极坐标及参数方程高考题练习含答案
- 格式:doc
- 大小:765.50 KB
- 文档页数:10
高考数学-坐标系与参数方程 (含22年真题讲解)1.【2022年全国甲卷】在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s 6y =−√s(s 为参数).(1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标. 【答案】(1)y 2=6x −2(y ≥0);(2)C 3,C 1的交点坐标为(12,1),(1,2),C 3,C 2的交点坐标为(−12,−1),(−1,−2).【解析】 【分析】(1)消去t ,即可得到C 1的普通方程;(2)将曲线C 2,C 3的方程化成普通方程,联立求解即解出. (1) 因为x =2+t 6,y =√t ,所以x =2+y 26,即C 1的普通方程为y 2=6x −2(y ≥0).(2) 因为x =−2+s 6,y =−√s ,所以6x =−2−y 2,即C 2的普通方程为y 2=−6x −2(y ≤0),由2cosθ−sinθ=0⇒2ρcosθ−ρsinθ=0,即C 3的普通方程为2x −y =0. 联立{y 2=6x −2(y ≥0)2x −y =0 ,解得:{x =12y =1 或{x =1y =2 ,即交点坐标为(12,1),(1,2);联立{y 2=−6x −2(y ≤0)2x −y =0 ,解得:{x =−12y =−1 或{x =−1y =−2 ,即交点坐标为(−12,−1),(−1,−2). 2.【2022年全国乙卷】在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t y =2sint ,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围. 【答案】(1)√3x +y +2m =0 (2)−1912≤m ≤52 【解析】 【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可. (1)因为l :ρsin (θ+π3)+m =0,所以12ρ⋅sinθ+√32ρ⋅cosθ+m =0,又因为ρ⋅sinθ=y,ρ⋅cosθ=x ,所以化简为12y +√32x +m =0,整理得l 的直角坐标方程:√3x +y +2m =0 (2)联立l 与C 的方程,即将x =√3cos2t ,y =2sint 代入 √3x +y +2m =0中,可得3cos2t +2sint +2m =0, 所以3(1−2sin 2t)+2sint +2m =0, 化简为−6sin 2t +2sint +3+2m =0,要使l 与C 有公共点,则2m =6sin 2t −2sint −3有解,令sint =a ,则a ∈[−1,1],令f(a)=6a 2−2a −3,(−1≤a ≤1), 对称轴为a =16,开口向上,所以f(a)max =f(−1)=6+2−3=5, f(a)min =f(16)=16−26−3=−196,所以−196≤2m ≤5m 的取值范围为−1912≤m ≤52.1.(2022·宁夏·吴忠中学三模(文))在平面直角坐标系xOy 中,曲线1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)求曲线1C 与2C 的直角坐标方程;(2)已知直线l 的极坐标方程为πR 02θαρα⎛⎫ ⎪=∈⎝<<⎭,,直线l 与曲线1C ,2C 分别交于M ,N (均异于点O )两点,若4OMON=,求α. 【答案】(1)曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)π4α=【解析】 【分析】(1)1C 的参数方程消参可求出1C 的直角坐标方程;2C 的极坐标方程同乘ρ,把cos x ρθ=,222x y ρ=+代入2C 的极坐标方程可求出2C 的直角坐标方程.(2)设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,用极径的几何意义表示出4OMON=,即124ρρ=,解方程即可求出α. (1)解:1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),把2216y t =代入24x t =-中可得,24y x =-,所以曲线1C 的直角坐标方程为24y x =-,2C 的极坐标方程为2cos ρθ=,即22cos ρρθ=,所以曲线2C 的直角坐标方程为2220x y x +-=,综上所述:曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)由(1)知,1C 的极坐标方程为2sin 4cos ρθθ=-, 设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,则21sin 4cos ραα=-,22cos ρα=,由题意知02πα<<可得sin 0α≠,因为4OMON=,所以124ρρ=,所以24cos 42cos sin ααα-=⨯,故21sin 2α=,所以sin 2α=或sin 2α=(舍) 所以π4α=.2.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),曲线2C 的参数方程为2221x t t y t ⎧=-⎨=-⎩(t 为参数).已知曲线2C 与x ,y 正半轴分别相交于,A B 两点.(1)写出曲线1C 的极坐标方程,并求出,A B 两点的直角坐标;(2)若过原点O 且与直线AB 垂直的直线l 与曲线1C 交于P 点,与直线AB 交于Q 点,求线段PQ 的长度.