2015年安徽省高考数学试卷(文科)
- 格式:doc
- 大小:247.50 KB
- 文档页数:21
2015年高考安徽卷文数试题解析(精编版)(解析版)一、选择题(1)设i 是虚数单位,则复数()()112i i -+=( )(A )3+3i (B )-1+3i (C )3+i (D )-1+i(2)设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U A C B =I ( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,,(3)设p :x <3,q :-1<x <3,则p 是q 成立的( )(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件(4)下列函数中,既是偶函数又存在零点的是( )(A )y =lnx (B )21y x =+ (C )y =sinx (D )y =cosx(5)已知x,y满足约束条件401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩,则yxz+-=2的最大值是()(A)-1 (B)-2(C)-5 (D)1(6)下列双曲线中,渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -=(C )2212y x -= (D )2212x y -=(7)执行如图所示的程序框图(算法流程图),输出的n 为( )(A )3 (B )4 (C )5 (D )6(8)直线3x +4y =b 与圆222210x y x y +--+=相切,则b =( )(A )-2或12 (B )2或-12 (C )-2或-12 (D )2或12(9)一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )122+ (C )23+ (D )22(10)函数()32f x ax bx cx d =+++的图像如图所示,则下列结论成立的是( )(A )a >0,b <0,c >0,d >0 (B )a >0,b <0,c <0,d >0 (C )a <0,b <0,c <0,d >0 (D )a >0,b >0,c >0,d <0二、填空题 (11)=-+-1)21(2lg 225lg.【名师点睛】本题主要考查考生的基本运算能力,熟练掌握对数运算公式和指数幂运算公式是解决本题的关键.(12)在ABC ∆中,6=AB ,ο75=∠A ,ο45=∠B ,则=AC .(13)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 .(14)在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为 .(15)ABC ∆是边长为2的等边三角形,已知向量b a ρρ、满足a AB ρ2=→,b a AC ρρ+=→2,则下列结论中正确的是 .(写出所有正确结论得序号)①a ρ为单位向量;②b ρ为单位向量;③b a ρρ⊥;④→BC b //ρ;⑤→⊥+BC b a )4(ρρ。
2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)一、选择题1.设i 是虚数单位,则复数f(x)=ax(x+r)2(a >0,r >0) (A )3+3i (B )-1+3i (3)3+i (D )-1+i 2.设全集f(x),f(x),ar =400,则(A )(0,+∞) (B ){a n } (C )a 1=1 (D )a n =a n−1+12 3.设p :x<3,q :-1<x<3,则p 是q 成立的 (A )充分必要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 4.下列函数中,既是偶函数又存在零点的是(A )y=lnx (B )n ≥2 (C )y=sinx (D )y=cosx 5.已知x ,y 满足约束条件{a n },则z=-2x+y 的最大值是 (A )-1 (B )-2 (C )-5 (D )1 6.下列双曲线中,渐近线方程为xOy 的是 (A )y =2a (B )y =|x −a|−1 (C )a (D )ΔABC7.执行如图所示的程序框图(算法流程图),输出的n 为(A )3 (B )4 (C )5 (D )6 8.直线3x+4y=b 与圆a ⃗、b⃗⃗相切,则b 的值是 (A )-2或12 (B )2或-12 (C )-2或-12 (D )2或12 9.一个四面体的三视图如图所示,则该四面体的表面积是()U AC B=(A )AB →=2a ⃗ (B )AC →=2a ⃗+b ⃗⃗ (C )a ⃗ (D )b ⃗⃗ 10.函数a ⃗⊥b⃗⃗的图像如图所示,则下列结论成立的是(A )a>0,b<0,c>0,d>0 (B )a>0,b<0,c<0,d>0 (C )a<0,b<0,c>0,d>0 (D )a>0,b>0,c>0,d<0二;填空题(11)f(x)=ax (x+r)2(a >0,r >0) 。
绝密★启用前2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1至第3页,第Ⅱ卷第4至第6页.全卷满分150分,考试时间120分钟. 考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无............效,在答题卷、草稿纸上答题无效................ 4. 考试结束,务必将试题卷和答题卡一并上交.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设i 是虚数单位,则复数(1i)(12i)-+=( )A. 33i +B. 13i -+C. 3i +D. 1i -+2. 设全集{1,2,3,4,5,6}U =,{1,2}A =,{2,3,4}B =,则()U AB =ð( )A. {1,2,5,6}B. {1}C. {2}D. {1,2,3,4}3. 设3p x <:,13q x -<<:,则p 是q 成立的 ( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4. 下列函数中,既是偶函数又存在零点的是 ( )A. ln y x =B. 21y x =+C. sin y x =D. cos y x =5. 已知x ,y 满足约束条件0,40,1,x y x y y -⎧⎪+-⎨⎪⎩≥≤≥则2z x y =-+的最大值是( )A. 1-B. 2-C. 5-D. 1 6. 下列双曲线中,渐近线方程为2y x =±的是( )A. 2214y x -=B. 2214x y -=C. 2212y x -=D. 2212x y -=7. 执行如图所示的程序框图(算法流程图),输出的n 为( )A. 3B. 4C. 5D. 68. 直线34x y b +=与圆222210x y x y +--+=相切,则b 的值是 ( )A. 2-或12B. 2或12-C. 2-或12-D. 2或129. 一个四面体的三视图如图所示,则该四面体的表面积是( )A. 1B. 1+C. 2+D. 10. 函数32()f x ax bx cx d =+++的图象如图所示,则下列结论成立的是 ( )A. 0a >,0b <,0c >,0d >B. 0a >,0b <,0c <,0d >C. 0a <,0b <,0c >,0d >D. 0a >,0b >,0c >,0d <姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11. 151lg 2lg2()22-+-=__________.12. 在ABC △中,AB =75A ∠=,45B ∠=,则AC =__________.13. 已知数列{}n a 中,11a =,11(2)2n n a a n -=+≥,则数列{}n a 的前9项和等于__________. 14. 在平面直角坐标系xOy 中,若直线2y a =与函数||1y x a =--的图象只有一个交点,则a 的值为__________.15. ABC △是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是__________(写出所有正确结论的编号).①a 为单位向量;②b 为单位向量;③a ⊥b ;④b BC ∥;⑤(4a +b )BC ⊥.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数2()(sin cos )cos2f x x x x =++ (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.17.(本小题满分12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(Ⅰ)求频率分布直方图中a 的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.18.(本小题满分12分)已知数列{}n a 是递增的等比数列,且149a a +=,238a a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .19.(本小题满分13分)如图,三棱锥P -ABC 中,P A ⊥平面ABC ,1PA =,1AB =,2AC =,60BAC ∠=. (Ⅰ)求三棱锥P -ABC 的体积;(Ⅱ)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC的值.20.(本小题满分13分)设椭圆E 的方程为222210x y a b a b+=>>(),点O 为坐标原点,点A 的坐标为(0)a ,,点B 的坐标为(0)b ,,点M 在线段AB 上,满足||2||BM MA =,直线OM的斜率为. (Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为(0)b -,,N 为线段AC 的中点,证明:MN ⊥AB .21.(本小题满分13分)已知函数2()(0,0)()axf x a r x r =>>+. (Ⅰ)求()f x 的定义域,并讨论()f x 的单调性; (Ⅱ)若400ar=,求()f x 在(0,)+∞内的极值.2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】复数(1i)(1+2i)=1+2i+2i=3+i --. 【提示】直接利用复数的多项式乘法展开求解 【考点】复数代数形式的乘除运算 2.【答案】B【解析】1,5{},6R B =ð;{}()1,2{}{1}1,5,6R A B ∴==ð.故选:B . 【提示】进行补集、交集的运算 【考点】交集,并集,补集的混合运算 3.【答案】C【解析】设:3p x <,:13q x -<<,则p 成立,不一定有q 成立,但是q 成立,必有p 成立,所以p 是q 成立的必要不充分条件,故选:C. 【提示】判断必要条件与充分条件,推出结果 【考点】必要条件,充分条件,充要条件 4.【答案】D【解析】对于A ,ln y x =,定义域为(0,)+∞,所以是非奇非偶的函数; 对于B ,是偶函数,但是不存在零点; 对于C ,sin()sin x x -=-,是奇函数;对于D ,cos()cos x x -=,是偶函数并且有无数个零点 【提示】利用函数奇偶性的判断以及零点的定义分别分析解答 【考点】函数的零点,函数奇偶性的判断. 5.【答案】A【解析】由已知不等式组表示的平面区域如图阴影部分,当直线2y x z =+经过A 时使得z最大,由01x y y -=⎧⎨=⎩,得到(1,1)A ,所以z 的最大值为2111-⨯+=-故选:A.【提示】首先画出平面区域,2z x y =-+的最大值就是2y x z =+在y 轴的截距的最大值 【考点】简单线性规划故选:A【提示】由双曲线方程22221x y a b-=(0,0)a b >>的渐近线方程为b y x a =±,对选项一一判断【考点】双曲线的简单性质故选:B .【提示】模拟执行程序框图,依次写出每次循环得到a ,n 的值 【考点】程序框图【提示】由直线与圆相切得到圆心到直线的距离d r =,利用点到直线的距离公式列出方程,求出方程的解 【考点】圆的切线方程【提示】判断得出三棱锥O ABC -,OE ADC ⊥底面,1EA ED ==,1OE =,AB BC ==AB BC ⊥,可判断;OAB OBC ∆∆≌的直角三角形,运用面积求解即可【考点】空间几何体的表面积和体积 10.【答案】A【解析】(0)0f d =>,排除D ,当x →+∞时,y →+∞,∴0a >,排除C ,函数的导数2()32f x ax bx c '=++,则()0f x '=有两个不同的正实根,则(0)0f c '=>,排除B ,故选:A.【提示】根据函数的图像和性质,利用排除法进行判断即可 【考点】函数的图像第Ⅱ卷二、填空题11.【答案】1-【解析】原式lg5lg22lg22lg5lg22lg10212 1.=-+-=+-=-=-=- 【提示】利用对数的运算法则以及负指数幂的运算化简各项 【考点】对数的运算性质 75,45∠,则80754560--=,由正60s i n 45BA C=, 26⨯【提示】由三角形的内角和定理可得角C ,再由正弦定理,计算即可得到AC 【考点】正弦定理 13.【答案】27【解析】∵112n n a a -=+(2)n ≥,∴112n n a a -=-(2)n ≥,∴数列{}n a 的公差12d =,又11a =, ∴111122n n a n +=+-=(),∴919(91)199362722S a d ⨯-=+=+⨯=,故答案为:27. 【提示】通过112n n a a -=+(2)n ≥可得公差,进而由求和公式即得结论【考点】数列递推式 【提示】由已知直线2y a =与函数1||y x a =--的图像特点分析一个交点时,两个图像的位置,确定A【考点】函数的零点与方程根的关系 15.【答案】①④⑤【解析】ABC ∆是边长为2的等边三角形,已知向量a 、b 满足2AB a =,2AC a b =+,则12a AB =,AB =,所以1a =,即a 是单位向量;①正确;因为2AC AB BC a b =+=+,所以BC b =,故2b =;故②错误;④正确;a 、b夹角为120°,故③错误;a 2(4)4412cos1204440a b bc a b b +=+=⨯⨯⨯+=-+=故答案为:①④⑤.【提示】利用向量的三角形法则以及向量数量积的公式对各结论分别分析选择 【考点】平面向量数量积的运算 三、解答题16.【答案】(1)最小正周期为π(2)()f x 在区间π0,2⎡⎤⎢⎥上的取得最小值为0,最大值为1+(2)在区间0,2⎡⎤⎢⎥⎣⎦上,2,444x ⎡⎤⎢⎥⎣∈⎦+,故当π5π244x +=时,()f x 取得最小值为102⎛+= ⎝⎭-,当ππ242x +=时,()f x 取得最大值为111=【提示】由条件利用三角恒等变换求得()f x 的解析式,再利用正弦函数的周期性求得()f x 最小正周期,由条件利用正弦函数的定义域和值域,求得()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值【考点】三角函数的最值,三角函数的周期性及其求法 17.【答案】(1)0.006a = (2)0.4 (3)110P =. 