第六章 水库诱发地震活动的工程地质分析
- 格式:ppt
- 大小:3.40 MB
- 文档页数:60
水库诱发地震在长江三峡库区的研究综述[摘要] 中国长江三峡工程于2003 年6 月1 日正式下闸蓄水, 6 月7 日起突然在湖北省巴东县城北信陵镇沿江一线发生了2 000 多次密集的小震群, 引起了大家的严重关切, 在未来的几年内随着二期和三期工程的完工,水位将提高到156 m 和175 m , 是否会诱发更大更强的地震? 根据地震构造的观点分析了库区东段几条活动断裂的分布、交汇关系和孕震能力, 认为巴东和秭归可能为两个潜在震源区, 蓄水后有引发5.5级左右的地震可能,地震烈度可达Ⅶ°~Ⅷ°; 并可能诱发库区内众多滑坡体的复活, 导致严重的地质灾害。
[关键词] 长江三峡水库; 水库诱发地震; 地质灾害0 引言长江三峡水库蓄水后, 2003 年6 月10 日晚22时坝前水位达到一期预计高程135 m。
在水位上升过程中, 6 月7 日下午3 点36 分起突然发生了2 000多次的小地震。
此次地震群集活动与水库蓄水时间相吻合, 引起了人们的严重关注: 今后水位还要增高40 m , 是否会引起更大的地震?我将从一下几个方面来阐述:1 水库诱发地震的机理水库诱发地震是多种因素综合作用的结果。
它与水库的地质构造,活动性断裂区域构造应力场状态,岩体的渗透性与可溶性,岩体力学特性,地区的水文地质条件,地区的历史地震活动及现代地震活动状态,太阳黑子,月相,气象条件等因素有关。
综合上述复杂因素, 我们认为水库诱发地震的成因机制, 水库区的岩体渗透性与构造条件是内因, 水库蓄水是外因, 内因通过外因起作用而诱发地震。
对于任何一个水库若产生诱发地震, 必须具备上述的外因和内因的联合作用, 否则都不可能产生诱发地震。
内因通过外因作用的内涵是什么? 可从以下几方面加以论述。
1.1 水库荷载的直接或间接影晌由于水库的水重量加在断裂的岩层上, 改变了原有的相对平衡状态, 促使产生地震。
但计算表明, 这一荷载与岩层的重量相比, 很微小, 并不应该产生这样严重后果。
三峡水库诱发地震的监测与探讨王儒述(中国长江三峡工程开发总公司,湖北宜昌443002)摘要:三峡水库已初步形成,随着蓄水位上升,库容加大,诱发水库地震的可能性也将加大。
根据最大历史地震震级并适当加权,确定库区最大可信地震为6级左右。
在仙女山和九湾溪断裂一带(距坝址为18 km)存在诱发地震的可能,震级MS=5.0~5.8 级。
对坝址所受影响烈度为Ⅵ度,不会对按烈度Ⅶ度设防的枢纽主要建筑物构成直接威胁。
三峡水库蓄水运行后,地震频次与强度虽有所增加,但地震活动仍保持在三峡地区原有弱地震活动状态。
必须加强对三峡水库诱发地震的监测与探讨,预防地震及地质灾害,确保工程建设及运行安全,构建和谐社会,确保长治久安。
关键词:三峡工程;水库;诱发地震;监测;探讨中图分类号:TV697.2 4文献标识码:A三峡水利枢纽规模宏大,工程于1993年开工,2009年全部工程竣工投产。
三峡水库已初步形成,随着蓄水位上升,库容加大,诱发水库地震的可能性也将加大。
1世界地震概况地球上每年平均发生500 万次大、小及微弱地震,其中构造地震约占90%,火山地震约占7%。
近百年来世界大地震(ML≥6.0)见表1。
2水库诱发地震2.1地震特点水库诱发地震由于水库地应力和构造地应力叠加,以及水库地震能量和构造地震能量叠加而诱发产生。
水库诱发地震因素复杂,其形成机理及发生发展过程尚难准确控制,发生时间、空间及强度更难预测预报。
水库诱发地震与一般天然地震相比,具有如下特点:2.1.1分布范围震中仅分布在水库及其周围5 km 范围内,震源深度大多在5 km以内,很少超过10 km。
震源深度与水库库容有一定的相关性,一般库容愈大,震源愈深。
国家地震部门曾对水库诱发地震明确界定:“大坝上下游两岸,方圆10 km范围内发生的地震,称为诱发地震。
非此范围地震,不算水库诱发地震。
”2.1.2发震时间主震发震时间一般与水库蓄水密切相关。
蓄水早期地震活动与库水位升降变化有较好的相关性。