【答案】(1)2cos ρθ=,A 点为()3,0,B 点为()0,3(2)2【解析】 【分析】(1)普通方程()2211x y -+=,即可得2cos ρθ=(2)求出直线AB 的方程为3y x =-+,然后求出直线l 的方程,然后可求出PQ 的长度 (1)曲线1C 的普通方程()2211x y -+=,极坐标方程()()22cos 1sin 1ρθρθ-+=,∴2cos ρθ=.在曲线2C 上,当0x =时,0=t 或2t =,此时3y =或1y =-(舍),所以B 点为()0,3. 当0y =时,1t =-或1t =,此时3x =或1x =-(舍),所以A 点为()3,0. (2)直线AB 的方程为3y x =-+,极坐标方程为sin cos 3ρθρθ=-+, ∴()sin cos 3ρθθ+=,过原点O 且与直线AB 垂直的直线l 的极坐标方程为4πθ=.4πθ=与2cos ρθ=联立,得1ρ 4πθ=与()sin cos 3ρθθ+=联立,得2ρ=∴21PQ ρρ=-=. 3.(2022·江西·南昌市八一中学三模(理))在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭.(1)求C 和l 的直角坐标方程;(2)设点Q的直角坐标为(,P 为C 上的动点,求PQ 中点R 的轨迹的极坐标方程. 【答案】(1)直线l 的普通方程为2x y +=,曲线C 的普通方程为()(2214x y ++=;(2)21ρ= 【解析】 【分析】(1)消去参数t ,即可得到直线l 的普通方程,再由两角和的正弦公式及222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,将曲线C 的极坐标方程化为直角坐标方程;(2)设(),R x y ,即可表示P 点坐标,再根据点P 在曲线C 上,代入C 的方程,即可得到点R 的轨迹方程,再将直角坐标方程化为极坐标方程即可;(1)解:因为直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 所以直线l 的普通方程为2x y +=,因为曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭,即4sin cos cos sin 66ππρθθ⎛⎫=-+ ⎪⎝⎭,即2cos ρθθ=--,所以2sin 2cos ρθρθ=--,又222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,所以222x y x +=--,即()(2214x y +++=,即曲线C 的普通方程为()(2214x y ++=;(2)解:设(),R x y,则(21,2P x y -,因为点P 在曲线C 上,所以()(2221124x y -++=,即221x y +=,所以PQ 中点R 的轨迹方程为221x y +=,即21ρ=4.(2022·黑龙江·哈尔滨三中模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2cos θsin θρ=+. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点()2,1P ,直线l 与曲线C 的交点为A ,B ,求PA PBPB PA+的值. 【答案】(1)10x y --=,22220x y x y +--= (2)4 【解析】 【分析】(1)直接消去参数,将直线l 的方程化为普通方程,利用互化公式将曲线C 的极坐标方程转化为直角坐标方程(2)将直线的参数方程代入曲线C的普通方程,得到210t -=,得到12121t t t t +==- ,化简()222121212122112122PA PBt t t t t t t t PB PA t t t t t t +-++=+==,代入韦达定理,即可得到答案 (1)直线l的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 消去参数t 可得l 的普通方程为10x y --=.曲线C 的极坐标方程为2(cos θsin θ)ρ=+,即22(cos θsin θ)ρρ=+,根据222cos θsin θx y x y ρρρ=⎧⎪=⎨⎪=+⎩,可得2222x y x y +=+.∴曲线C 的直角坐标方程为22220x y x y +--= (2)在直线l的参数方程21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)中,设点A ,B 对应的参数分别为1t ,2t , 将直线l的参数方程221x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入22220x y x y +--=,得210t +-=,∴12t t +=121t t =-.∴()2221212121221121224PA PBt t t t t t t t PB PA t t t t t t +-++=+=== 5.(2022·安徽淮南·二模(文))在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(其中α为参数,02πα≤<),以原点O 为极点,x 轴非负半轴为极轴,取相同的单位长度建立极坐标系,直线1l 的极坐标方程为(R)3πθρ=∈.(1)求曲线C 的极坐标方程与直线1l 的直角坐标方程;(2)设直线1l 与曲线C 交于点O ,A ,直线2l 与曲线C 交于点O ,B ,求AOB 面积的最大值. 【答案】(1)4sin ρθ=,y(2)【解析】【分析】(1)依据参数方程与普通方程的互化和极坐标方程与直角坐标方程的互化即可解决; (2)先求得AOB 面积的表达式,再对其求最大值即可. (1)曲线C 的直角坐标方程为22(2)4x y +-=,展开得2240x y y +-=, 则曲线C 的极坐标方程为4sin ρθ=. 