【解析】解:(1)因为(0.0040.0180.02220.028)101a +++⨯+⨯=,解得0.006a =; (2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.0220.018)104+⨯=,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;【考点】频率分布直方图,古典概型18.【答案】(1)12n n a =﹣(2)11223111111111111121n n n n n T S S S S S S S S +++=-+-+-=⋯+-=-- 【解析】(1)∵数列{}n a 是递增的等比数列,且149a a +=,238a a =. ∴149a a +=,418a a =.解得11a =,48a =或18a =,41a =(舍),解得2q =,即数列{}n a 的通项公式12n n a =﹣;(2)1(1)211n nn a q S q-==--,∴1111111n n n n n n n n n n a S S b S S S S S S +++++-===-,∴数列{}n b 的前n 项和1111111111121n n T S S S S S S S S +=-+-+-=⋯+-=-- 【考点】等比数列的通项公式,列项相消法求和19.【答案】(1)1336P ABC ABC V S PA -==△ (2)13PM AN MC NC == 【解析】解:(1)由题设,1AB =,2AC =,60BAC ∠=,可得3sin 602AB AC =ABC 平面,PA =1336ABC S PA =△;MN PA ∥,交PA N M N =c o s A B B A ∠1336ABC S PA ∆=,求三棱锥PA ∥,交PA 于点PM【考点】棱柱、棱锥、棱台的体积,点、线、面间的距离计算(,)M x y (,0)A a (0,)B b||2||BM MA = (2)证明:∵点c 的坐标为(0,)b -,N 为线段AC 的中点,∴()22N ,-,∴()66NM ,-,又∵()AB a -,b ,∴2222551()(,)(5)66666a b a AB NM a b b a =--=-+=-,b ,由(1)可知22坐标,利用0AB NM =即得结论【考点】直线与圆锥曲线的关系,椭圆的标准方程,椭圆的简单性质21.【答案】(1)()f x 的定义域为(,)(,)r r ∞-+∞-,()f x 的单调递减区间为:(,)r ∞--、(,)r +∞,递增区间为:(,)r r -(2)极大值为2400()100(2)44ar a f r r r ==== )(,)r +∞∵2(2a x rx +(2)由(1)的解答可得()0f x '=,()f x 在(0,)r 上单调递增,在()r +∞,上单调递减,∴x r =是()f x 的极大值点,∴()f x 在(0,)+∞内的极大值为2400()100(2)44ar a f r r r ====【提示】通过令分母不为0即得()f x 的定义域,通过求导即得()f x 的单调区间,通过(1)知x r =是()f x 的极大值点,计算即可.【考点】利用导数研究函数的极值,利用导数研究函数的单调性.。
2015年普通高等学校招生全国统一考试(XX 卷)数学(文科)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2015年XX ,文1】设i 是虚数单位,则复数()()1i 12i -+=() (A )33i +(B )13i -+(C )3i +(D )1i -+ 【答案】C【解析】()()21i 12i 12i i 2i 3i -+=+--=+,故选C .(2)【2015年XX ,文2】设全集{}1,2,3,4,5,6U =,{}1,2A =,{}2,3,4B =,则()RAB ()(A ){}1,2,5,6(B ){}1(C ){}2(D ){}1,2,3,4 【答案】B【解析】{}1,5,6U B =,(){}1RAB ∴=,故选B .(3)【2015年XX ,文3】设:3p x <,:13q x -<<,则p 是q 成立的()(A )充分必要条件(B )充分不必要条件(C )必要不充分条件(D )既不充分也不必要条件 【答案】C【解析】:3p x <,:13q x -<<,q p ∴⇒,但p q ,则p 是q 成立的必要不充分条件,故选C . (4)【2015年XX ,文4】下列函数中,既是偶函数又存在零点的是()(A )ln y x =(B )21y x =+(C )sin y x =(D )cos y x = 【答案】D 【解析】选项A :ln y x =的定义域为()0,+∞,故ln y x =不具备奇偶性,故A 错误;选项B :21y x =+是偶函数,但210y x =+=无解,即不存在零点,故B 错误;选项C :sin y x =是奇函数,故C 错;选项D :cos y x =是偶函数,且cos 0,2y x x k k z ππ==⇒=+∈,故选D .(5)【2015年XX ,文5】已知x ,y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-+的最大值是()(A )-1 (B )-2 (C )-5 (D )1 【答案】A【解析】根据题意作出约束条件确定的可行域,如下图:令22z x y y x z =-+⇒=--,可知在图中()1,1A 处,2z x y =-+取到最大值-1,故选A . (6)【2015年XX ,文6】下列双曲线中,渐近线方程为2y x =±的是()(A )2214y x -=(B )2214x y -=(C )2212y x -=(D )2212x y -=【答案】A【解析】由双曲线的渐进线的公式可行选项A 的渐进线方程为2y x =±,故选A .(7)【2015年XX ,文7】执行如图所示的程序框图(算法流程图),输出的n 为() (A )3(B )4(C )5(D )6 【答案】B【解析】由题意,程序框图循环如下:①1a =,;1n =②131112a =+=+,2n =; ③1713512a =+=+,3n =;④117171215a =+=+,4n =,此时, ⇒/171.4140.0030.00512-≈<,所以输出4n =.故选B . (8)【2015年XX ,文8】直线34x y b +=与圆222210x y x y +--+=相切,则b =()(A )-2或12(B )2或-12(C )-2或-12(D )2或12 【答案】D【解析】直线34x y b +=与圆心为()1,1,半径为1的圆相切,2234134bb +-∴=⇒=+2或12,故选D . (9)【2015年XX ,文9】一个四面体的三视图如图所示,则该四面体的表面积是() (A )13+(B )122+(C )23+(D )22 【答案】C【解析】由题意,该四面体的直观图如下,ABD ∆,ACD ∆时直角三角形,ABC ∆,ACD ∆是等边三角形,则12212BCD ABD S S ∆∆==⨯⨯=,1322sin 6022ABC ACD S S ∆∆==⨯⨯︒=,所以四面体的表面积3212232BCD ABD ABC ACD S S S S S ∆∆∆∆=+++=⨯+⨯=+,故选C .(10)【2015年XX ,文10】函数()32f x ax bx cx d =+++的图像如图所示,则下列结论 成立的是()(A )0a >,0b <,0c >,0d >(B )0a >,0b <,0c <,0d > (C )0a <,0b <,0c <,0d >(D )0a >,0b >,0c >,0d < 【答案】A【解析】由函数()f x 的图像可知0a >,令00x d =⇒>,又()232f x ax bx c '=++,可知1x ,2x是()0f x '=的两根,由图可知10x >,20x >,12122003003b x x b ac c x x a ⎧+=->⎪<⎧⎪∴⇒⎨⎨<⎩⎪=>⎪⎩,故选A .第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)【2015年XX ,文11】151lg 2lg2()22-+-=.【答案】-1【解析】151lg 2lg2()lg5lg22lg22lg5lg2212122-+-=-+-=+-=-=-.(12)【2015年XX ,文12】在ABC ∆中,6AB =,75A ∠=,45B ∠=,则AC =. 【答案】2【解析】由正弦定理可知:()62sin 45sin 60sin 45sin 1807545AB AC ACAC =⇒=⇒=︒︒︒︒-︒+︒⎡⎤⎣⎦. (13)【2015年XX ,文13】已知数列{}n a 中,11a =,11(2)2n n a a n -=+≥,则数列{}n a 的前9项和等于.【答案】27【解析】2n ≥时,112n n a a -=+,且2112a a =+,{}n a ∴是以1a 为首项,12为公差的等差数列.9981919182722S ⨯∴=⨯+⨯=+=.(14)【2015年XX ,文14】在平面直角坐标系xOy 中,若直线2y a =与函数1y x a =--的图像只有一个交点,则a 的值为.【答案】1-【解析】在同一直角坐株系内,作出2y a =与1y x a =--的大致图像,如下图:由题意,可知1212a a =-⇒=-. (15)【2015年XX ,文15】ABC ∆是边长为2的等边三角形,已知向量a 、b 满足2AB a =,2AC a b =+,则下列结论中正确的是.(写出所有正确结论得序号) ①a 为单位向量;②b 为单位向量;③a b ⊥;④//b BC →;⑤(4)a b BC +⊥. 【答案】①④⑤【解析】∵等边三角形ABC 的边长为2,2AB a =,∴221AB a a ==⇒=,故①正确;2AC AB BC a BC =+=+,2BC b b ∴=⇒=,故②错误,④正确;由于2AB a =,BC b =⇒a 与b 夹角为120︒,故③错误;又()()21444412402a b BC a b b ab b⎛⎫+⋅=+⋅=+=⨯⨯⨯-+= ⎪⎝⎭()4a b BC ∴+⊥,故⑤正确.因此,正确的编号是①④⑤.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.解答写在答题卡上的指定区域内. (16)【2015年XX ,文16】(本小题满分12分)已知函数2()(sin cos )cos 2f x x x x =++. (Ⅰ)求()f x 最小正周期;(Ⅱ)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.解:(Ⅰ)化简可得()2sin 214f x x π⎛⎫=++ ⎪⎝⎭,即可求出()f x 的最小正周期22T ππ==. (Ⅱ)0,2x π⎡⎤∈⎢⎥⎣⎦时,52,444x πππ⎡⎤+∈⎢⎥⎣⎦,2sin 2,142x π⎡⎤⎛⎫∴+∈-⎢⎥ ⎪⎝⎭⎣⎦,()max 12f x =+,()min 0f x =. (17)【2015年XX ,文17】(本小题满分12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示), 其中样本数据分组区间为[]40,50,[]50,60,…,[]80,90,[]90,100. (Ⅰ)求频率分布图中a 的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[]40,60的受访职工中,随机抽取2人,求此2人评分都在[]40,50的概率.解:(Ⅰ)因为()0.0040.0180.02220.028101a +++⨯+⨯=,所以0.006a =.(Ⅱ)由所给出频率分布直方图知,50名受访职工评分不低于80的频率为()0.0220.018100.4+⨯=,所以该企业职工对该部门评分不低于80的概率的估计值为0.4. (Ⅲ)受访职工中评分在[)50,60的有:500.006103⨯⨯=(人),记为123,,A A A ;受访职工中评分在[)40,50的有:500.004102⨯⨯=(人),记为12,B B .从这5名受访职工中随机抽取2人,所有可能的结果共有10 种,它们是{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}23,A A ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,又因为所抽取2人的评分都在[)40,50的结果又1种,即{}12,B B ,故所求的概率为110p =. (18)【2015年XX ,文18】(本小题满分12分)已知数列{}n a 是递增的等比数列,且149a a +=,238a a =.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T . 解:(Ⅰ)由题设知:14238a a a a ⋅=⋅=,又149a a +=,可解得1418a a =⎧⎨=⎩或1481a a =⎧⎨=⎩(舍去).由341a a q =得公比2q =,故1112n n n a a q --==.(Ⅱ)()111221112n n n n a q S q--===---,()()1121121212121n n n n n n b ++∴==-----, 111111111111221133771521212121n n n n n n T ++++-∴=-+-+-++-=-=----. (19)【2015年XX ,文19】(本小题满分13分)如图,三棱锥P ABC -中,PA ⊥平面ABC ,1PA =,1AB =,2AC =,60BAC ∠=︒. (Ⅰ)求三棱锥P ABC -的体积;(Ⅱ)证明:在线段PC 上存在点M ,使得AC BM ⊥,并求PMMC 的值.解:(Ⅰ)由题设1AB =,2AC =,60BAC ∠=︒,可得13sin 6022ABC S AB AC ∆=⋅⋅⋅︒=.由PA ⊥平面ABC ,可知PA 是三棱锥P ABC -的高,又1PA =,所以三棱锥P ABC -的体积1336ABC V S PA ∆=⋅⋅=.(Ⅱ)在平面ABC 内,过点B 作BN AC ⊥,垂足为N .在平面PAC 内,过点N 作//MN PA交PC 于点M ,连接BM .由PA ⊥平面ABC 知PA AC ⊥.由于BN MN N =,故AC ⊥平面MBN ,又BM ⊂平面MBN ,所以AC BM ⊥.在直角BAN ∆中,1cos 2AN AB BAC =⋅∠=,从而32NC AC AN =-=.由//MN PA ,得13PM AN MC NC ==. (20)【2015年XX ,文20】(本小题满分13分)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为510. (Ⅰ)求E 的离心率e ; (Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,证明MN AB ⊥. 解:(Ⅰ)由题设条件知,点M 的坐标为21(,)33a b ,又510OM k =,从而5210b a =, 进而得225,2a b c a b b ==-=,故255c e a ==.(Ⅱ)由N 是AC 的中点知,点N 的坐标为,22a b ⎛⎫- ⎪⎝⎭,可得5,66a b NM ⎛⎫= ⎪⎝⎭.又(),AB a b =-,从而有()22221515666AB NM a b b a ⋅=-+=-.由(Ⅰ)的计算结果可知225a b =,所以0AB NM ⋅=,故MN AB ⊥.(21)【2015年XX ,文21】(本题满分13分)已知函数2()(00)()axf x a r x r =>>+,.(Ⅰ)求()f x 的定义域,并讨论()f x 的单调性;(Ⅱ)若400ar=,求()f x 在()0,+∞内的极值. 解:(Ⅰ)由题意知x r ≠-,所求的定义域为()(),,r r -∞--+∞.()()2222axaxf x x rx r x r ==+++,()()()()()()()2224222222a x rx r ax x r a r x x r f x x r xrx r++-+-+'==+++,所以当x r <-或x r >时,()0f x '<,当r x r -<<时,()0f x '>.因此,()f x 的单调递减区间为(),r -∞-和(),r +∞,()f x 的单调递增区间为(),r r -. (Ⅱ)由(Ⅰ)的解答可知()0f r '=,()f x 在()0,r 上单调递增,在(),r +∞上单调递减,因此,x r =是()f x 的极大值点.所以()f x 在()0,+∞内的极大值为()()2400100442ara f r r r ====. 所以()f x 在()0,+∞内极大值为100,无极小值.。
