信号。
同时,可以利用染料进行细胞内部器官或分子的标记,以更详细地研究细胞的功能和结构。
2.3 细胞检测细胞检测是流式细胞术中最关键的步骤之一。
它通过流式细胞仪将标记后的细胞悬浮液以单个细胞的形式通过单个检测区域。
这些细胞在流式细胞仪中被激活并产生荧光信号。
光电传感器将捕获和记录这些荧光信号,并将其转化为数字信号,供数据分析使用。
2.4 数据分析数据分析是流式细胞术的最后一步。
通过对获得的荧光信号的数字化处理,可以获得有关细胞的详细信息,包括细胞表面标记物的表达水平、细胞数量统计、细胞大小等信息。
数据分析可以使用专业的流式细胞仪软件完成,也可以使用其他数据分析软件进行更复杂的数据处理。
3. 应用流式细胞术作为一种全面、高通量的细胞分析技术,广泛应用于各个领域。
3.1 免疫学研究流式细胞术在免疫学研究中得到了广泛应用。
通过对免疫细胞的表面标记物进行检测,可以评估免疫细胞亚群的数量、功能和表达水平。
流式细胞术的原理和应用流式细胞术(Flow cytometry)是一种广泛应用于生物医学研究和临床诊断的生物技术,它通过将单个细胞悬浮在溶液中,利用激光器照射并检测细胞表面或内部的荧光标记物,实现对细胞的定量和质量分析。
流式细胞术具有高通量、高准确性和高灵敏度的特点,被广泛应用于细胞表型分析、细胞分选、DNA含量测定、蛋白质定量、染色体分析、细胞凋亡测定等领域。
本文将对流式细胞术的原理和应用进行详细介绍。
一、流式细胞术的原理1. 细胞悬浮流式细胞术的第一步是将待检测的细胞悬浮在生理盐水或缓冲液中,以确保细胞处在单个状态,方便后续的激光检测。
2. 细胞标记细胞通常会被标记上与特定蛋白或分子结合的荧光标记物,通过特异性和高亲和力结合到细胞表面或内部的特定结构上。
这些标记物可以是荧光染料、荧光免疫球蛋白(Fluorescent-labeled antibodies)等。
3. 激光照射悬浮细胞通过流式细胞仪中的微流道单个流经,在通过激光照射后,激光与标记物产生光散射或荧光发射。
4. 光散射和荧光检测流式细胞仪通过多个检测器检测光散射和荧光发射强度,这些数据被传输到计算机中进行分析和图形呈现。
5. 数据分析通过计算机软件对检测到的数据进行图形处理和数据分析,包括各种细胞表型的区分、细胞计数、蛋白质表达水平、细胞周期分析等。
二、流式细胞术的应用1. 细胞表型分析流式细胞术可以用来分析细胞的表面标记物和内部标记物,比如CD标记、HLA标记、细胞凋亡标记等,帮助研究者深入了解细胞的功能和特性。
2. 细胞分选基于细胞表面标记物的差异,流式细胞术结合细胞分选仪可以实现对不同亚群细胞的快速纯化和分离,广泛应用于免疫学、干细胞研究等领域。
3. DNA含量测定通过DNA特异性荧光染料,流式细胞术可以对细胞的DNA含量进行测定,帮助研究细胞周期的变化、细胞增殖速率的测定等。
4. 蛋白质定量利用荧光标记的免疫球蛋白,流式细胞术可以对细胞中蛋白质的表达水平进行定量分析,比如研究细胞信号通路的活性等。
流式细胞仪的原理及其临床应用流式细胞技术(FCM)是70 年代发展起来得一种快速对单细胞定量分析的新技术, 它借簦了荧光显微镜技术, 同时利用与荧光染料, 激光技术, 单抗技术以及计算机技术的发展, 将荧光显微镜的激发光源改为激光, 使之具有更好的单色性与激发效率, 因而大大提高了检测灵敏度, 同时将固定的标本台改为流动的单细胞悬液, 用计算机进行数据处理, 因而大大提高了检测速度与统计精确性, 而且从同一个细胞中可以同时测得多种参数, 为生物医学与临床检验学发展提供了一个全新的视角和强有力的手段. 目前, 该技术已经广泛用于基础研究与临床应用, 在免疫学, 遗传学, 血液学, 肿瘤学等领域内发挥前重要的作用. 本文着重介绍流式细胞仪基本原理及其在临床上的应用.一. 基本原理流式细胞仪的主要结构可以大致分为这样几个组成部分: 激光系统, 流式系统, 信号处理及放大, 计算机系统. 图一, 图二概括了流式细胞仪的基本原理, 当待测标本被制务成单细胞悬液, 经染色后进入流动室, 流动室内充满流动的鞘液, 鞘液压力与样品流压力是不同的, 当二者的压力差异达到一定程度时, 鞘液裹挟着的样品流中细胞排成单列逐个经过激光聚焦区. 