水库诱发地震简述人类大规模的工程建设活动会引发地震。
水库诱发地震是人工湖在蓄水初期出现的、与当地天然地震活动特征明显不同的地震现象,亦简称为水库地震。
水库诱发地震具有多种成因,其发震机理和诱震因素十分复杂,目前还没有完全为人们所认识。
水库诱发地震是涉及地震学、水文地质学、工程地质学、和结构抗震学等多学科交叉的前沿课题。
本世纪40年代以来,世界上已有34个国家的134座水库被报道出现了水库诱发地震,其中得到较普遍承认的超过90处。
有4例发生了6级以上地震,他们是中国的新丰江(1962年,6.1级)、赞比亚─津巴布韦的卡里巴(Kariba,1963年,6.1级)、希腊的克瑞马斯塔(Kremasta,1966年,6.3级)、和印度的柯依纳(Koyna,1967年,6.5级)。
发生在坝址附近的强震和中强震,有可能对大坝和其它水工建筑物造成直接损害。
已知挡水建筑物遭受损害的有两个震例(表1),尚未发生过大坝因水库地震而溃垮或严重破坏的情况。
水库诱发地震对库区及邻近地区居民点的影响则更为常见,强震和中强震会给库区造成人员伤亡,带来重大物质损失。
即使一般的弱震微震,也会对震中区造成一定危害,影响当地居民的正常生产和生活,是库区主要的环境地质问题之一。
我国迄今已报道出现水库诱发地震的工程有25例,其中得到公认的有17例(见表2),是世界上水库地震最多的国家之一。
值得注意的是,高坝大库中出现诱发地震的比例明显偏高。
我国(含香港和台湾)已建成的百米以上大坝32座,出现了水库诱发地震的有10座,发震比例超过31%;其中1979年以后蓄水的17座百米以上大坝中有8座发生水库地震,发震比例高达47%,远远高于世界平均水平。
从水库诱发地震的强度来看,全球发生6.0级以上强烈地震的仅占3%,5.9—4.5级中等强度的占27%,发生4.4—3.0级弱震和3.0级以下微震的占到70%(分别为32%和38%)。
在我国这一比例相应为4%、16%和80%。
黄河上游大型库区水库地震原因简析摘要:水库地震是指在原来没有或很少地震的地方,由于水库蓄水引发的地震称水库地震。
水库地震大都发生在地质构造相对活动区,且均与断陷盆地及近期活动断层有关。
本文以青藏高原黄河源头某大型库区近期频发的水库地震为背景,简要分析其发生的原因,为水库地震原因分析提供参考意见。
关键词:水库、地质构造、水库地震1 研究背景某水电站电站位于青藏高原东部牧区,属于黄河上游地区,气候属半干旱大陆性气候,最大坝高178m,总库容247亿m3,工程区海拔高程2460~2640m,平均缺氧27%。
该工程于1976年动工建设,1986年10月水库下闸蓄水,工程枢纽示意图见图1。
坝址峡谷窄深,深切150余米,岸顶地形平坦。
坝址区工程地质条件十分复杂,基岩为花岗闪长岩,岩性坚硬,饱和抗压强度在100MPa以上,断裂发育并存在许多不利的断裂组合,以走向NNW、倾向NE的中陡倾角压扭性断裂和走向NE、倾角近于直立的张扭性断裂组成坝址结构骨架。
NWW组代表性断层为F73和F18,均以中倾角斜切左右坝肩岩体,NE向断裂结构面主要有贯穿右岸坝肩岩体的F120和石英岩脉(A2),与河流呈锐角相交以及斜穿河床坝基的F57。
F7是坝区最大的断裂构造,断裂带宽70~100m,由10条左右的断层组成,该断裂带优势面走向为NNW,与河道正交,倾角近与直立,地质力学属性为压扭性。
坝址岩体中的III、IV级硬性结构面以走向NNW和NW两组延伸稳定,长达数十米。
另外,走向NE的节理裂隙倾角近于直立,其单条延伸长度8~20米不等,首尾斜接长达数十米,局部形成密集带。
岩体风化以沿断层带形成带状或囊状风化为特征,谷坡中部的岩体强风化深度为10~20m,弱风化下限为30~40m,在高程2500m以下逐渐变浅,河床以微风化为主。
坝址因河谷深切,两岸谷坡强卸荷水平深度10~15m,局部达到30m;河床部位强卸荷铅直深度为5~7m。
2 水库地震情况介绍2019年7月27日8时至8月1日0时,黄河流域数字地震台网共监测到该库区周边发生38次水库地震,其中在大坝右岸3~8km范围内共发生了33次,在大坝左岸2~3km范围内发生了5次。