2015年普通高等学校招生全国统一考试(安徽卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
满分l50分。
考试时间l20分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 是虚数单位,则复数()()112i i -+=( )(A )3+3i (B )-1+3i (C )3+i (D )-1+i2.设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()R A C B =( ) (A){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,,3.设p :x <3,q :-1<x <3,则p 是q 成立的( ) (A)充分必要条件 (B )充分不必要条件 (C)必要不充分条件 (D )既不充分也不必要条件4.下列函数中,既是偶函数又存在零点的是( )(A)y =lnx (B )21y x =+ (C )y =sinx (D )y =cosx5.已知x ,y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则z =-2x +y 的最大值是( )(A)-1 (B )-2 (C )-5 (D )1 6.下列双曲线中,渐近线方程为2y x =±的是( )(A)2214y x -= (B )2214x y -= (C )2212y x -= (D )2212x y -=7.执行如图所示的程序框图(算法流程图),输出的n()(A )3 (B )4 (C )5 (D )68.直线3x +4y =b 与圆222210x y x y +--+=相切,则b =()(A )-2或12 (B )2或-12 (C )-2或-12 (D )2或12 9.一个四面体的三视图如图所示,则该四面体的表面积是( )(A ) 1(B )1+(C )2+(D )10.函数()32f x ax bx cx d =+++的图像如图所示,则下列结论成立的是( )(A)a >0,b <0,c >0,d >0 (B )a >0,b <0,c <0,d >0 (C )a <0,b <0,c <0,d >0 (D )a >0,b >0,c >0,d <0正(主)视图侧(左)视图俯视图第(9)题图2 22111 1 112第(10)题图第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目说只是的区域内作答。
2015年安徽省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考 试(安徽卷)数学(文科)1. ( 5分)(2015?安徽)设i 是虚数单位,则复数(1 - i ) (1+2i )=( )A . 3+3iB . - 1+3iC . 3+iD . - 1+i2. (5 分)(2015?安徽)设全集 U={1 , 2, 3, 4, 5, 6}A={1 , 2}, B={2 , 3, 4},则 A n (?R B ) =( )A . {1, 2, 5, 6}B . {1}C . {2}D . {1, 2, 3, 4}3. ( 5 分)(2015?安徽)设 p : x v 3, q :- 1 v x v 3,贝U p 是 q 成立的(A .充分必要条件B .充分不必要条件D .既不充分也不必要条件4. ( 5分)(2015?安徽)下列函数中,既是偶函数又存在零点的是( )2A . y=lnxB . y=x +1C . y=sinxD . y=cosx5 .(5分)(2015?安徽)已知x,y 满足约束条件K+y ~ 4<0 ,则z= - 2x+y 的最大值是( )A . - 1B . - 2C . - 5D . 1C .必要不充分条件(5分)(2015?安徽)下列双曲线中,x 2-y 2=1渐近线方程为y=塑x 的是C .x 2-——=12D .-,=17. ( 5分)(2015?安徽)执行如图所示的程序框图(算法流程图),输出的门为( )、填空题第2页(共18页)& ( 5 分)(2015?安徽)直线 3x+4y=b 与圆 x 2+y 2 - 2x - 2y+1=0 相切,则 b=( )A . - 2 或 12B . 2 或-12C . - 2 或-12D . 2 或 129. ( 5分)(2015?安徽)一个四面体的三视图如图所示,则该四面体的表面积是(3 210 . (5分)(2015?安徽)函数f (x ) =ax +bx +cx+d 的图象如A . 1+ _ ;B . 1+2 ..:C . 2+ :D . 2 ::A . 3B . 4 1E (主)观圏 恻〔左)视圏图所示,则下列结论成立的是B . a> 0, b v 0, c v 0, d > 0、填空题第2页(共18页)11. (3 分)(2015?安徽)lg +2lg2 -(_)「1 =2 212. (3 分)(2015?安徽)在厶 ABC 中,AB=V^, / A=75 ° / B=45 ° 贝U AC= _____________13(3分)(2015?安徽)已知数列{a n }中,a 1=1 , a n 否叫Z ),贝数列{a n }的前9项 和等于.14. (3分)(2015?安徽)在平面直角坐标系 xOy 中,若直线y=2a 与函数y=|x - a|- 1的图象只有一个交点,贝U a 的值为“=2.i+[■,则下列结论中正确的是 ________________ .(写出所有正确结论得序号)①且为单位向量;②b 为单位向量;③3丄b ;④R //BC ;⑤(佃晶)±BC .三、解答题216. (2015?安徽)已知函数 f (x ) = (sinx+cosx ) +cos2x(1 )求f (x )最小正周期;(2)求f (x )在区间[D*芈]上的最大值和最小值.17. (2015?安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40, 50], [50 , 60],…,[80, 90], [90, 100] (1 )求频率分布图中a 的值;(2) 估计该企业的职工对该部门评分不低于80的概率;(3) 从评分在[40 , 60]的受访职工中,随机抽取 2人,求此2人评分都在[40 , 50]的概率.15. (3 分)(2015?安徽) △ ABC 是边长为2的等边三角形,已知向量 满足-=2 I19. ( 2015?安徽)如图,三棱锥 P - ABC 中,PA 丄平面 ABC ,PA=1 ,AB=1 ,AC=2,/ BAC=60(1 )求三棱锥 P -ABC 的体积;(2)证明:在线段 PC 上存在点M ,使得AC 丄BM ,并求£的值.20. (2015?安徽)设椭圆E 的方程为 —j-^=1 (a >b >0),点0为坐标原点,点 A 的坐标 为(a , 0),点B 的坐标为(0, b ),点M 在线段AB 上,满足|BM|=2|MA|,直线OM 的斜 率为!,.L0(1 )求E 的离心率e ;(2)设点C 的坐标为(0,- b ), N 为线段AC 的中点,证明:MN 丄AB .21. (2015?安徽)已知函数 f (x )= 」-(a > 0, r > 0)(工+匸)1(1 )求f (x )的定义域,并讨论f (x )的单调性; (2)若-=400 ,求f ( 乂)在(0, + R )内的极值.T第4页(共18页)(2)设S 为数列{a n }的前n 项和,b n =Sn S n+L,求数列{b n }的前n 项和T n .(1)求数列{a n }的通项公式;2015年安徽省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)1. (5分)(2015?安徽)设i是虚数单位,则复数(1 - i)(1+2i)=()A . 3+3i B. - 1+3i C. 3+i D . - 1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数的多项式乘法展开求解即可.解答:解:复数(1 - i)(1+2i)=1+2 - i+2i=3+i .故选:C.点评:本题考查复数的代数形式的混合运算,基本知识的考查.2. (5 分)(2015?安徽)设全集U={1 , 2, 3, 4, 5, 6}A={1 , 2}, B={2 , 3, 4},则A n (?R B)=()A. {1, 2, 5, 6}B. {1}C. {2}D. {1, 2, 3, 4}考点:交、并、补集的混合运算.专题:集合.分析:进行补集、交集的运算即可.解答:解:?R B={1 , 5, 6};••• A n (?R B)={1 , 2} n{1 , 5, 6}={1}. 故选:B.点评:考查全集、补集,及交集的概念,以及补集、交集的运算,列举法表示集合.3. (5 分)(2015?安徽)设p:x v 3, q:- 1 v x v 3,贝U p 是q 成立的()A .充分必要条件B .充分不必要条件C.必要不充分条件 D .既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:判断必要条件与充分条件,推出结果即可.解答:解:设p:x v 3, q : - 1 v x v 3,则p成立,不一定有q成立,但是q成立,必有p 成立,所以p是q成立的必要不充分条件.故选:C.点评:本题考查充要条件的判断与应用,基本知识的考查.4. (5分)(2015?安徽)下列函数中,既是偶函数又存在零点的是()考点:函数的零点;函数奇偶性的判断.专题:函数的性质及应用.分析:利用函数奇偶性的判断一件零点的定义分别分析解答.解答:解:对于A,y=lnx定义域为(0, +R),所以是非奇非偶的函数;对于B,是偶函数,但是不存在零点;对于C, sin (- x)= - sinx,是奇函数;对于D, cos (- x)=cosx,是偶函数并且有无数个零点;故选:D点评:本题考查了函数奇偶性的判断以及函数零点的判断;判断函数的奇偶性首先要判断函数的定义域,在定义域关于原点对称的前提下判断 f (- x)与f (x)的关系.5. (5分)(2015?安徽)已知x,y满足约束条件y+y~ 4<0 ,则z= - 2x+y的最大值是()考点:简单线性规划.专题:不等式的解法及应用.分析:首先画出平面区域,z= - 2x+y的最大值就是y=2x+z在y轴的截距的最大值. 解答:解:由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由[l尸°得到A (1,1 ),{y=l所以z的最大值为-2X1+1= - 1 ;点评:本题考查了简单线性规划,画出平面区域,分析目标函数取最值时与平面区域的关系是关键.C . 2+ :■:考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.可得到答案.y= ± x ,a由A 可得渐近线方程为 y=翌x , 由B 可得渐近线方程为 y= ±x , |2由C 可得渐近线方程为 y= :x , 由D 可得渐近线方程为 y= — :x ._ 2故选:A .点评:本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.7. ( 5分)(2015?安徽)执行如图所示的程序框图(算法流程图)A . 3B . 4C . 5考点:程序框图.2 =142—y 2=i 4 y=塑x 的是 2 亠=12分析: 由双曲线方程b > 0 )的渐近线方程为y= ± x ,对选项一一判断即a解答:解:由双曲线方程'.=1 (a >0, b >0)的渐近线方程为,输出的门为( ) 6. ( 5分)(2015?安徽)下列双曲线中,渐近线方程为2 aa(a > 0,专题:图表型;算法和程序框图.121.414|=0.00267 > 0.005,退出循环,输出n的值为4.解答:解:模拟执行程序框图,可得a=1,n=1满足条件|a—1.414|>0.005, , n=22满足条件|a—1.414|>0.005, a=L, n=35满足条件|a- 1.414|>0.005, a^, n=412不满足条件|a- 1.414|=0.00267 >0.005,退出循环,输出n的值为4.故选:B.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的a, n的值是解题的关键,属于基础题.2 2& (5 分)(2015?安徽)直线3x+4y=b 与圆x +y - 2x - 2y+1=0 相切,则b=()A . - 2 或12 B . 2 或-12 C . - 2 或-12 D . 2 或12考点:圆的切线方程.专题:计算题;直线与圆.分析:由直线与圆相切得到圆心到直线的距离d=r,禾U用点到直线的距离公式列出方程,求出方程的解即可得到b的值.2 2 2 2 解答:解:x +y - 2x - 2y+1=0 可化为(x - 1)+ (y - 1)=1•••直线3x+4y=b 与圆x2+y2- 2x - 2y+1=0 相切,| 34-Q - k> I•••圆心(1, 1)到直线的距离d= =1 ,V9+16解得:b=2或12 .故选:D.点评:此题考查了直线与圆的位置关系,当直线与圆相切时,圆心到直线的距离等于圆的半径.9. (5分)(2015?安徽)一个四面体的三视图如图所示,则该四面体的表面积是(测(左)视图C . 2+ :■:专题:空间位置关系与距离.分析:判断得出三棱锥O - ABC , 0E丄底面ADC , EA=ED=1 , OE=1 , AB=BC=f?務,AB丄BC, 可判断;△ OAB OBC的直角三角形,运用面积求解即可.考点:由三视图求面积、体积.解答:三棱锥0 - ABC , 0E丄底面ADC , EA=ED=1 , 0E=1 , AB=BC= :■:••• AB 丄BC ,•••可判断;△ OAB ◎△ OBC的直角三角形,S A OAC=S A ABC』X 2X1 =1 ,S A OAB=S A OBC4该四面体的表面积:2…「;,故选:C.点评:本题考查了三棱锥的三视图的运用,关键是恢复几何体的直观图,考查了学生的空间思维能力.3 210. (5分)(2015?安徽)函数f (x)=ax +bx +cx+d的图象如图所示,则下列结论成立的是()C . 2+ :■:6X,/口X考点:函数的图象. 专题:函数的性质及应用.分析:根据函数的图象和性质,利用排除法进行判断即可. 