如果我们将细胞中感兴趣的部分特异性地标上荧光染料, 那么这些染料将在细胞通过激光检测区时受激发出特定波长的荧光, 通过一些波长选择通逶性的滤色片, 我们可以将不同波长的散射光, 荧光信号区分开来, 并送到不同的光电配增管中, 经过一系列信号转换, 放大, 数字化处理, 我们就可以在计算机上直观地统计染上各种荧光染料的细胞各自的百分率. 选择不同的单克隆抗体及荧光染料, 我们可以利用流式细胞仪同时测定一个细胞上的多个不同的特征, 如果对具有某种特征的细胞有兴趣, 我们还可以利用流式的分选功能将其分选出来, 以便于进一步培养, 研究二. 流式细胞仪在免疫学中的应用1. 淋巴细胞亚群分析淋巴细胞是正常机体免疫系统功能最重要的一大细胞群, 在免疫应答过程中, 未梢血淋巴细胞发育成为功能不同的亚群. 各亚群的数量和功能了生异常时, 就能导致机体免疫紊乱并产生病理变化.FCM可以同时检测一种或几种淋巴细胞细胞表面抗原, 将不同的淋巴细胞亚群数量的测定来监控病人的免疫状态, 指导治疗.2. 感染及其治疗效果观察由于T 淋巴细胞在人体免疫系统中承担着重要的功能, 因此, 当感染发生时,T 淋巴细胞各亚群的变化往往能很敏感地反映感染的状态与程度. 例如, 细胞膜外CD4分子有HIV 识别部位, 因此CD4细胞是HIV 病毒受体,AIDS 病人CD4+T细胞明显减少, 该指标是诊断AIDS的重要标志. 当病毒感染发生时( 如乙型肝炎,EB 病毒和巨细胞包涵体病毒),CD8+T 细胞增多, 对CD8细胞的测定有助于对感染的诊断, 治疗效果的动态观察.利用流式细胞仪可对器官或骨髓移植后病人进行监控. 当病人CD3+,CD25持+续增加提示已经开始发生排异,CD4/CD8持续下降表明有感染发生, 当其比值小于0.2 时必须停用免疫抑制剂.由于流式细胞仪将静态的, 显微镜下肉眼观察改为动态的, 计算机信号处理, 因此, 在流式细胞仪上T 细胞亚群统计方式已从传统的荧光显微镜下计数200个细胞成为几秒钟内计数上万个, 因此结果更真实, 更具有统计意义.3. 其他免疫功能性疾病分析流式细胞仪便捷, 准确的特点可以用来对自身免疫性疾病进行检测与疗效观察. SLE病人的淋巴细胞变化可以反映该病的活动情况和器官侵犯程度. 活动或非活动性SLE伴有多系统疾病但无肾脏损害的病人可出现CD4/CD8比值升高, 伴有严重肾脏损害的SLE病人可出现低CD4+,高CD8+的现象.有证据表明外周血HLAB27的表达及其表达程度与强直性脊髓炎的发生有很大程度的相关性, 利用流式细胞仪可以进行HLA-B27./HLA-B7 双标记来检测HLA-B27 阳性细胞, 同时排除交叉反应. 另外,CD23 表达的增加与变态反应性疾病, 自身免疫性疾病, 肾病综合症有关, 而且阳性率与病情严重程度呈正相关, 治疗有效后CD23+细胞减少.利用流式细胞仪检测PNH血细胞的细胞膜所缺乏的糖化肌醇磷脂(GPI) 锚连接的蛋白如DAF(CD55.)与MIRI(CD59..) 来确诊阵发性睡眠性血红蛋白尿传统的血清溶血试验具有更高的特异性与灵敏度.一. 流式细胞仪在血小板功能评价方面的应用血小板膜糖蛋白(GP)是参与止血, 血栓形成的重要分子基础, 这些膜糖蛋白是一类重要得黏附分子. 用搞GP.. 的单克隆抗体对血小板进行免疫荧光标记, 用FCM 分析单个血小板或血小板亚群GP是血小板膜糖蛋白检测分析方法的重大发展,方法简便, 快速, 标本用量少, 灵敏度高, 结果准确.与血小板有关的抗原的临床意义有:1. 诊断遗传性血小板功能缺陷疾病巨血小板综合症(BSS)患者血小板CD42 A\CD42B复合物先天缺陷,FCM中表现CD42A与CD42B不仅严重缺乏, 而且其平均荧光强度显著低于阴性对照,CD61代偿性增加.血小板无力症(GT) 患者FCM表现血小板GPIIB,IIIA(CD41,CD61) 明显缺乏,CD42A 和CD42B基本正常或稍高, 并可出现异常血小板亚群.3. 血栓性疾病和血栓前状态由于活化血小板是血栓的主要成分之一, 也是引起血栓形成的主要原因, 所以血小板活化程度增高与疾病发生发展有关.CD62P.. 和CD63是活化血小板最特异和灵敏的分子标志物, 正常人血小板只有低水平活化, 外周血CD62P只有3-5%.