水库诱发地震,一般指在库区特定的地质条件下,水库蓄水后伴随产生某种诱发作用,导致岩体内累积的应变能释放而产生地震的现象。
世界上一部分大型和特大型水库蓄水后都伴有地震活动。
观测研究表明,相当一部分水库蓄水后的地震活动水平和活动特征都与蓄水前具有明显的差异。
特别是高坝大库蓄水后地震活动明显增多的例子较多。
水库诱发地震在时间和空间分布,震源机制,序列特征等诸多方面与天然构造地震想比较,有其自己独有的特征。
据资料统计,目前世界上已有一百余个水库诱发地震例子,仅我国就有二十余例。
尤其是坝高100米以上,库容亦达10亿立方米以上的水库发生诱发地震的概率较高。
在我国已发生诱发地震的高坝水库约占总数的四分之一,且不少诱发地震均发生在天然地震的少震区和弱震区。
水库诱发地震曾经在世界上多次导致破坏性后果,最早于1931 年发生在希腊的马拉松水库。
20 世纪60 年代以来,又有几个大水库相继发生6 级以上强烈地震。
造成大坝及附近建筑物的破坏和人员伤亡。
由于水库诱发地震具有很大的破坏性,不仅将给工程建筑物和设备等财产造成破坏,还可能诱发滑坡、引起涌浪,使水库地区人民的生命财产造成灾难性的损失。
因此。
水库诱发地震不仅是水利水电工程研究的重要内容,也是区域构造稳定性和环境工程地质研究重要内容之一。
震中仅分布在水库及其周围5 km 范围内,震源深度大多在5 km 以内,很少超过10 km。
震源深度与水库库容有一定的相关性,一般库容愈大,震源愈深。
国家地震部门曾对水库诱发地震明确界定:“大坝上下游两岸,方圆10 km范围内发生的地震,称为诱发地震。
非此范围地震,不算水库诱发地震。
”从国内外水库诱发地震统计资料看,诱发地震的发生概率随着坝高、蓄水深度和库容的增大而明显增高。
据Packer 1985年对蓄水深度大于92 m ,库容大于100亿m3 的世界大型水库的统计分析,发震概率为12%。
我国坝高100 m以上的高坝大库,发震概率约为32%,高于世界平均水平。
水库到底能诱发多大地震?2008年汶川5.12地震后,社会上有些人将地震的发生归咎于西南地区的水电建设。
到底什么是水库诱发地震?水库到底能诱发多大的地震?水库诱发地震是指由于水库蓄水而引起水库区以及库水影响所及的邻近地区新出现的地震现象。
世界上首次有关水库诱发地震的报道是美国的胡佛大坝。
1939年春,胡佛水库水位上升至运行水位后不久,出现地震高潮,最大震级达到5级。
据不完全统计,全世界坝高大于15米的水库大约有3万座,发生水库诱发地震的比例不足0.3%且分布在29个国家;全世界大于6.0级的水库诱发地震有4起,分别是我国的新丰江水库地震(1962年3月19日,6.1级),赞比亚—津巴布韦边界的卡里巴(Kariba)水库地震(1963年9月23日,6.1级),希腊的克里马斯塔(Kremasta)水库地震(1965年2月5日,6.2级),印度的柯依那(Koyna)水库地震(1967年12月10日,6.3级)。
我国坝高大于15米的水库约有1.9万多座,而坝高30米以上的水库约5700座,自从新丰江水库发生6.1级水库诱发地震至今,比较公认的水库诱发地震震例有33个,除新丰江以外,震级均在5级以下。
我国是世界上水库诱发地震震例最多的国家,也是对水库诱发地震研究最深入的国家。
我国学者根据库区工程地质条件把水库诱发地震分为塌陷型、卸荷型和构造型三种类型。
前两者是水库诱发地震中最常见的类型,震例较多,但震级一般不超过3级;而构造型水库诱发地震发生的概率极低,但其震级较高,有的可达中强震水平。
水库诱发地震的主要特征是:在时间上,诱发地震的产生和活动与水库蓄水密切相关,开始发震时间70%发生在蓄水至正常蓄水位期间;在空间上,水库地震的震中大多分布在水库及其周围5公里范围内,且相对集中在一特定范围;水库诱发地震的震源深度一般很浅,震源深度小于5公里。
由于震源浅,水库地震的震中烈度一般均较同震级天然地震高,但影响范围较天然地震小很多。