解答:解:f (0) =d >0,排除D ,当 X i +8时,y f +g, ••• a > 0,排除 C , 函数的导数 f' (x ) =3ax 2+2bx+c , 则f ' (x ) =0有两个不同的正实根, 则 f ' (0) =c > 0,排除 B , 故选:A点评:本题主要考查函数图象的识别和判断,根据函数图象的信息, 结合函数的极值及 (0)的符号是解决本题的关键.二、填空题11. (3 分)(2015?安徽)lg 二+2lg2 -( = ) 4= - 1 乙 £考点:对数的运算性质. 专题:函数的性质及应用.分析:利用对数的运算法则以及负指数幕的运算化简各项,利用lg2+lg5=1化简求值.解答:解:原式=lg5 - lg2+2lg2 - 2=lg5+lg2 - 2=lg10 - 2=1 - 2= - 1; 故答案为:-1. 点评:本题考查了对数的运算以及负指数幕的运算;用到了 lg2+lg5=1 .考点:正弦定理.专题:解三角形.分析:由三角形的内角和定理可得角 解答:解:/ A=75 ° / B=45 °贝U / C=180 °- 75 °- 45°=60°,由正弦定理可得,A0AC sin60^ sin45eA . a >0, b v 0, c >0, d >0B . a > 0, b v 0, c v 0, d > 0C . a v 0, b v 0, c v 0, d > 0D . a > 0, b >0, c >0, d v 012. (3 分)(2015?安徽)在△ ABC 中,AB= 一 1/ A=75 °/ B=45 ° 贝U AC=C ,再由正弦定理,计算即可得到 AC .'2百2故答案为:2.点评:本题考查正弦定理的运用,同时考查三角形的内角和定理,考查运算能力,属于基础题.13. (3分)(2015?安徽)已知数列{a n}中,a i=1, a n=a n-1冷(n丝),则数列{a n}的前9项和等于27 .通过a n=a n-1+ (n多)可得公差,进而由求和公式即得结论.2解:• a n=a n-1 (n ),21 1a n-1L14. (3分)(2015?安徽)在平面直角坐标系xOy中,若直线y=2a与函数y=|x —a|—1的图象只有一个交点,则a的值为_ -丄.考点:专题:函数的零点与方程根的关系.函数的性质及应用.由已知直线y=2a与函数y=|x —a|—1的图象特点分析一个交点时,两个图象的位置,确定a.考点:数列递推式.专题:等差数列与等比数列. 分析:解答:点评: •••数列{a n}的公差d1-,又a i=i,• a n=1+& (n - 1)=臼敦<9-DS9=9a i+I~,2故答案为:27.本题考查等差数列的求和,注意解题方法的积累,属于基础题. 即有AC==2.?d=9+36解答:解:由已知直线y=2a是平行于x轴的直线,函数y=|x —a|—1的图象是折线,所以直线y=2a 过折线顶点时满足题意,所以2a= —1,解得a=—故答案为:_•| 2点评:本题考查了函数的图象;考查利用数形结合求参数.15. ( 3分)(2015?安徽)△ ABC是边长为2的等边三角形,已知向量巳、b满足忑恳,则下列结论中正确的是①④⑤.(写出所有正确结论得序号)①日为单位向量;②b为单位向量;③a _L b ;④R//EC;⑤(4色花)丄EC.考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用向量的三角形法则以及向量数量积的公式对各结论分别分析选择.解答:—一一| r r 解:△ ABC是边长为2的等边三角形,已知向量直、b满匝^ =2色,AC =2n+b ,则鼻寺忑,AB=2,所以|自|=1,即;a是单位向量;①正确;因为上2-".,所以(一宀故h'.|=2;故②错误;④正确;了夹角为120 °故④错误;⑤ (4^+b) ?BC=4 旦・b十l;=4 X1 >2 >Cos120°+4= —4+4=0 ;故⑤ 正确.故答案为:①④⑤.点评:本题考查了向量的数量积运用;注意三角形的内角与向量的夹角的关系.三、解答题216. (2015?安徽)已知函数f (x) = (sinx+cosx) +cos2x(1 )求f (x)最小正周期;TT(2)求f (x)在区间[0,-歹]上的最大值和最小值.考点:三角函数的最值;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:(1)由条件利用三角恒等变换求得 f (x)的解析式,再利用正弦函数的周期性求得f ( x )最小正周期.TT(2)由条件利用正弦函数的定义域和值域,求得 f (x)在区间[0,―扌]上的最大值和最小值.解答:解答解:(1) •••函数f (x) (sin x+cosx)2+cos2x=1+s in 2x+cos2x=1 +点评:本题主要考查三角恒等变换,正弦函数的周期性、定义域和值域,属于中档题.17. (2015?安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分, 绘制频率分布直方图 (如图所示),其中样本数据分组区间为[40, 50], [50 , 60],…,[80, 90], [90, 100] (1 )求频率分布图中a 的值; (2) 估计该企业的职工对该部门评分不低于80的概率; (3)从评分在[40 , 60]的受访职工中,随机抽取2人,求此2人评分都在[40 , 50]的概率.考点:频率分布直方图. 专题:概率与统计.分析:(1)利用频率分布直方图中的信息,所有矩形的面积和为 1,得到a ;(2) 对该部门评分不低于 80的即为90和100,的求出频率,估计概率; (3)求出评分在[40 , 60]的受访职工和评分都在[40, 50]的人数,随机抽取 2人,列 举法求出所有可能,利用古典概型公式解答.解答:解:(1)因为(0.004+a+0.018+0.022 >2+0.028) X10=1,解得 a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于 80的频率为 (0.022+0.018) >0=4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4; (3)受访职工中评分在 [50 , 60)的有:50».006»0=3 (人),记为A 1, A 2, A 3; 受访职工评分在[40, 50)的有:50».004»0=2 (人),记为B 1, B 2. 从这5名受访职工中随机抽取 2人,所有可能的结果共有10种,分别是{A 1, A 2}, {A 1, A 3} , {A 1, B 1}, {A 1, B 2}, {A 2, A 3} , {A 2, B 1}, {A 2 ,B 2} , {A 3 , B 1}, {A 3 , B 2}, {B 1 , B 2},又因为所抽取2人的评分都在[40, 50)的结果有1种,即{B 1, B 2},兀 J -H 4 | 2时,f (x )取得最大值为当2x+2H = n—n.| 2 (2)在区间[0, *]上,2x+ 小值为1+;(——£) =0,2],故当2x+. 4时,f (x )取得最它的最小正周期为jyeoo con>10点评:本题考查了频率分布直方图的认识以及利用图中信息求参数以及由频率估计概率,考查了利用列举法求满足条件的事件,并求概率.18. (2015?安徽)已知数列{a n }是递增的等比数列,且 a i +a 4=9 , a 2a 3=8.(1)求数列{a n }的通项公式;解:(1) T 数列{a n }是递增的等比数列,且a 1+a 4=9, a 2a 3=8.a1+a 4=9,a 1a 4=8 .解得 解得12n41 - 1本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.19. ( 2015?安徽)如图,三棱锥 P - ABC 中,PA 丄平面 ABC ,PA=1 ,AB=1 ,AC=2,/ BAC=60(1 )求三棱锥 P -ABC 的体积;(2)证明:在线段 PC 上存在点M ,使得AC 丄BM ,并求£的值.(2)设&为数列{a n }的前n 项和,bn= "ISn Sn-Fl,求数列{b n }的前n 项和T n .考点:数列的求和. 专题:等差数列与等比数列. 分析:(1)根据等比数列的通项公式求出首项和公比即可,求数列 {a n }的通项公式;(2)求出b n =S n Sn+l,利用裂项法即可求数列{b n }的前n 项和T n .解答: a 1=1, a 4=8 或 a 1=8, a 4=1 (舍), q=2,即数列{a n }的通项公式a n =2 n 1;(1-Q r )…数列{b n }的前 n 项和 T n ^^^ -十—」二+5 ] d•• +11Sn+1=1 -点评: 故所求的概率为 P=—— 1,Sn+1n Sn+1考点:棱柱、棱锥、棱台的体积;点、线、面间的距离计算.(1) 利用V P_ABC」?SA ABC ?PA ,求三棱锥P -ABC 的体积;3(2) 过B 作BN 丄AC ,垂足为N ,过N 作MN // PA ,交PA 于点M ,连接BM ,证明AC 丄平面MBN ,可得AC 丄BM ,利用MN 〃 PA ,求制值. (2)由PA 丄平面 ABC ,知PA 丄AC ,所以 MN 丄AC , 因为BN AMN=N ,所以AC 丄平面 MBN . 因为BM?平面 MBN ,所以 AC 丄BM . 在直角△ BAN 中,AN=AB ?cos / BAC=二,2从而 NC=AC - AN=±.2专题:综合题;空间位置关系与距离. 分析:解答:(1) 可得 解:由题设, AB=1 , AC=2 , / BAC=60 °2因为 所以 S A ABC =*AB•或甬Q" PA 丄平面 ABC , PA=1, 1V P-ABC = ?S A ABC ?PA='3爲解:过B 作BN 丄AC ,垂足为N ,过N 作MN // PA ,交PA 于点M ,连接BM , F由MN〃pA彳罟爭二点评:本题考查三棱锥P- ABC的体积的计算,考查线面垂直的判定与性质的运用,考查学生分析解决问题的能力,属于中档题.20. (2015?安徽)设椭圆E 的方程为 七+七=1 (a >b >0),点O 为坐标原点,点 A 的坐标 为(a , 0),点B 的坐标为(0, b ),点M 在线段AB 上,满足|BM|=2|MA|,直线OM 的斜 率为二.L0(1 )求E 的离心率e ;(2)设点C 的坐标为(0,- b ), N 为线段AC 的中点,证明:MN 丄AB .考点:直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)通过题意,利用=4=2”〔,可得点M 坐标,利用直线 OM 的斜率为[,,计算即 10得结论;(2)通过中点坐标公式解得点 N 坐标,利用-「?.丫=0即得结论.解答:(1)解:设 M(x , y ) , •/ A (a , 0)、B (0, b ),点 M 在线段 AB 上且|BM|=2|MA| , •••二=2"「,即(x - 0, y - b ) =2 ( a - x , 0- y ),3! ■ • L ,= ■• • = , 10 • a=-・b , c= . : i J =2b ,•椭圆E 的离心率e=-==^ a 5(2)证明:•••点C 的坐标为(0,- b ) , N 为线段AC 的中点,由(1)可知a 2=5b 2 ,故-?匚=0,即MN 丄AB .点评:本题考查运用向量知识解决圆锥曲线的性质,考查运算求解能力、注意解题方法的积 累,属于中档题.又•/直线OM 的斜率为2a 10解得x==, ,即M (M a ,”),21. (2015?安徽)已知函数f (x)= ' - (a> 0 , r > 0)(心1(1 )求f (x)的定义域,并讨论f (x)的单调性;第16页(共18页)(2)若_!=400,求f ( 乂)在(0, + R )内的极值. r考点:利用导数研究函数的极值;利用导数研究函数的单调性. 专题:函数的性质及应用;导数的综合应用.分析:(1)通过令分母不为 0即得f ( x )的定义域,通过求导即得(2)通过(1)知x=r 是f (x )的极大值点,计算即可.解答: “解:(1) •••函数 f (x )= -------- -- ---- -(a > 0, r > 0),(灶r)2 ••• XM - r ,即 f (x )的定义域为(-g,- r ) U (- r , + ^).•••当 x v — r 或 x > r 时,f' (x )v 0;当—r v x v r 时,f (x ) > 0; 因此,f (x )的单调递减区间为:(-g,- r )、(r , +g),递增区间为:(-r , r );(2)由(1)的解答可得f ' (x ) =0, f (x )在(0, r ) 上单调递增,在(r , +g) 上 单调递减,• x=r 是f (x )的极大值点,+ g)内的极大值为 f (「)=幽「临P=10° .点评:本题考查函数的定义域、单调区间、极值,注意解题方法的积累,属于中档题.= 謎 . - 」• (心2 x 2+2ri+r 2 又•/ f (x ) =呂3卫+加奸匕')一&直t2x+2r) a Cr - x) Cs+r ) (i 2t2rx+r 2) 2 4•- f' (x )f (x )的单调区间;第18页(共18页)参与本试卷答题和审题的老师有:qiss;wkl197822 ; changq;双曲线;W3239003 ;刘长柏; sdpyqzh; maths;cst;caoqz (排名不分先后)菁优网2015年6月11日。
2015年高考文数真题试卷(安徽卷)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(2015·安徽)设i是虚数单位,则复数(1-i)(1+2i)=()A. 3+3iB. -1+3iC. 3+iD. -1+i2.(2015·安徽)设全集,,,则=()A. {1,2,5,6}B. {1}C. {2}D. {1,2,3,4,}3.(2015·安徽)设p:x<3,q:-1<x<3,则p是q成立的()A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4.(2015·安徽)下列函数中,既是偶函数又存在零点的是()A. y=lnxB.C. y=sinxD. y=cosx5.(2015·安徽)已知x,y满足约束条件,则z=-2x+y的最大值是()A. -1B. -2C. -5D. 16.(2015·安徽)执行如图所示的程序框图(算法流程图),输出的n为()A. 3B. 4C. 5D. 67.(2015·安徽)直线3x+4y=b与圆相切,则b=()A. -2或12B. 2或-12C. -2或-12D. 2或128.(2015·安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A. B. C. D.9.(2015·安徽)函数的图像如图所示,则下列结论成立的是()A. a>0,b<0,c>0,d>0B. a>0,b<0,c<0,d>0C. a<0,b<0,c<0,d>0D. a>0,b>0,c>0,d<0二.填空题:本大题共5小题,每小题5分,共25分,将答案填在答题卡相应的位置10.(2015安徽)________。