有文献报导糖尿病伴有微血管病变, 冠心病, 高血压病. 高血脂病, 脑血栓形成, 脑动脉硬化患者活化血小板百分率和绝对数显著高于正常人, 而糖尿病无微血管病变, 周围血管病以及深静脉血栓形成患者活化血小板水平与正常人无显著差异.PTCA后24 小时发展成急性血管闭塞或高度再狭窄的患者CD62P..和CD63增多,FCM可用于测PTCA后急性缺血再发作的危险性.四, 流式细胞仪在白血病中的应用血液病多种为肿瘤性免疫性和遗传性疾病, 但恶性血液病约占一半以上.FCM在血液病的发病机制, 诊断, 分类, 治疗和预后判断方面都有广阔的应用前景.1. 白血病的分类研究2. 微小残病变检出(MRD)M R D是白血病复发的主要根源,..FCM 其高特异性与敏感性可以在患者缓解期检避免复发.测是否有残存病变细胞, 早期探测MRD以,五FCM在肿瘤学上的应用1. DNA含量测定及细胞周期分析FMC在肿瘤学上的应用主要是利用DNA含量测定进行包括癌前病变及早期癌变的检出, 化疗指导以及预后评估等工作.大量工作表明, 癌前病变的癌变率与病变的增生程度一致, 而增生程度与DNA含量的异常改变又呈平行关系.FCM通过精确定量DNA含量, 能对癌前病变的性质和了展趋势作出判断, 有助于癌变的早期诊断.DNA非整倍体的出现可能是恶变细胞的重要标志, 目前病理学尚无法从癌前病变中发现癌变和即将癌变的细胞, 而FCM检测中DNA非整倍体细胞的出现可作为一个有价值的参数.DNA倍体分析有助于临界性肿瘤的诊断, 如卵巢的交界性肿瘤, 异倍体的出现与病变的恶性发展有关.细胞异常增殖和分化障碍是肿瘤细胞的特性,DNA含量不仅能非常敏感地反映细胞代谢的异常, 而且能通过DNA倍体分析, 细胞周期各时相的细胞比例分析并结合细胞抗原的表达多参数分析, 全面了解细胞的生物学行为, 从而帮助肿瘤的诊断, 选择治疗方案和预后判断.DNA异倍体, 高S_PHASE细胞比值和高增殖细胞核抗原(PCNA)表达与细胞增殖能力, 恶性程度和不良预后呈正相关.2. 为治疗方案和药理学研究提供依据不同类型的肿瘤对化疗药物的敏感程度是不同的. 可以利用FCM进行细胞期分析, 适当选用周期特异性药物或非周期特异性药物.MDR是由多药耐药基因编的P糖蛋白(PGP)是亲脂化合物, 包括多种抗癌药物和荧光染料的跨膜性排出泵. 从人淋巴细胞排出荧光染料与细胞内P-GP的含量直接相关. 当淋巴细胞出现M D R阳性细胞时, 病人对化疗药物开始出现耐药性, 需要考虑其他治疗方式.六, 活细胞内活性酶的检测法( 如FLUOROMETR及ICCOLORIMDTRIC_ASSAY都S是), 测定总体细胞的总酶活性而非测定单一细胞的酶活性. 若要测定单一细胞的酶活性, 通常都是涉及固定后的死细胞. 近来COULTE公R司推出最新的技术及试剂CELLPROBE_REAGE由N于T,每一个特定的酶都有其专一的受质, 而受质本身是由特别的化学品与荧光染料FLOURENSCE或IN RHODAMINEN共O价结合的, 能迅速进入活细胞, 当其遇到特异性酶时, 会被酶破坏其共价结构而释放其荧光染料, 从而能够被FCM检测到, 因此, 活细胞酶探针能够用来测量单一活体细胞内酶的活性.七. 凋亡细胞检测凋亡最初是作为形态学概念被提出来的. 细胞有两种不同的死亡方式. 即坏死(MECROSIS和) 凋亡(APOPTOISI). 凋亡典型的形态特征是核染色质固缩并分离, 细胞质浓缩, 细胞膜和核膜皱曲, 核断裂形成片断, 最后形成数量不等的凋亡小体. 利用FCM可以进行DNA断裂点标记检测.DNA片断可以从细胞内漏出, 导致DNA含量减少, 利用F C M进行DNA含量分析, 通过二倍体细胞G0/G1期峰前的亚二倍体峰来确定.在凋亡早期, 一些与膜通透性改变及凋亡有关的蛋白在细胞膜表面有特定表达, 例如FAS基因蛋白(CD95), 线粒体膜蛋白(AP027), 磷脂酰丝氨酸(ANNEXIN_V),FCM结合单克隆抗体可以检测表达这些蛋白的细胞, 从而确定细胞的凋亡情况.自70 年代流式细胞仪成型以来, 历经20 多年的发展, 流式细胞仪应用意义越来越得以体现, 尤其是1982 年以后, 随着白细胞分化抗原意义的确认以及单克隆抗体技术的发展, 给流式细胞仪的应用发展提供了强大的推动力. 