直线1l的直角坐标方程为y (2)由(1)可知π||4sin3OA == 设直线2l 的极坐标方程为(R)θβρ=∈,根据条件知要使AOB 面积取最大值,则ππ3β<<,则||4sin OB β=,于是1ππsin sin 233OAB S OA OB βββ⎛⎫⎛⎫=⨯⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2π6sin cos cos 2)3sin 226ββββββ⎛⎫=-=--=+ ⎪⎝⎭,所以当π3π262β+=即2π3β=时,AOB的面积取最大值,最大值为6.(2022·内蒙古呼和浩特·二模(理))在直角坐标系xOy 中,曲线C的参数方程为))cos sin cos sin 2x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系取相同单位长度,直线l 的极坐标方程为2cos 3sin 100ρθρθ+-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 距离的最小值. 【答案】(1)2214x y +=,23100x y +-=;【解析】 【分析】(1)消去曲线C 的参数方程中的参数即可得解,利用极坐标与直角坐标互化得直线l 的直角坐标方程作答.(2)设出曲线C 上任意一点的坐标,利用点到直线距离公式及辅助角公式求解作答. (1)由))cos sin cos sin x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),消去参数得2214x y +=, 所以曲线C 的普通方程为2214x y +=,把cos sin x y ρθρθ=⎧⎨=⎩代入直线l 的极坐标方程2cos 3sin 100ρθρθ+-=得:23100x y +-=,所以直线l 的直角坐标方程为23100x y +-=. (2)由(1)知,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),设()2cos ,sin P αα为曲线C 上一点,P 到直线l 的距离为d ,则105sin d αϕ-+===ϕ由4tan 3ϕ=确定,因此,当()sin 1αϕ+=时,d所以曲线C 上的点到直线l 7.(2022·甘肃·武威第六中学模拟预测(文))在直角坐标系xOy 中,曲线C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐sin cos 0θρθ-.(1)求曲线C 的普通方程和直线l 的直角坐标方程: (2)若直线与曲线C 交于A ,B 两点,点P 的坐标为(0,1),求11||||PA PB +的值. 【答案】(1)224x y -=,0x+= (2)5【解析】【分析】(1)消去参数t 可得曲线C 的方程,利用公式法转化得到直线l 的直角坐标方程; (2)利用直线l 的参数方程中t 的几何意义求解. (1)∴11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),∴22222222112112x t t t t y t t t t ⎧⎛⎫=+=++⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-=+- ⎪⎪⎝⎭⎩,所以224x y -=, 所以曲线C 的方程为224x y -=又∴cos x ρθ=,sin y ρθ=,0x - 所以直线l的直角坐标方程为0x =; (2)∴()0,1P 在直线l 上,∴直线l的参数方程为112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)设A ,B 对应的参数分别为1t 与2t将直线l 的参数方程代入到224x y -=得22100t t --=. ∴2Δ(2)41(10)440=--⨯⨯-=>, ∴122t t +=,12100t t ⋅=-<, ∴1||PA t =,2||PB t =∴1212121111||||-+=+====t tPA PB t t t t,所以11||||+=PA PB 8.(2022·全国·赣州市第三中学模拟预测(理))在平面直角坐标系xOy 中,曲线1C 满足参数方程2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩(t 为参数且11t -≤≤).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点P 为曲线1C 上一动点,且极坐标为(),ρθ. (1)求曲线1C 的直角坐标方程; (2)求()cos 3sin ρθθ+的取值范围.【答案】(1)y =()2204y x y +=≥(2)⎡-⎣ 【解析】 【分析】(1)消去参数t 可得普通方程,由11t -≤≤,得到0y ≥,即可求出曲线1C 的直角坐标方程; (2)先判断出2ρ=利用三角函数出()cos 3sin ρθθ+的范围. (1)由2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩消去t 可得:224x y +=. 由于11t -≤≤,则212t +≤,即0y ≥.因此曲线1C的直角坐标方程为y ()2204y x y +=≥(2)曲线1C 为上半圆,点P 在1C 上,因此2ρ=,0,θπ⎡⎤∈⎣⎦ 由三角函数的性质知,在[]0,π上,1cos 3sin θθ-≤+≤因此()cos 3sin 2,ρθθ⎡+∈-⎣9.(2022·黑龙江·哈尔滨三中三模(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为22x y t ⎧=⎪⎨=-⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为22cos 4sin 10ρρθρθ---=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点P 的坐标为()2,2,求1PA PB-.