2015年普通高等学校招生全国统一考试数学安徽卷(文科)一、选择题.1. 设i 是虚数单位,则复数(1i)(12i)()-+=A. 3+3iB. -1+3iC. 3+iD. -1+i 【参考答案】 C【测量目标】 复数的四则运算.【试题解析】 因为(1-i)(1+2i)=1+2i-i-22i =3+i, 所以选C. 2. 设全集{1,2,3,4,5,6},={1,2},{2,3,4}U A B ==,则()()U A B = ð A. {1, 2, 5, 6} B. {1} C. {2} D. {1, 2, 3, 4}【参考答案】 B【测量目标】 集合的运算.【试题解析】 因为U B ð={1, 5, 6}, 所以()U A B ð={1}. 故选B. 3. 设p :x <3, q : -1<x <3, 则p 是q 成立的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件 【参考答案】 C【测量目标】 充要条件的判断.【试题解析】 因为p : x <3, q : -1<x <3, 所以,q p ⇒但是p 不能推出q , 所以p 是q 成立的必要不充分条件,故选C. 4. 下列函数中,既是偶函数又存在零点的是( )A. y =㏑xB. 2y x =+1 C. y =sin x D. y =cos x【参考答案】 D【测量目标】 函数的奇偶性;零点.【试题解析】 对选项A : y =㏑x 的定义域为(0,+∞),不具有奇偶性,排除A; 对选项B :2y x =+1是偶函数,但2y x =+1=0无解,即不存在零点,排除B; 对选项C :y =sin x 是奇函数,排除C; 对选项D :y =cos x =0,2x k k π⇒=+π∈Z , 所以D 正确.5. 已知,x y 满足约束条件0401x y x y y -⎧⎪+-⎨⎪⎩≥≤≥,则2z x y =-+的最大值是( )A.-1B.-2C.-5D. 1 【参考答案】 A【测量目标】 简单的线性规划.【试题解析】 根据题意作出约束条件确定的可行域,第5题图由22z x y y x z =-+⇒=+,可知在图中点(1,1)处,2z x y =-+取到最大值-1,故选A.6. 下列双曲线中,渐近线方程为2y x =±的是( )A. 2214y x -= B. 2214x y -= C. 2212y x -= D. 2212x y -= 【参考答案】 A【测量目标】 渐近线方程.【试题解析】 由双曲线的渐近线的公式知道选项A 的渐近线方程为2y x =±,故选A. 7. 执行如图所示的程序框图(算法流程图),输出的n 为( ) A. 3 B. 4 C. 5 D. 6第7题图【参考答案】 B【测量目标】 程序框图.【试题解析】 执行第一次循环体:3,22a n ==,此时 1.414 1.5 1.4140.086a -=-=; 执行第二次循环体:7,35a n ==,此时 1.414 1.4 1.4140.0140.005a -=-=≥; 执行第三次循环体:17,412a n ==,此时 1.4140.005a -<,不满足判断条件,输出 4n =, 故选B.8. 直线34x y b +=与圆222210x y x y +--+=相切,则b =( ) A. -2或12 B. 2或-12 C. -2或-12 D. 2或12【参考答案】 D【测量目标】 直线与圆的位置关系;点到直线的距离公式.【试题解析】 把圆的方程化为标准形式:22(1)(1)1x y -+-=,则圆心(1,1),半径为1,又直线与圆相切,所以223+4=1=2123+4b b -⇒或. 故选D.9. 一个四面体的三视图如图所示,则该四面体的表面积是( ) A. 13+ B. 122+ C. 23+ D. 22第9题图【参考答案】 C【测量目标】 几何体的三视图;锥体的表面积.【试题解析】 由给出的三视图可知该几何体的直观图如下所示.第9题图其中侧面P AC ⊥底面ABC ,且PAC ABC △≌△, 由三视图中所给数据可知:P A=PC=AB=BC =2, 取AC 中点O ,连接PO, BO , 则Rt POB △中,PO=BO =1⇒PB =2, 所以面积S 可计算为1612222123222S =⨯⨯⨯+⨯⨯⨯=+. 故选C.10. 函数32()f x ax bx cx d =+++的图象如图所示,则下列结论成立的是( )第10题图A. 0,0,0,0a b c d ><>>B. 0,0,0,0a b c d ><<>C. 0,0,0,0a b c d <<<>D. 0,0,0,0a b c d >>>< 【参考答案】 A【测量目标】 函数的图形与性质.【试题解析】 由函数()f x 的图象可知0a >,令'200.()3+2x d f x ax bx c =⇒>=+,可知12,x x 是'()0f x =的两个根,由图可知120,0x x >>. 所以由韦达定理得12122003003b x x b ac c x x a ⎧+=->⎪<⎧⎪⇒⎨⎨>⎩⎪=>⎪⎩, 故选A.二、填空题.11. lg52+2lg2-11()2-=________ . 【参考答案】-1【测量目标】 指数幂运算;对数运算.【试题解析】 原式=lg5-lg2+2lg2-2=lg5+lg2-2=-1 . 12. 在ABC △中,AB =6, 75,45A B ∠=∠= , 则AC =________ .【参考答案】 2【测量目标】 正弦定理. 【试题解析】 由正弦定理可知:6sin[180(7545)]sin 45sin 60sin 45AB AC AC=⇒=-+,所以2AC =.13. 已知数列{n a }中,1111,(2)2n n a a a n -==+≥,则数列{n a }的前9项和等于_____.【参考答案】 27【测量目标】 等差数列的定义与前n 项和. 【试题解析】 由11(2)2n n a a n --=≥知道数列{n a }是以1为首项,12为公差的等差数列.则其通项公式为12n n a +=,所以前9项和9919[1]2272S ++==. 14. 在平面直角坐标系xOy 中,若直线2y a =与函数1y x a =--的图象只有一个交点,则a 的值为________. 【参考答案】 12-【测量目标】 函数与方程;函数的图象.【试题解析】 在同一坐标系内,作出所给直线与函数的大致图象如图,则1212a a =-⇒=-.第14题图15. ABC △是边长为2的等边三角形,已知向量、a b 满足22AB AC ==+,a a b , 则下列结论中正确的是________.(写出所有正确结论的序号)① a 为单位向量; ② b 为单位向量; ③ ⊥a b ; ④ BC ∥b ; ⑤ (4)BC +⊥a b .【参考答案】 ①④⑤【测量目标】 平面向量的基本概念和性质.【试题解析】 由题意可知:等边三角形ABC 的边长为2,2AB = a ,则22AB ==a ,所以a =1, 故①正确;+2,AC AB BC BC BC ==∴=a +b 2⇒=b , 故②错误,④正确;=2AB BC =∴ ,,与a b a b的夹角为120,故③错误; 1(4)(4)412()+4=02BC +⋅=+⋅=⨯⨯⨯- a b a b b ,(4)BC ∴+⊥ a b , 故⑤正确.三、解答题.16. 已知函数2()(sin cos )+cos2f x x x x =+ (1)求()f x 的最小正周期; (2)求()f x 在区间[0,2π]上的最大值和最小值.【参考答案】 (1)π; (2)最大值为21+,最小值为0. 【测量目标】 (1)三角函数的性质; (2)三角函数在区间上的最值. 【试题解析】(1)化简可得()2sin(2)14f x x π=++,则()f x 最小正周期22T π==π;(2)52[0,],2[,],sin(2)[,1]244442x x x πππππ∈∴+∈∴+∈- , 故()2sin(2)14f x x π=++的最大值为21+,最小值为0.17. 某企业为了解下属某部门对本企业职工的服务情况,随机访问了50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为 [40,50], [50,60], [60,70], … ,[80,90],[90,100].第17题图(1)求频率分布图中a 的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40, 60]的受访职工中,随机抽取2人,求此2人评分都在[40, 50]的概率. 【测量目标】 (1)频率分布直方图; (2)古典概型;(3)随机事件的概率.【试题解析】 (1)由频率分布直方图可知:(0.004+a +0.018+0.022×2+0.028)×10=1,解得0.006a =.(2)由分布直方图可知,评分不低于80的人数为(0.022+0.018)×10×50=20(人), 所以评分不低于80分的概率为25. (3)在[40, 50]、[50,60]内的人数分别为:0.004×10×50=2,0.006×10×50=3,故在[40,60]内的受访职工中随机抽取2人,此2人评分均在[40,50]之间的概率为:2225C 1C 10P ==. 18. 已知数列{n a }是递增的等比数列,且14239,8a a a a +==.(1)求数列{n a }的通项公式;(2)设n S 为数列{n a }的前n 项和,1+1n n n n a b S S +=,求数列{n b }的前n 项和n T .【测量目标】(1)等比数列的通项公式;(2)裂项相消法求和. 【试题解析】 (1){n a }是递增的等比数列,且14239,8a a a a +==,14134144114918288a a a a a a q q a a a a +=⎧=⎧⎪<⇒⇒==⇒=⎨⎨=⎩⎪=⎩ , 1112n n n a a q --∴==. (2)由(1)可知1(1)1221112n nn n a q S q --===---,11211(21)(21)2121n n n n n n b ++∴==-----, +1111111113377152121n n n T ∴=-+-+-++--- =11121n +-=-112221n n ++--.19. 如图三棱锥P -ABC 中,P A ⊥平面ABC , P A =1,AB =1,AC =2,60BAC ∠=. (1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M , 使得AC ⊥BM , 并求PMMC的值.第19题图【测量目标】(1)三棱锥的体积公式; (2)线面垂直的判定定理和性质.【试题解析】 (1)在ABC △中, AB =1, AC =2, 60BAC ∠=, 113s i n 12s i n 60222ABC S AB AC BAC ∴=⋅⋅∠=⨯⨯⨯= △. 又因为P A ⊥面ABC , -113313326P A B C A B C V P A S ∴=⋅=⨯⨯=△. (2)过点B 作BN 垂直AC 于点N , 过N 作NM P A 交PC 于M , 则有第19题图=M N A B C M N A C A C B M NM N B NN A C A B C B M B M N⊥⊥⊥⎧⎧⎧⇒⇒⎨⎨⎨⊂⊂⎩⎩⎩ 面面面面 AC BM ⇒⊥. 此时M 即为所要找的点,在ABN △中,131====243CM CN PM AN PC AC MC ⇒⇒. 20. 设椭圆E 的方程为22221(0)x y a b a b+=>>,点O 为坐标原点,点A 的坐标为(,0a ),点B 的坐标为(0, b ),点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,)b -,N 为线段AC 的中点,证明:MN AB ⊥. 【测量目标】 (1)椭圆的离心率;(2)直线与椭圆的位置关系.【试题解析】 (1)212,(,0),(0,),(,)33BM MA A a B b M a b =∴ ,又OM 的斜率为510,222222215114253=21055553bb ac c e a a a a -∴=⇒=⇒=⇒=⇒. (2)由题意可知N 点的坐标为(,22a b -),11553262326MN b b b b K a a a a +∴===-, 225,1.A B M N A B bb K K K MN AB aa =∴⋅=-=-∴⊥-, 21. 已知函数2()(0,0)()ax f x a r x r =>>+(1)求()f x 的定义域,并讨论()f x 的单调性; (2)若400ar=,求()f x 在(0,)+∞内的极值.【测量目标】 (1)导数在函数单调性中的应用; (2)函数的极值.【试题解析】(1)由题意可知x r ≠-,所以函数的定义域为,)(,)r r --+ (-∞∞. 222'44()2()()()()()a x r ax x r a x r f x x r x r +-+--==++, 0,0,a r >> 令'()0(,)()f x x r r f x >⇒∈-∴的单调递增区间为(,)r r -;令'()0(,)f x x r <⇒∈--∞和(,)r +∞,()f x ∴的单调递减区间为(,)r --∞和(,)r +∞. (2)由(1)可知()f x 在(0,)+∞内的极大值为2()10044ar af r r r===. 且()f x 在(0,)+∞内无极小值.。
2015年安徽省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i2.(5分)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁B)=()UA.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}3.(5分)设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)下列函数中,既是偶函数又存在零点的是()A.y=lnx B.y=x2+1 C.y=sinx D.y=cosx5.(5分)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.16.(5分)下列双曲线中,渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.x2﹣=1 D.﹣y2=17.(5分)执行如图所示的程序框图(算法流程图),输出的n为()A.3 B.4 C.5 D.68.(5分)直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,则b=()A.﹣2或12 B.2或﹣12 C.﹣2或﹣12 D.2或129.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.210.(5分)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0 D.a>0,b>0,c>0,d<0二、填空题11.(3分)lg+2lg2﹣()﹣1=.12.(3分)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=.13.(3分)已知数列{a n}中,a1=1,a n=a n﹣1+(n≥2),则数列{a n}的前9项和等于.14.(3分)在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.15.(3分)△ABC是边长为2的等边三角形,已知向量、满足=2,=2+,则下列结论中正确的是.(写出所有正确结论得序号)①为单位向量;②为单位向量;③;④∥;⑤(4+)⊥.三、解答题16.已知函数f(x)=(sinx+cosx)2+2cos2x.(Ⅰ)求f(x)最小正周期;(Ⅱ)求f(x)在区间[0,]上的最大值和最小值.17.