在我国, 不仅许多科研单位早在80 年代已经开始使用流式细胞仪作为其科研工具, 进入90 年代后, 以库尔特原理及其相关血细胞分析产品闻名的美国库尔特公司以其在流式领域研究, 应用近二十年的积累, 在其五代流式细胞仪的基础上推出了以单激光同时激发四色荧光的新一代临床型流式细胞仪, 并为其配套了临床标本制备仪, 使临床标本制备标准化, 简单化, 开创了流式应用的新领域. 从而, 不少大中型医院也逐步引进流式细胞仪作为临床诊断的辅助工具, 随着单抗技术, 计算机技术及其它相关技术的不断发展, 流式细胞仪将会在应用领域得到不断的开拓, 成为科研与临床不可或缺的重要手段.。
流式细胞术临床应用范围流式细胞术是一种广泛应用于生物医学领域的高端技术,通过流式细胞仪可以对细胞进行高通量单细胞分析。
随着技术的不断创新和发展,流式细胞术在临床应用中的范围也逐渐扩大,为疾病的诊断、治疗和预防提供了重要的支持和帮助。
一、疾病诊断流式细胞术在临床诊断中的应用范围非常广泛,可以用于各种类型的疾病的确诊和分型。
例如,在血液学领域,流式细胞术可以用于白血病和淋巴瘤等血液系统疾病的诊断与鉴别诊断;在免疫学领域,流式细胞术可以用于自身免疫性疾病的诊断和病情监测。
二、免疫细胞治疗随着免疫细胞治疗技术的不断成熟,流式细胞术在该领域的应用也越来越广泛。
通过流式细胞术可以对患者的免疫细胞进行分选、激活和扩增,用于治疗各种肿瘤和疾病。
例如,CAR-T细胞治疗就是基于流式细胞术的原理开发而来,已经在临床上取得了较好的疗效。
三、药物筛选在药物研发领域,流式细胞术被广泛应用于药物的筛选和评估。
通过流式细胞术可以快速、准确地评估药物对细胞的毒性和活性,为药物研发提供重要的数据支持。
同时,流式细胞术还可以用于研究药物的作用机制和药效评价。
四、疾病预防与流行病学研究流式细胞术在疾病预防和流行病学研究中也发挥着重要作用。
通过流式细胞术可以对疫情中的病原体进行快速检测和鉴定,为疾病的早期诊断和防控提供重要的支持。
此外,流式细胞术还可以用于研究疾病的发病机制和流行规律,为疾病的预防和控制提供科学依据。
综上所述,流式细胞术在临床应用中的范围十分广泛,涉及到疾病诊断、治疗、药物研发、疾病预防和流行病学研究等多个领域。
随着技术的不断进步和应用的深化,相信流式细胞术将在未来发挥更加重要的作用,为人类健康事业作出更大的贡献。
流式细胞仪在临床检验中的应用流式细胞仪是一种先进的生物医学仪器,能够对细胞进行高速、高分辨率的检测和分析。
它可以用于各种临床检验,有助于提高疾病的诊断和治疗的准确性和效果。
本文将探讨流式细胞仪在临床检验中的应用。
首先,流式细胞仪可以用于白血细胞计数和分类。
传统的白细胞计数方法需要进行显微镜检查,耗时且不准确。
而流式细胞仪通过分析细胞的体积和形状特征,可以快速、准确地计算出不同类型的白血细胞数量,并能够进一步对白细胞进行分类,如淋巴细胞、中性粒细胞、嗜酸性粒细胞等。
这些信息对于炎症、感染和肿瘤等疾病的诊断和治疗非常重要。
其次,流式细胞仪还可以用于免疫细胞表型分析。
免疫细胞表型分析是研究细胞表面分子的一种方法,可以确定细胞的类型和功能。
流式细胞仪通过与特定的抗体结合,可以测量不同细胞表面的抗原表达水平,从而确定细胞的免疫表型。
这对于免疫系统相关疾病的诊断和治疗具有重要意义,如白血病、自身免疫疾病等。
此外,流式细胞仪还可以用于检测细胞内的信号分子和功能,可以评估细胞的活力和功能状态。
流式细胞仪在肿瘤学研究中也有广泛的应用。
它可以检测和分离肿瘤细胞,通过测量肿瘤细胞的大小、形状和表面标记物的表达水平,可以评估肿瘤的类型、分级和预后。
此外,流式细胞仪还可以用于检测循环肿瘤细胞(CTC)和肿瘤间质细胞(TIC),这些细胞在肿瘤的转移和预后中起到重要的作用。
除了疾病诊断和治疗外,流式细胞仪还可以应用于药物研发和治疗监测。
通过对细胞的特征和功能进行分析,可以评估药物对细胞的影响和效果,从而指导药物的选择和使用。
此外,流式细胞仪还可以通过检测细胞的凋亡、增殖和细胞周期等指标,评估治疗的疗效和耐药性。
在临床检验中,流式细胞仪的应用广泛且日益重要。