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.18.已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.19.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.20.设椭圆E的方程为=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,﹣b),N为线段AC的中点,证明:MN⊥AB.21.已知函数f(x)=(a>0,r>0)(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值.2015年安徽省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i【解答】解:复数(1﹣i)(1+2i)=1+2﹣i+2i=3+i.故选:C.2.(5分)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁B)=()UA.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}【解答】解:∁R B={1,5,6};∴A∩(∁R B)={1,2}∩{1,5,6}={1}.故选:B.3.(5分)设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:设p:x<3,q:﹣1<x<3,则p成立,不一定有q成立,但是q 成立,必有p成立,所以p是q成立的必要不充分条件.故选:C.4.(5分)下列函数中,既是偶函数又存在零点的是()A.y=lnx B.y=x2+1 C.y=sinx D.y=cosx【解答】解:对于A,y=lnx定义域为(0,+∞),所以是非奇非偶的函数;对于B,是偶函数,但是不存在零点;对于C,sin(﹣x)=﹣sinx,是奇函数;对于D,cos(﹣x)=cosx,是偶函数并且有无数个零点;故选:D5.(5分)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.1【解答】解:由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由得到A(1,1),所以z的最大值为﹣2×1+1=﹣1;故选:A.6.(5分)下列双曲线中,渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.x2﹣=1 D.﹣y2=1【解答】解:由双曲线方程﹣=1(a>0,b>0)的渐近线方程为y=±x,由A可得渐近线方程为y=±2x,由B可得渐近线方程为y=±x,由C可得渐近线方程为y=x,由D可得渐近线方程为y=x.故选:A.7.(5分)执行如图所示的程序框图(算法流程图),输出的n为()A.3 B.4 C.5 D.6【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故选:B.8.(5分)直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,则b=()A.﹣2或12 B.2或﹣12 C.﹣2或﹣12 D.2或12【解答】解:由圆x2+y2﹣2x﹣2y+1=0,化为标准方程为(x﹣1)2+(y﹣1)2=1,∴圆心坐标为(1,1),半径为1,∵直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,∴圆心(1,1)到直线3x+4y﹣b=0的距离等于圆的半径,即,解得:b=2或b=12.故选:D.9.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.2【解答】解:∵∴三棱锥O﹣ABC,OE⊥底面ABC,EA=ED=1,OE=1,AB=BC=∴AB⊥BC,∴可判断;△OAB≌△OBC的直角三角形,S△OAC=S△ABC==1,S△OAB=S△OBC=×2=该四面体的表面积:2故选:C.10.(5分)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0 D.a>0,b>0,c>0,d<0【解答】解:f(0)=d>0,排除D,当x→+∞时,y→+∞,∴a>0,排除C,函数的导数f′(x)=3ax2+2bx+c,则f′(x)=0有两个不同的正实根,则x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,方法2:f′(x)=3ax2+2bx+c,由图象知当当x<x1时函数递增,当x1<x<x2时函数递减,则f′(x)对应的图象开口向上,则a>0,且x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,故选:A二、填空题11.(3分)lg+2lg2﹣()﹣1=﹣1.【解答】解:lg+2lg2﹣()﹣1=lg5﹣lg2+2lg2﹣2=lg5+lg2﹣2=1﹣2=﹣1.故答案为﹣1.12.(3分)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=2.【解答】解:∠A=75°,∠B=45°,则∠C=180°﹣75°﹣45°=60°,由正弦定理可得,=,即有AC==2.故答案为:2.13.(3分)已知数列{a n}中,a1=1,a n=a n﹣1+(n≥2),则数列{a n}的前9项和等于27.【解答】解:∵a n=a n﹣1+(n≥2),=(n≥2),∴a n﹣a n﹣1∴数列{a n}的公差d=,又a1=1,∴a n=1+(n﹣1)=,∴S9=9a1+•d=9+36×=27,故答案为:27.14.(3分)在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.【解答】解:由已知直线y=2a是平行于x轴的直线,由于y=x﹣a为一次函数,其绝对值的函数为对称图形,故函数y=|x﹣a|﹣1的图象是折线,所以直线y=2a 过折线顶点时满足题意,所以2a=﹣1,解得a=﹣;故答案为:.15.(3分)△ABC是边长为2的等边三角形,已知向量、满足=2,=2+,则下列结论中正确的是①④⑤.(写出所有正确结论得序号)①为单位向量;②为单位向量;③;④∥;⑤(4+)⊥.【解答】解:△ABC是边长为2的等边三角形,已知向量、满足=2,=2+,则=,AB=2,所以||=1,即是单位向量;①正确;因为=2,所以,故||=2;故②错误;④正确;,夹角为120°,故③错误;⑤(4+)•=4=4×1×2×cos120°+4=﹣4+4=0;故⑤正确.故答案为:①④⑤.三、解答题16.已知函数f(x)=(sinx+cosx)2+2cos2x.(Ⅰ)求f(x)最小正周期;(Ⅱ)求f(x)在区间[0,]上的最大值和最小值.【解答】解:(Ⅰ)f(x)=(sinx+cosx)2+2cos2x=sin2x+2sinxcosx+cos2x+2cos2x=1+sin2x+1+cos2x=sin(2x+)+2,…(4分)所以f(x)的最小正周期为T=π;…(6分)(Ⅱ)由0≤x≤得,0≤2x≤π,所以≤2 x+≤;…(8分)根据正弦函数y=sinx的图象可知当时,f(x)有最大值为2+,…(11分)当时,f(x)有最小值为1.…(13分)17.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【解答】解:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.18.已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.【解答】解:(1)∵数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.∴a1+a4=9,a1a4=a2a3=8.解得a1=1,a4=8或a1=8,a4=1(舍),解得q=2,即数列{a n}的通项公式a n=2n﹣1;(2)S n==2n﹣1,∴b n===﹣,∴数列{b n}的前n项和T n=+…+﹣=﹣=1﹣.19.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.【解答】(1)解:由题设,AB=1,AC=2,∠BAC=60°,==.可得S△ABC因为PA⊥平面ABC,PA=1,=•S△ABC•PA=;所以V P﹣ABC(2)解:过B作BN⊥AC,垂足为N,过N作MN∥PA,交PC于点M,连接BM,由PA⊥平面ABC,知PA⊥AC,所以MN⊥AC,因为BN∩MN=N,所以AC⊥平面MBN.因为BM⊂平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB•cos∠BAC=,从而NC=AC﹣AN=.由MN∥PA得==.20.设椭圆E的方程为=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,﹣b),N为线段AC的中点,证明:MN⊥AB.【解答】(1)解:设M(x,y),∵A(a,0)、B(0,b),点M在线段AB上且|BM|=2|MA|,∴=2,即(x﹣0,y﹣b)=2(a﹣x,0﹣y),解得x=a,y=b,即M(a,b),又∵直线OM的斜率为,∴=,∴a=b,c==2b,∴椭圆E的离心率e==;(2)证明:∵点C的坐标为(0,﹣b),N为线段AC的中点,∴N(,﹣),∴=(,),又∵=(﹣a,b),∴•=(﹣a,b)•(,)=﹣a2+=(5b2﹣a2),由(1)可知a2=5b2,故•=0,即MN⊥AB.21.已知函数f(x)=(a>0,r>0)(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值.【解答】解:(1)∵函数f(x)=(a>0,r>0),∴x≠﹣r,即f(x)的定义域为(﹣∞,﹣r)∪(﹣r,+∞).又∵f(x)==,∴f′(x)==,∴当x<﹣r或x>r时,f′(x)<0;当﹣r<x<r时,f′(x)>0;因此,f(x)的单调递减区间为:(﹣∞,﹣r)、(r,+∞),递增区间为:(﹣r,r);(2)由(1)的解答可得f′(x)=0,f(x)在(0,r)上单调递增,在(r,+∞)上单调递减,∴x=r是f(x)的极大值点,∴f(x)在(0,+∞)内的极大值为f(r)====100.。
2015年安徽省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i2.(5分)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A B)=()∩(∁UA.{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}3.(5分)设p:<3,q:﹣1<<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(5分)下列函数中,既是偶函数又存在零点的是()A.y=ln B.y=2+1 C.y=sin D.y=cos5.(5分)已知,y满足约束条件,则=﹣2+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.16.(5分)下列双曲线中,渐近线方程为y=±2的是()A.2﹣=1 B.﹣y2=1 C.2﹣=1 D.﹣y2=17.(5分)执行如图所示的程序框图(算法流程图),输出的n为()A.3 B.4 C.5 D.68.(5分)直线3+4y=b与圆2+y2﹣2﹣2y+1=0相切,则b=()A.﹣2或12 B.2或﹣12 C.﹣2或﹣12 D.2或129.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.210.(5分)函数f()=a3+b2+c+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0 D.a>0,b>0,c>0,d<0二、填空题11.(3分)lg+2lg2﹣()﹣1= .12.(3分)在△ABC中,AB=,∠A=75°,∠B=45°,则AC= .13.(3分)已知数列{an }中,a1=1,an=an﹣1+(n≥2),则数列{an}的前9项和等于.14.(3分)在平面直角坐标系Oy中,若直线y=2a与函数y=|﹣a|﹣1的图象只有一个交点,则a的值为.15.(3分)△ABC是边长为2的等边三角形,已知向量满足=2,=2+,则下列结论中正确的是.(写出所有正确结论得序号)①为单位向量;②为单位向量;③;④∥;⑤(4+)⊥.三、解答题16.已知函数f()=(sin+cos)2+2cos2.(Ⅰ)求f()最小正周期;(Ⅱ)求f()在区间[0,]上的最大值和最小值.17.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.18.已知数列{an }是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{an}的通项公式;(2)设Sn 为数列{an}的前n项和,bn=,求数列{bn}的前n项和Tn.19.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.20.设椭圆E的方程为=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,﹣b),N为线段AC的中点,证明:MN⊥AB.21.已知函数f()=(a>0,r>0)(1)求f()的定义域,并讨论f()的单调性;(2)若=400,求f()在(0,+∞)内的极值.2015年安徽省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i【分析】直接利用复数的多项式乘法展开求解即可.【解答】解:复数(1﹣i)(1+2i)=1+2﹣i+2i=3+i.故选:C.【点评】本题考查复数的代数形式的混合运算,基本知识的考查.2.(5分)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A ∩(∁B)=()UA.{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}【分析】进行补集、交集的运算即可.B={1,5,6};【解答】解:∁RB)={1,2}∩{1,5,6}={1}.∴A∩(∁R故选:B.【点评】考查全集、补集,及交集的概念,以及补集、交集的运算,列举法表示集合.3.(5分)设p:<3,q:﹣1<<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【分析】判断必要条件与充分条件,推出结果即可.【解答】解:设p:<3,q:﹣1<<3,则p成立,不一定有q成立,但是q 成立,必有p成立,所以p是q成立的必要不充分条件.故选:C.【点评】本题考查充要条件的判断与应用,基本知识的考查.4.(5分)下列函数中,既是偶函数又存在零点的是()A.y=ln B.y=2+1 C.y=sin D.y=cos【分析】利用函数奇偶性的判断一件零点的定义分别分析解答.【解答】解:对于A,y=ln定义域为(0,+∞),所以是非奇非偶的函数;对于B,是偶函数,但是不存在零点;对于C,sin(﹣)=﹣sin,是奇函数;对于D,cos(﹣)=cos,是偶函数并且有无数个零点;故选:D.