它具有高通量、高分辨率和多参数分析的优势,可以提供丰富的静态和动态细胞信息,有助于提高疾病的早期诊断和治疗效果评估的准确性和效率。
随着流式细胞仪技术的不断发展和优化,相信它将在临床检验中发挥越来越大的作用,为人类健康事业作出更大的贡献。
血液科医生常说的“流式”,你知道是什么吗?在血液科的诊断和治疗中,流式细胞仪是一种常见的检测工具。
在医生和患者的日常交流中,常会听到血液科医生提到“流式”,那么,究竟流式是什么,它在临床中有怎样的作用呢?接下来,让我们详细了解一下。
什么是流式细胞仪?流式细胞仪(Flow Cytometer)是一种用于分析细胞数量、表面标记、细胞大小和形状等信息的仪器。
它利用细胞标记荧光染料与细胞中的不同成分结合,通过检测这些荧光标记或物理性质的差异来对不同类型的细胞进行鉴定和分类。
流式细胞仪的原理流式细胞仪的基本原理是使用激光器产生的激光束照射通过悬液中的细胞,激光光束照射到细胞上后,细胞中的荧光标记物会发出荧光信号,这些信号会被探测器捕获并转换为电信号。
根据细胞荧光信号的强度、颜色和形状,流式细胞仪可以对细胞进行定量和定性的分析。
流式细胞仪在临床中的应用流式细胞仪在临床诊断中有着广泛的应用,特别是在血液科领域。
以下是一些流式细胞仪在临床中的主要应用场景:1.白血病鉴定与分类:流式细胞仪可以通过检测白血病细胞表面的不同分子标记来帮助医生对白血病进行鉴定和分类,从而指导治疗方案的制定。
2.免疫功能评估:流式细胞仪可以帮助医生评估患者的免疫功能,检测免疫细胞的种类和数量,从而指导治疗和预后的评估。
3.感染性疾病诊断:流式细胞仪可以通过检测免疫细胞中的感染标记物来帮助诊断感染性疾病,如艾滋病、肝炎等。
4.骨髓移植前后监测:流式细胞仪可以在骨髓移植前后对患者的免疫系统进行监测,评估移植效果和患者的免疫排斥反应。
5.自身免疫性疾病诊断:流式细胞仪可以帮助诊断和监测自身免疫疾病,如风湿性关节炎、红斑狼疮等。
流式细胞仪的优势与传统的显微镜观察细胞相比,流式细胞仪具有以下一些明显的优势:•高通量性:流式细胞仪可以快速分析大批样本,提高检测效率。
•多参数性:流式细胞仪可以同时检测多个参数,如细胞大小、形状、表面标记等,提供更全面的信息。
流式细胞术的工作原理及临床应用引言流式细胞术是一种广泛应用于生物医学研究和临床诊断的技术,其工作原理基于细胞在液体流动环境中的特定性质。
该技术广泛用于细胞表型分析、细胞计数、细胞分类和细胞排序等领域,为研究人员和医生提供了重要的工具。
一、流式细胞术的工作原理流式细胞术利用细胞在液体中的流动来实现细胞的分析和排序。
其工作原理可以分为三个主要步骤:细胞的悬浮、细胞的单独通过和细胞的检测。
1. 细胞的悬浮:首先,需要将待分析的细胞样本进行处理,使其转化为单细胞悬浮液。
这可以通过细胞培养、组织切片或体液处理等方法获得。
继续使用细胞培养基、酶消化或机械碎解等方法,将细胞组织分散成单个细胞,并获得细胞悬浮液。
2. 细胞的单独通过:接下来,将细胞悬浮液通过微小通道,通常是称为流式细胞仪的仪器。
在流速适中的条件下,细胞会单个通过通道,并在通过过程中因其特定特征而会发生特别的反应。
3. 细胞的检测:在细胞通过过程中,流式细胞仪能够感应细胞的数量、大小、形状和表面标记物等特征。
通过使用激光器的激光束照射细胞,并测量其散射光、荧光光谱等信息,流式细胞仪能够对细胞的特征进行定量分析。
二、流式细胞术的临床应用流式细胞术作为一种高效、灵敏和准确的细胞分析方法,在临床上有着广泛的应用,以下是一些常见的临床应用:1. 免疫学研究:流式细胞术在免疫学领域的应用非常广泛。
通过对细胞表面的抗原和抗体的特异性结合,可以对免疫细胞进行表型分析,了解不同亚群细胞的比例和功能状态。
这对于研究免疫相关疾病的发生机制、免疫细胞治疗的效果评估等方面非常重要。
2. 癌症诊断和监测:流式细胞术在癌症的诊断和监测中也起着关键作用。
通过检测癌细胞的特定标记物,可以对肿瘤进行识别、分类和判断其恶性程度。
此外,流式细胞术还可以监测肿瘤的治疗反应,评估抗癌药物的疗效,并预测患者的预后。
3. 血液学检测:流式细胞术在血液学检测中也占据重要地位。
通过检测血液中的各种细胞类型和亚群细胞的比例,可以帮助诊断和监测临床上的血液疾病,如白血病、淋巴瘤等。