【点评】本题考查了函数奇偶性的判断以及函数零点的判断;判断函数的奇偶性首先要判断函数的定义域,在定义域关于原点对称的前提下判断f(﹣)与f()的关系.5.(5分)已知,y满足约束条件,则=﹣2+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.1【分析】首先画出平面区域,=﹣2+y的最大值就是y=2+在y轴的截距的最大值.【解答】解:由已知不等式组表示的平面区域如图阴影部分,当直线y=2+经过A时使得最大,由得到A(1,1),所以的最大值为﹣2×1+1=﹣1;故选:A.【点评】本题考查了简单线性规划,画出平面区域,分析目标函数取最值时与平面区域的关系是关键.6.(5分)下列双曲线中,渐近线方程为y=±2的是()A.2﹣=1 B.﹣y2=1 C.2﹣=1 D.﹣y2=1【分析】由双曲线方程﹣=1(a>0,b>0)的渐近线方程为y=±,对选项一一判断即可得到答案.【解答】解:由双曲线方程﹣=1(a>0,b>0)的渐近线方程为y=±,由A可得渐近线方程为y=±2,由B可得渐近线方程为y=±,由C可得渐近线方程为y=,由D可得渐近线方程为y=.故选:A.【点评】本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.7.(5分)执行如图所示的程序框图(算法流程图),输出的n为()A.3 B.4 C.5 D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n的值是解题的关键,属于基础题.8.(5分)直线3+4y=b与圆2+y2﹣2﹣2y+1=0相切,则b=()A.﹣2或12 B.2或﹣12 C.﹣2或﹣12 D.2或12【分析】化圆的一般式方程为标准式,求出圆心坐标和半径,由圆心到直线的距离等于圆的半径列式求得b值.【解答】解:由圆2+y2﹣2﹣2y+1=0,化为标准方程为(﹣1)2+(y﹣1)2=1,∴圆心坐标为(1,1),半径为1,∵直线3+4y=b与圆2+y2﹣2﹣2y+1=0相切,∴圆心(1,1)到直线3+4y﹣b=0的距离等于圆的半径,即,解得:b=2或b=12.故选:D.【点评】本题考查圆的切线方程,考查了点到直线的距离公式的应用,是基础题.9.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.2【分析】判断得出三棱锥O﹣ABC,OE⊥底面ABC,EA=ED=1,OE=1,AB=BC=,AB⊥BC,可判断;△OAB≌△OBC的直角三角形,运用面积求解即可.【解答】解:∵∴三棱锥O ﹣ABC ,OE ⊥底面ABC ,EA=ED=1,OE=1,AB=BC=∴AB ⊥BC ,∴可判断;△OAB ≌△OBC 的直角三角形,S △OAC =S △ABC ==1,S △OAB =S △OBC =×2=该四面体的表面积:2, 故选:C .【点评】本题考查了三棱锥的三视图的运用,关键是恢复几何体的直观图,考查了学生的空间思维能力.10.(5分)函数f ()=a 3+b 2+c+d 的图象如图所示,则下列结论成立的是( )A .a >0,b <0,c >0,d >0B .a >0,b <0,c <0,d >0C .a <0,b <0,c <0,d >0D .a >0,b >0,c >0,d <0【分析】根据函数的图象和性质,利用排除法进行判断即可.【解答】解:f (0)=d >0,排除D ,当→+∞时,y →+∞,∴a >0,排除C ,函数的导数f ′()=3a 2+2b+c ,则f ′()=0有两个不同的正实根,则1+2=﹣>0且12=>0,(a >0),∴b <0,c >0,方法2:f ′()=3a 2+2b+c ,由图象知当当<1时函数递增,当1<<2时函数递减,则f ′()对应的图象开口向上,则a >0,且1+2=﹣>0且12=>0,(a >0),∴b <0,c >0,故选:A .【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合函数的极值及f (0)的符号是解决本题的关键.二、填空题11.(3分)lg +2lg2﹣()﹣1= ﹣1 .【分析】根据指数幂和对数的运算法则计算即可.【解答】解:lg +2lg2﹣()﹣1=lg5﹣lg2+2lg2﹣2=lg5+lg2﹣2=1﹣2=﹣1.故答案为﹣1.【点评】本题主要考查了指数幂和对数的运算,比较基础.12.(3分)在△ABC中,AB=,∠A=75°,∠B=45°,则AC= 2 .【分析】由三角形的内角和定理可得角C,再由正弦定理,计算即可得到AC.【解答】解:∠A=75°,∠B=45°,则∠C=180°﹣75°﹣45°=60°,由正弦定理可得,=,即有AC==2.故答案为:2.【点评】本题考查正弦定理的运用,同时考查三角形的内角和定理,考查运算能力,属于基础题.13.(3分)已知数列{an }中,a1=1,an=an﹣1+(n≥2),则数列{an}的前9项和等于27 .【分析】通过an =an﹣1+(n≥2)可得公差,进而由求和公式即得结论.【解答】解:∵an =an﹣1+(n≥2),∴an ﹣an﹣1=(n≥2),∴数列{a n }的公差d=,又a 1=1,∴a n =1+(n ﹣1)=,∴S 9=9a 1+•d=9+36×=27,故答案为:27.【点评】本题考查等差数列的求和,注意解题方法的积累,属于基础题.14.(3分)在平面直角坐标系Oy 中,若直线y=2a 与函数y=|﹣a|﹣1的图象只有一个交点,则a 的值为 . 【分析】由已知直线y=2a 与函数y=|﹣a|﹣1的图象特点分析一个交点时,两个图象的位置,确定a .【解答】解:由已知直线y=2a 是平行于轴的直线,由于y=﹣a 为一次函数,其绝对值的函数为对称图形,故函数y=|﹣a|﹣1的图象是折线,所以直线y=2a 过折线顶点时满足题意,所以2a=﹣1,解得a=﹣; 故答案为:.【点评】本题考查了函数的图象;考查利用数形结合求参数.15.(3分)△ABC 是边长为2的等边三角形,已知向量满足=2,=2+,则下列结论中正确的是 ①④⑤ .(写出所有正确结论得序号)①为单位向量;②为单位向量;③;④∥;⑤(4+)⊥.【分析】利用向量的三角形法则以及向量数量积的公式对各结论分别分析选择.【解答】解:△ABC 是边长为2的等边三角形,已知向量满足=2,=2+,则=,AB=2,所以||=1,即是单位向量;①正确;因为=2,所以,故||=2;故②错误;④正确;夹角为120°,故③错误;⑤(4+)•=4=4×1×2×cos120°+4=﹣4+4=0;故⑤正确.故答案为:①④⑤.【点评】本题考查了向量的数量积运用;注意三角形的内角与向量的夹角的关系.三、解答题16.已知函数f()=(sin+cos)2+2cos2.(Ⅰ)求f()最小正周期;(Ⅱ)求f()在区间[0,]上的最大值和最小值.【分析】(Ⅰ)化函数f()为正弦型函数,即可求出f()的最小正周期;(Ⅱ)由0≤≤求出2+的取值范围,再根据正弦函数的图象与性质即可求出f()的最值.【解答】解:(Ⅰ)f()=(sin+cos)2+2cos2=sin2+2sincos+cos2+2cos2=1+sin2+1+cos2=sin(2+)+2,…(4分)所以f()的最小正周期为T=π;…(6分)(Ⅱ)由0≤≤得,0≤2≤π,所以≤2 +≤;…(8分)根据正弦函数y=sin的图象可知当时,f()有最大值为2+,…(11分)当时,f()有最小值为1.…(13分)【点评】本题考查了三角函数的化简以及三角函数的图象与性质的应用问题,是基础题目.17.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【分析】(1)利用频率分布直方图中的信息,所有矩形的面积和为1,得到a;(2)对该部门评分不低于80的即为90和100,的求出频率,估计概率;(3)求出评分在[40,60]的受访职工和评分都在[40,50]的人数,随机抽取2人,列举法求出所有可能,利用古典概型公式解答.【解答】解:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A 1,A 2,A 3;受访职工评分在[40,50)的有:50×0.004×10=2(人),记为B 1,B 2. 从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2}, 故所求的概率为P=.【点评】本题考查了频率分布直方图的认识以及利用图中信息求参数以及由频率估计概率,考查了利用列举法求满足条件的事件,并求概率.18.已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =,求数列{b n }的前n 项和T n .【分析】(1)根据等比数列的通项公式求出首项和公比即可,求数列{a n }的通项公式;(2)求出b n =,利用裂项法即可求数列{b n }的前n 项和T n .【解答】解:(1)∵数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. ∴a 1+a 4=9,a 1a 4=a 2a 3=8.解得a 1=1,a 4=8或a 1=8,a 4=1(舍),解得q=2,即数列{a n }的通项公式a n =2n ﹣1;(2)S n ==2n ﹣1,∴b n ===﹣,∴数列{b n }的前n 项和T n =+…+﹣=﹣=1﹣. 【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.19.如图,三棱锥P ﹣ABC 中,PA ⊥平面ABC ,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P ﹣ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求的值.【分析】(1)利用V P ﹣ABC =•S △ABC •PA ,求三棱锥P ﹣ABC 的体积;(2)过B 作BN ⊥AC ,垂足为N ,过N 作MN ∥PA ,交PC 于点M ,连接BM ,证明AC ⊥平面MBN ,可得AC ⊥BM ,利用MN ∥PA ,求的值.【解答】(1)解:由题设,AB=1,AC=2,∠BAC=60°,可得S △ABC ==. 因为PA ⊥平面ABC ,PA=1,所以V P ﹣ABC =•S △ABC •PA=;(2)解:过B 作BN ⊥AC ,垂足为N ,过N 作MN ∥PA ,交PC 于点M ,连接BM ,由PA⊥平面ABC,知PA⊥AC,所以MN⊥AC,因为BN∩MN=N,所以AC⊥平面MBN.因为BM⊂平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB•cos∠BAC=,从而NC=AC﹣AN=.由MN∥PA得==.【点评】本题考查三棱锥P﹣ABC的体积的计算,考查线面垂直的判定与性质的运用,考查学生分析解决问题的能力,属于中档题.20.设椭圆E的方程为=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,﹣b),N为线段AC的中点,证明:MN⊥AB.【分析】(1)通过题意,利用=2,可得点M坐标,利用直线OM的斜率为,计算即得结论;(2)通过中点坐标公式解得点N坐标,利用•=0即得结论.【解答】(1)解:设M(,y),∵A(a,0)、B(0,b),点M在线段AB上且|BM|=2|MA|,∴=2,即(﹣0,y﹣b)=2(a﹣,0﹣y),解得=a,y=b,即M(a,b),又∵直线OM的斜率为,∴=,∴a=b,c==2b,∴椭圆E的离心率e==;(2)证明:∵点C的坐标为(0,﹣b),N为线段AC的中点,∴N(,﹣),∴=(,),又∵=(﹣a,b),∴•=(﹣a,b)•(,)=﹣a2+=(5b2﹣a2),由(1)可知a2=5b2,故•=0,即MN⊥AB.【点评】本题考查运用向量知识解决圆锥曲线的性质,考查运算求解能力、注意解题方法的积累,属于中档题.21.已知函数f()=(a>0,r>0)(1)求f()的定义域,并讨论f()的单调性;(2)若=400,求f()在(0,+∞)内的极值.【分析】(1)通过令分母不为0即得f()的定义域,通过求导即得f()的单调区间;(2)通过(1)知=r是f()的极大值点,计算即可.【解答】解:(1)∵函数f()=(a>0,r>0),∴≠﹣r,即f()的定义域为(﹣∞,﹣r)∪(﹣r,+∞).又∵f()==,∴f′()==,∴当<﹣r或>r时,f′()<0;当﹣r<<r时,f′()>0;因此,f()的单调递减区间为:(﹣∞,﹣r)、(r,+∞),递增区间为:(﹣r,r);(2)由(1)的解答可得f′()=0,f()在(0,r)上单调递增,在(r,+∞)上单调递减,∴=r是f()的极大值点,∴f()在(0,+∞)内的极大值为f(r)====100.【点评】本题考查函数的定义域、单调区间、极值,注意解题方法的积累,属于中档题.。
2015年安徽省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i2.(5分)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=()A.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}3.(5分)设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)下列函数中,既是偶函数又存在零点的是()A.y=lnx B.y=x2+1 C.y=sinx D.y=cosx5.(5分)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.16.(5分)下列双曲线中,渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.x2﹣=1 D.﹣y2=17.(5分)执行如图所示的程序框图(算法流程图),输出的n为()A.3 B.4 C.5 D.68.(5分)直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,则b=()A.﹣2或12 B.2或﹣12 C.﹣2或﹣12 D.2或129.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.210.(5分)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0 D.a>0,b>0,c>0,d<0二、填空题11.(3分)lg+2lg2﹣()﹣1=.12.(3分)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=.13.(3分)已知数列{a n}中,a1=1,a n=a n﹣1+(n≥2),则数列{a n}的前9项和等于.14.(3分)在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.15.(3分)△ABC是边长为2的等边三角形,已知向量满足=2,=2+,则下列结论中正确的是.(写出所有正确结论得序号)①为单位向量;②为单位向量;③;④∥;⑤(4+)⊥.三、解答题16.已知函数f(x)=(sinx+cosx)2+cos2x(1)求f(x)最小正周期;(2)求f(x)在区间[]上的最大值和最小值.17.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.18.已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.19.