一、诊断性指标如图1所示,图(左)白血病细胞成为一个单一的群体,很难区分原始或病态的白血病细胞和成熟的细胞。
但是通过CD45和(SSC)设门法之后(图右),看到图(左)无法区分细胞被分成了五群。
在这五群中,成熟细胞CD45表达的荧光比较强。
A门里是淋巴细胞,B门里是单核细胞,C门里就是粒细胞群,D门里是原始细胞,一般CD45表达较弱。
一些细胞碎片、红细胞和转移来的瘤细胞,由于不表达CD45,可能位于D门、D门偏下或者E门的位置。
CD45结合侧向散射光之后能把白血病细胞找出来,减少了其它细胞的干扰。
对D门里的白血病细胞做进一步的分型,就能准确看到白血病细胞群免疫分型的表达情况。
图13.白血病的特异性标志免疫表型分析主要是根据细胞的特异表面标志,把白细胞分成T细胞、B细胞和原始细胞。
T淋巴细胞白血病一般表达的分化抗原有胞浆内的cCD3、抗TCRαβ、抗TCRγδ、CD2、CD5、CD8、CD10和CD7;B淋巴细胞白血病一般表达的分化抗原有胞浆内的cCD79a、CD22、CD19 、CD10和CD20;髓系白血病一般表达的分化抗原有胞浆内的cMPO、CD117、CD13、CD33、CD14、CD15和CD64;NK淋巴细胞白血病一般表达的分化抗原有CD16、CD56和CD57;红白血病一般表达的分化抗原有GlyA和CD36;巨核细胞白血病一般表达的分化抗原有CD41、CD42和CD61;一系列非特异标志在不同的白血病中可能都有表达,尤其是表达在早期的造血干组细胞上,一般表达的分化抗原有CD34和HLA-DR。
其中,对T淋巴细胞白血病来讲比较特异的是胞浆内的CD3,当胞浆内CD3出现阳性的时候,高度怀疑是T淋巴细胞白血病。
对于B淋巴细胞白血病来讲,胞浆内的CD79a和CD19是比较特异的,cCD79a最具特异性。
cCD3和cCD79a分别表达于早期T细胞和B细胞。
cMPO是髓系特异标志。
如图2所示为B-ALL的表达图。
流式细胞仪的原理及其临床应用作者: zfy5956(站内联系TA)发布: 2006-05-11流式细胞技术(FCM)是70年代发展起来得一种快速对单细胞定量分析的新技术,它借簦了荧光显微镜技术,同时利用与荧光染料,激光技术,单抗技术以及计算机技术的发展,将荧光显微镜的激发光源改为激光,使之具有更好的单色性与激发效率,因而大大提高了检测灵敏度,同时将固定的标本台改为流动的单细胞悬液,用计算机进行数据处理,因而大大提高了检测速度与统计精确性,而且从同一个细胞中可以同时测得多种参数,为生物医学与临床检验学发展提供了一个全新的视角和强有力的手段.目前,该技术已经广泛用于基础研究与临床应用,在免疫学,遗传学,血液学,肿瘤学等领域内发挥前重要的作用.本文着重介绍流式细胞仪基本原理及其在临床上的应用.一.基本原理流式细胞仪的主要结构可以大致分为这样几个组成部分:激光系统,流式系统,信号处理及放大,计算机系统.图一,图二概括了流式细胞仪的基本原理,当待测标本被制务成单细胞悬液,经染色后进入流动室,流动室内充满流动的鞘液,鞘液压力与样品流压力是不同的,当二者的压力差异达到一定程度时,鞘液裹挟着的样品流中细胞排成单列逐个经过激光聚焦区.如果我们将细胞中感兴趣的部分特异性地标上荧光染料,那么这些染料将在细胞通过激光检测区时受激发出特定波长的荧光,通过一些波长选择通逶性的滤色片,我们可以将不同波长的散射光,荧光信号区分开来,并送到不同的光电配增管中,经过一系列信号转换,放大,数字化处理,我们就可以在计算机上直观地统计染上各种荧光染料的细胞各自的百分率.选择不同的单克隆抗体及荧光染料,我们可以利用流式细胞仪同时测定一个细胞上的多个不同的特征,如果对具有某种特征的细胞有兴趣,我们还可以利用流式的分选功能将其分选出来,以便于进一步培养,研究二.流式细胞仪在免疫学中的应用1. 淋巴细胞亚群分析淋巴细胞是正常机体免疫系统功能最重要的一大细胞群,在免疫应答过程中,未梢血淋巴细胞发育成为功能不同的亚群.各亚群的数量和功能了生异常时,就能导致机体免疫紊乱并产生病理变化.FCM可以同时检测一种或几种淋巴细胞细胞表面抗原,将不同的淋巴细胞亚群数量的测定来监控病人的免疫状态,指导治疗.2. 感染及其治疗效果观察由于T淋巴细胞在人体免疫系统中承担着重要的功能,因此,当感染发生时,T淋巴细胞各亚群的变化往往能很敏感地反映感染的状态与程度.例如,细胞膜外CD4分子有HIV识别部位,因此CD4细胞是HIV病毒受体,AIDS病人CD4+T细胞明显减少,该指标是诊断AIDS的重要标志.当病毒感染发生时(如乙型肝炎,EB病毒和巨细胞包涵体病毒),CD8+T细胞增多,对CD8细胞的测定有助于对感染的诊断,治疗效果的动态观察.利用流式细胞仪可对器官或骨髓移植后病人进行监控.当病人CD3+,CD25+持续增加提示已经开始发生排异,CD4/CD8持续下降表明有感染发生,当其比值小于0.2时必须停用免疫抑制剂.由于流式细胞仪将静态的,显微镜下肉眼观察改为动态的,计算机信号处理,因此,在流式细胞仪上T细胞亚群统计方式已从传统的荧光显微镜下计数200个细胞成为几秒钟内计数上万个,因此结果更真实,更具有统计意义.3. 其他免疫功能性疾病分析流式细胞仪便捷,准确的特点可以用来对自身免疫性疾病进行检测与疗效观察. SLE病人的淋巴细胞变化可以反映该病的活动情况和器官侵犯程度.活动或非活动性SLE伴有多系统疾病但无肾脏损害的病人可出现CD4/CD8比值升高,伴有严重肾脏损害的SLE病人可出现低CD4+,高CD8+的现象.有证据表明外周血HLAB27的表达及其表达程度与强直性脊髓炎的发生有很大程度的相关性,利用流式细胞仪可以进行HLA-B27./HLA-B7双标记来检测HLA-B27阳性细胞,同时排除交叉反应.另外,CD23表达的增加与变态反应性疾病,自身免疫性疾病,肾病综合症有关,而且阳性率与病情严重程度呈正相关,治疗有效后CD23+细胞减少.利用流式细胞仪检测PNH血细胞的细胞膜所缺乏的糖化肌醇磷脂(GPI)锚连接的蛋白如DAF(CD55.)与MIRI(CD59..)来确诊阵发性睡眠性血红蛋白尿传统的血清溶血试验具有更高的特异性与灵敏度.一. 流式细胞仪在血小板功能评价方面的应用血小板膜糖蛋白(GP)是参与止血,血栓形成的重要分子基础,这些膜糖蛋白是一类重要得黏附分子.用搞GP..的单克隆抗体对血小板进行免疫荧光标记,用FCM 分析单个血小板或血小板亚群GP是血小板膜糖蛋白检测分析方法的重大发展,方法简便,快速,标本用量少,灵敏度高,结果准确.与血小板有关的抗原的临床意义有:1. 诊断遗传性血小板功能缺陷疾病巨血小板综合症(BSS)患者血小板CD42 A\CD42B复合物先天缺陷,FCM中表现CD42A与CD42B不仅严重缺乏,而且其平均荧光强度显著低于阴性对照,CD61代偿性增加.血小板无力症(GT)患者FCM表现血小板GPIIB,IIIA(CD41,CD61)明显缺乏,CD42A 和CD42B基本正常或稍高,并可出现异常血小板亚群.3.血栓性疾病和血栓前状态由于活化血小板是血栓的主要成分之一,也是引起血栓形成的主要原因,所以血小板活化程度增高与疾病发生发展有关.CD62P..和CD63是活化血小板最特异和灵敏的分子标志物,正常人血小板只有低水平活化,外周血CD62P只有3-5%.有文献报导糖尿病伴有微血管病变,冠心病,高血压病.高血脂病,脑血栓形成,脑动脉硬化患者活化血小板百分率和绝对数显著高于正常人,而糖尿病无微血管病变,周围血管病以及深静脉血栓形成患者活化血小板水平与正常人无显著差异.PTCA后24小时发展成急性血管闭塞或高度再狭窄的患者CD62P..和CD63增多,FCM可用于测PTCA后急性缺血再发作的危险性.四,流式细胞仪在白血病中的应用血液病多种为肿瘤性免疫性和遗传性疾病,但恶性血液病约占一半以上.FCM在血液病的发病机制,诊断,分类,治疗和预后判断方面都有广阔的应用前景.1. 白血病的分类研究白血病分类是选择化疗方案和判断预后的重要依据.由于血细胞在其分化的不同阶段,承担不同功能时有不同的特征抗原表达,因此FCM结合单克隆抗体可以提高白血病分类诊断的附和率,根据白血病细胞所表达相关细胞的种系抗原,可将它分为B细胞系,T细胞系,髓细胞系,红细胞系和巨核细胞系,可确诊白细胞的分类和分期,并可探明慢粒急变时的细胞来源.2. 微小残病变检出(MRD)MRD是白血病复发的主要根源,..FCM其高特异性与敏感性可以在患者缓解期检测是否有残存病变细胞,早期探测MRD,以避免复发.