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.20.设椭圆E的方程为=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,﹣b),N为线段AC的中点,证明:MN⊥AB.21.已知函数f(x)=(a>0,r>0)(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值.2015年安徽省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)(2015•安徽)设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i【分析】直接利用复数的多项式乘法展开求解即可.【解答】解:复数(1﹣i)(1+2i)=1+2﹣i+2i=3+i.故选:C.【点评】本题考查复数的代数形式的混合运算,基本知识的考查.2.(5分)(2015•安徽)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=()A.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}【分析】进行补集、交集的运算即可.【解答】解:∁R B={1,5,6};∴A∩(∁R B)={1,2}∩{1,5,6}={1}.故选:B.【点评】考查全集、补集,及交集的概念,以及补集、交集的运算,列举法表示集合.3.(5分)(2015•安徽)设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【分析】判断必要条件与充分条件,推出结果即可.【解答】解:设p:x<3,q:﹣1<x<3,则p成立,不一定有q成立,但是q 成立,必有p成立,所以p是q成立的必要不充分条件.故选:C.【点评】本题考查充要条件的判断与应用,基本知识的考查.4.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=lnx B.y=x2+1 C.y=sinx D.y=cosx【分析】利用函数奇偶性的判断一件零点的定义分别分析解答.【解答】解:对于A,y=lnx定义域为(0,+∞),所以是非奇非偶的函数;对于B,是偶函数,但是不存在零点;对于C,sin(﹣x)=﹣sinx,是奇函数;对于D,cos(﹣x)=cosx,是偶函数并且有无数个零点;故选:D【点评】本题考查了函数奇偶性的判断以及函数零点的判断;判断函数的奇偶性首先要判断函数的定义域,在定义域关于原点对称的前提下判断f(﹣x)与f(x)的关系.5.(5分)(2015•安徽)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.1【分析】首先画出平面区域,z=﹣2x+y的最大值就是y=2x+z在y轴的截距的最大值.【解答】解:由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由得到A(1,1),所以z的最大值为﹣2×1+1=﹣1;故选:A.【点评】本题考查了简单线性规划,画出平面区域,分析目标函数取最值时与平面区域的关系是关键.6.(5分)(2015•安徽)下列双曲线中,渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.x2﹣=1 D.﹣y2=1【分析】由双曲线方程﹣=1(a>0,b>0)的渐近线方程为y=±x,对选项一一判断即可得到答案.【解答】解:由双曲线方程﹣=1(a>0,b>0)的渐近线方程为y=±x,由A可得渐近线方程为y=±2x,由B可得渐近线方程为y=±x,由C可得渐近线方程为y=x,由D可得渐近线方程为y=x.故选:A.【点评】本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.7.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为()A.3 B.4 C.5 D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n 的值是解题的关键,属于基础题.8.(5分)(2015•安徽)直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,则b=()A.﹣2或12 B.2或﹣12 C.﹣2或﹣12 D.2或12【分析】化圆的一般式方程为标准式,求出圆心坐标和半径,由圆心到直线的距离等于圆的半径列式求得b值.【解答】解:由圆x2+y2﹣2x﹣2y+1=0,化为标准方程为(x﹣1)2+(y﹣1)2=1,∴圆心坐标为(1,1),半径为1,∵直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,∴圆心(1,1)到直线3x+4y﹣b=0的距离等于圆的半径,即,解得:b=2或b=12.故选:D.【点评】本题考查圆的切线方程,考查了点到直线的距离公式的应用,是基础题.9.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.2【分析】判断得出三棱锥O﹣ABC,OE⊥底面ABC,EA=ED=1,OE=1,AB=BC=,AB⊥BC,可判断;△OAB≌△OBC的直角三角形,运用面积求解即可.【解答】解:∵∴三棱锥O﹣ABC,OE⊥底面ABC,EA=ED=1,OE=1,AB=BC=∴AB⊥BC,∴可判断;△OAB≌△OBC的直角三角形,S△OAC=S△ABC==1,S△OAB=S△OBC=×2=该四面体的表面积:2,故选:C.【点评】本题考查了三棱锥的三视图的运用,关键是恢复几何体的直观图,考查了学生的空间思维能力.10.(5分)(2015•安徽)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0 D.a>0,b>0,c>0,d<0【分析】根据函数的图象和性质,利用排除法进行判断即可.【解答】解:f(0)=d>0,排除D,当x→+∞时,y→+∞,∴a>0,排除C,函数的导数f′(x)=3ax2+2bx+c,则f′(x)=0有两个不同的正实根,则x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,方法2:f′(x)=3ax2+2bx+c,由图象知当当x<x1时函数递增,当x1<x<x2时函数递减,则f′(x)对应的图象开口向上,则a>0,且x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,故选:A【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合函数的极值及f(0)的符号是解决本题的关键.二、填空题11.(3分)(2015•安徽)lg+2lg2﹣()﹣1=﹣1.【分析】利用对数的运算法则以及负指数幂的运算化简各项,利用lg2+lg5=1化简求值.【解答】解:原式=lg5﹣lg2+2lg2﹣2=lg5+lg2﹣2=lg10﹣2=1﹣2=﹣1;故答案为:﹣1.【点评】本题考查了对数的运算以及负指数幂的运算;用到了lg2+lg5=1.12.(3分)(2015•安徽)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=2.【分析】由三角形的内角和定理可得角C,再由正弦定理,计算即可得到AC.【解答】解:∠A=75°,∠B=45°,则∠C=180°﹣75°﹣45°=60°,由正弦定理可得,=,即有AC==2.故答案为:2.【点评】本题考查正弦定理的运用,同时考查三角形的内角和定理,考查运算能力,属于基础题.13.(3分)(2015•安徽)已知数列{a n}中,a1=1,a n=a n﹣1+(n≥2),则数列{a n}的前9项和等于27.【分析】通过a n=a n﹣1+(n≥2)可得公差,进而由求和公式即得结论.【解答】解:∵a n=a n﹣1+(n≥2),∴a n﹣a n﹣1=(n≥2),∴数列{a n}的公差d=,又a1=1,∴a n=1+(n﹣1)=,∴S9=9a1+•d=9+36×=27,故答案为:27.【点评】本题考查等差数列的求和,注意解题方法的积累,属于基础题.14.(3分)(2015•安徽)在平面直角坐标系xOy中,若直线y=2a与函数y=|x ﹣a|﹣1的图象只有一个交点,则a的值为.【分析】由已知直线y=2a与函数y=|x﹣a|﹣1的图象特点分析一个交点时,两个图象的位置,确定a.【解答】解:由已知直线y=2a是平行于x轴的直线,由于y=x﹣a为一次函数,其绝对值的函数为对称图形,故函数y=|x﹣a|﹣1的图象是折线,所以直线y=2a 过折线顶点时满足题意,所以2a=﹣1,解得a=﹣;故答案为:.【点评】本题考查了函数的图象;考查利用数形结合求参数.15.(3分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量满足=2,=2+,则下列结论中正确的是①④⑤.(写出所有正确结论得序号)①为单位向量;②为单位向量;③;④∥;⑤(4+)⊥.【分析】利用向量的三角形法则以及向量数量积的公式对各结论分别分析选择.【解答】解:△ABC是边长为2的等边三角形,已知向量满足=2,=2+,则=,AB=2,所以||=1,即是单位向量;①正确;因为=2,所以,故||=2;故②错误;④正确;夹角为120°,故③错误;⑤(4+)•=4=4×1×2×cos120°+4=﹣4+4=0;故⑤正确.故答案为:①④⑤.【点评】本题考查了向量的数量积运用;注意三角形的内角与向量的夹角的关系.三、解答题16.(2015•安徽)已知函数f(x)=(sinx+cosx)2+cos2x(1)求f(x)最小正周期;(2)求f(x)在区间[]上的最大值和最小值.【分析】(1)由条件利用三角恒等变换求得f(x)的解析式,再利用正弦函数的周期性求得f(x)最小正周期.(2)由条件利用正弦函数的定义域和值域,求得f(x)在区间上的最大值和最小值.【解答】解:(1)∵函数f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=1+sin(2x+),∴它的最小正周期为=π.(2)在区间上,2x+∈[,],故当2x+=时,f(x)取得最小值为1+×(﹣)=0,当2x+=时,f(x)取得最大值为1+×1=1+.【点评】本题主要考查三角恒等变换,正弦函数的周期性、定义域和值域,属于中档题.17.(2015•安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【分析】(1)利用频率分布直方图中的信息,所有矩形的面积和为1,得到a;(2)对该部门评分不低于80的即为90和100,的求出频率,估计概率;(3)求出评分在[40,60]的受访职工和评分都在[40,50]的人数,随机抽取2人,列举法求出所有可能,利用古典概型公式解答.【解答】解:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.【点评】本题考查了频率分布直方图的认识以及利用图中信息求参数以及由频率估计概率,考查了利用列举法求满足条件的事件,并求概率.18.(2015•安徽)已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.【分析】(1)根据等比数列的通项公式求出首项和公比即可,求数列{a n}的通项公式;(2)求出b n=,利用裂项法即可求数列{b n}的前n项和T n.【解答】解:(1)∵数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.∴a1+a4=9,a1a4=a2a3=8.解得a1=1,a4=8或a1=8,a4=1(舍),解得q=2,即数列{a n}的通项公式a n=2n﹣1;(2)S n==2n﹣1,∴b n===﹣,∴数列{b n}的前n项和T n=+…+﹣=﹣=1﹣.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.19.(2015•安徽)如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.=•S△ABC•PA,求三棱锥P﹣ABC的体积;【分析】(1)利用V P﹣ABC(2)过B作BN⊥AC,垂足为N,过N作MN∥PA,交PC于点M,连接BM,证明AC⊥平面MBN,可得AC⊥BM,利用MN∥PA,求的值.【解答】(1)解:由题设,AB=1,AC=2,∠BAC=60°,==.可得S△ABC因为PA⊥平面ABC,PA=1,=•S△ABC•P A=;所以V P﹣ABC(2)解:过B作BN⊥AC,垂足为N,过N作MN∥PA,交PC于点M,连接BM,由PA⊥平面ABC,知PA⊥AC,所以MN⊥AC,因为BN∩MN=N,所以AC⊥平面MBN.因为BM⊂平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB•cos∠BAC=,从而NC=AC﹣AN=.由MN∥PA得==.【点评】本题考查三棱锥P﹣ABC的体积的计算,考查线面垂直的判定与性质的运用,考查学生分析解决问题的能力,属于中档题.20.(2015•安徽)设椭圆E的方程为=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,﹣b),N为线段AC的中点,证明:MN⊥AB.【分析】(1)通过题意,利用=2,可得点M坐标,利用直线OM的斜率为,计算即得结论;(2)通过中点坐标公式解得点N坐标,利用•=0即得结论.【解答】(1)解:设M(x,y),∵A(a,0)、B(0,b),点M在线段AB上且|BM|=2|MA|,∴=2,即(x﹣0,y﹣b)=2(a﹣x,0﹣y),解得x=a,y=b,即M(a,b),又∵直线OM的斜率为,∴=,∴a=b,c==2b,∴椭圆E的离心率e==;(2)证明:∵点C的坐标为(0,﹣b),N为线段AC的中点,∴N(,﹣),∴=(,),又∵=(﹣a,b),∴•=(﹣a,b)•(,)=﹣a2+=(5b2﹣a2),由(1)可知a2=5b2,故•=0,即MN⊥AB.【点评】本题考查运用向量知识解决圆锥曲线的性质,考查运算求解能力、注意解题方法的积累,属于中档题.21.(2015•安徽)已知函数f(x)=(a>0,r>0)(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值.【分析】(1)通过令分母不为0即得f(x)的定义域,通过求导即得f(x)的单调区间;(2)通过(1)知x=r是f(x)的极大值点,计算即可.【解答】解:(1)∵函数f(x)=(a>0,r>0),∴x≠﹣r,即f(x)的定义域为(﹣∞,﹣r)∪(﹣r,+∞).又∵f(x)==,∴f′(x)==,∴当x<﹣r或x>r时,f′(x)<0;当﹣r<x<r时,f′(x)>0;因此,f(x)的单调递减区间为:(﹣∞,﹣r)、(r,+∞),递增区间为:(﹣r,r);(2)由(1)的解答可得f′(x)=0,f(x)在(0,r)上单调递增,在(r,+∞)上单调递减,∴x=r是f(x)的极大值点,∴f(x)在(0,+∞)内的极大值为f(r)====100.【点评】本题考查函数的定义域、单调区间、极值,注意解题方法的积累,属于中档题.参与本试卷答题和审题的老师有:qiss;wkl197822;changq;双曲线;w3239003;sxs123;sdpyqzh;maths;cst;caoqz;刘长柏(排名不分先后)菁优网2017年3月17日第1页(共1页)。