五FCM在肿瘤学上的应用1. DNA含量测定及细胞周期分析FMC在肿瘤学上的应用主要是利用DNA含量测定进行包括癌前病变及早期癌变的检出,化疗指导以及预后评估等工作.大量工作表明,癌前病变的癌变率与病变的增生程度一致,而增生程度与DNA含量的异常改变又呈平行关系.FCM通过精确定量DNA含量,能对癌前病变的性质和了展趋势作出判断,有助于癌变的早期诊断.DNA非整倍体的出现可能是恶变细胞的重要标志,目前病理学尚无法从癌前病变中发现癌变和即将癌变的细胞,而FCM检测中DNA非整倍体细胞的出现可作为一个有价值的参数.DNA倍体分析有助于临界性肿瘤的诊断,如卵巢的交界性肿瘤,异倍体的出现与病变的恶性发展有关.细胞异常增殖和分化障碍是肿瘤细胞的特性,DNA含量不仅能非常敏感地反映细胞代谢的异常,而且能通过DNA倍体分析,细胞周期各时相的细胞比例分析并结合细胞抗原的表达多参数分析,全面了解细胞的生物学行为,从而帮助肿瘤的诊断,选择治疗方案和预后判断.DNA异倍体,高S_PHASE细胞比值和高增殖细胞核抗原(PCNA)表达与细胞增殖能力,恶性程度和不良预后呈正相关.2. 为治疗方案和药理学研究提供依据不同类型的肿瘤对化疗药物的敏感程度是不同的.可以利用FCM进行细胞期分析,适当选用周期特异性药物或非周期特异性药物.MDR是由多药耐药基因编的P糖蛋白(PGP)是亲脂化合物,包括多种抗癌药物和荧光染料的跨膜性排出泵.从人淋巴细胞排出荧光染料与细胞内P-GP的含量直接相关.当淋巴细胞出现MDR阳性细胞时,病人对化疗药物开始出现耐药性,需要考虑其他治疗方式.六,活细胞内活性酶的检测据资料显示活细胞内活性酶的分析可以应用在许多医学领域.根据酶的活性可以鉴别不正常细胞,酶的活性也会因为受到药物的作用而会有所改变,因为酶的活动牵涉到细胞的新陈代谢,所以测量细胞内酶的活性能够提供许多细胞进展的讯息,包括活化,分化,凋亡,成熟,增殖等.传统上应用的测定细胞中酶的活性的方法(如FLUOROMETRIC及COLORIMDTRIC_ASSAYS),都是测定总体细胞的总酶活性而非测定单一细胞的酶活性.若要测定单一细胞的酶活性,通常都是涉及固定后的死细胞.近来COULTER公司推出最新的技术及试剂CELLPROBE_REAGENT,由于每一个特定的酶都有其专一的受质,而受质本身是由特别的化学品与荧光染料FLOURENSCEIN或RHODAMINENO共价结合的,能迅速进入活细胞,当其遇到特异性酶时,会被酶破坏其共价结构而释放其荧光染料,从而能够被FCM检测到,因此,活细胞酶探针能够用来测量单一活体细胞内酶的活性.七.凋亡细胞检测凋亡最初是作为形态学概念被提出来的.细胞有两种不同的死亡方式.即坏死(MECROSIS)和凋亡(APOPTOISI).凋亡典型的形态特征是核染色质固缩并分离,细胞质浓缩,细胞膜和核膜皱曲,核断裂形成片断,最后形成数量不等的凋亡小体.利用FCM可以进行DNA断裂点标记检测.DNA片断可以从细胞内漏出,导致DNA含量减少,利用FCM进行DNA含量分析,通过二倍体细胞G0/G1期峰前的亚二倍体峰来确定.在凋亡早期,一些与膜通透性改变及凋亡有关的蛋白在细胞膜表面有特定表达,例如FAS基因蛋白(CD95),线粒体膜蛋白(AP027),磷脂酰丝氨酸(ANNEXIN_V),FCM结合单克隆抗体可以检测表达这些蛋白的细胞,从而确定细胞的凋亡情况.自70年代流式细胞仪成型以来,历经20多年的发展,流式细胞仪应用意义越来越得以体现,尤其是1982年以后,随着白细胞分化抗原意义的确认以及单克隆抗体技术的发展,给流式细胞仪的应用发展提供了强大的推动力.在我国,不仅许多科研单位早在80年代已经开始使用流式细胞仪作为其科研工具,进入90年代后,以库尔特原理及其相关血细胞分析产品闻名的美国库尔特公司以其在流式领域研究,应用近二十年的积累,在其五代流式细胞仪的基础上推出了以单激光同时激发四色荧光的新一代临床型流式细胞仪,并为其配套了临床标本制备仪,使临床标本制备标准化,简单化,开创了流式应用的新领域.从而,不少大中型医院也逐步引进流式细胞仪作为临床诊断的辅助工具,随着单抗技术,计算机技术及其它相关技术的不断发展,流式细胞仪将会在应用领域得到不断的开拓,成为科研与临床不可或缺的重要手段.。