【答案】(1)()()22126x y -+-=;【解析】 【分析】(1)将222x y ρ=+、cos x ρθ=、sin y ρθ=代入圆C 的极坐标方程即可求其直角坐标方程; (2)将直线l 的参数方程化为标准形式,代入圆C 的直角坐标方程得到关于参数t 的二次方程,根据韦达定理和直线参数方程参数的几何意义即可求出1PA PB-.(1)∴22cos 4sin 10ρρθρθ---=,∴222410x y x y +---=, 即()()22126x y -+-=; (2)直线l参数方程的标准形式为2122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入圆C直角坐标方程整理得250t -=, 设方程的两根为1t 、2t ,则A 、B 对应参数1t 、2t ,则121250t t t t ⋅=-<⎧⎪⎨+⎪⎩,∴1PA PB-121211t t t t ==+-10.(2022·河南·模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为222x m y m⎧=⎨=⎩(m 为参数),直线l 的参数方程为12x tcos y tsin αα⎧=+⎪⎨⎪=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=,直线l 与1C 交于点P ,Q ,与2C 交于点S ,T ,与x 轴交于点R .(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若()4PR QR SR TR -=-,求直线l 的倾斜角. 【答案】(1)22y x =,()2211x y -+= (2)2π或4π或34π【解析】 【分析】(1)消参求得曲线1C 的普通方程为22y x =.由2cos ρθ=同乘ρ得到2C 的直角坐标方程. (2)l 过定点1,02R ⎛⎫ ⎪⎝⎭.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,利用参数的几何含义化简求解. (1)曲线1C 的普通方程为22y x =.由2cos ρθ=得22cos ρρθ=.所以2C 的直角坐标方程为222x y x +=,即()2211x y -+=.(2)不妨设0απ<<,则sin 0α>.易知1,02R ⎛⎫ ⎪⎝⎭是l 过的定点.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,设P ,Q 对应的参数分别为P t ,Q t ,则22cos sin P Q PR QR t t αα-=+=.将直线l 的参数方程代入()222:11C x y -+=,得23cos 04t t α--=, 设S ,T 对应的参数分别为S t ,T t ,则cos S T SR TR t t α-=+=.由()4PR QR SR TR -=-得22cos 4cos sin ααα=,得cos 0α=或sin α=l 的倾斜角为2π或4π或34π. 11.(2022·河南洛阳·三模(理))在直角坐标系xOy 中,直线1l的参数方程为12x ty kt⎧=⎪⎨=⎪⎩(t 为参数),直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线1C .(1)求曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设曲线2C 的极坐标方程为2cos ρθ=,射线OM :()04πθρ=≥与1C ,2C 分别交于A ,B 两点,求线段AB 的长.【答案】(1)22163x y +=,()0y ≠(2)2【解析】 【分析】(1)消去参数得到直线1l 、2l 的普通方程,联立两方程消去k ,即可得到P 的轨迹; (2)首先将1C 的方程化为极坐标方程,再将()04πθρ=≥代入两极坐标方程即可求出OA ,OB ,即可得解;(1)解:因为直线1l的参数方程为12x ty kt⎧⎪⎨=⎪⎩(t 为参数), 消去参数t 得直线1l的普通方程为(12y k x =①, 直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数), 消去参数m 得直线2l的普通方程为(1y x k=-②, 设(),P x y ,由①②联立得((121y k x y x k ⎧=⎪⎪⎨⎪=-⎪⎩,消去k 得()22162y x =--即曲线1C 的普通方程为22163x y +=,()0y ≠;(2)解:设1OA ρ=,2OB ρ=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线1C 的极坐标方程为2261sin ρθ=+(02θπ<<,θπ≠),代入()04πθρ=≥得12OA ρ==,将()04πθρ=≥代入2cos ρθ=得2OB ρ==所以2AB OA OB =-= 即线段AB的长度为212.(2022·安徽省芜湖市教育局模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 3sin x y ββ=+⎧⎨=⎩(β为参数),将曲线1C 经过伸缩变换13x xy y =⎧''⎪⎨=⎪⎩得到曲线2C .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)已知射线():0l θαρ=≥与曲线2C 交于A 、B 两点,若3OB OA =,求tan α的值. 【答案】(1)24cos 30ρρθ-+= (2)0 【解析】 【分析】(1)求出曲线2C 的参数方程,化为普通方程,再利用极坐标方程与直角坐标方程之间的转换关系可得出曲线2C 的极坐标方程;(2)设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根,由已知可得213ρρ=,结合韦达定理可求得cos α的值,利用同角三角函数的基本关系可求得tan α的值. (1)解:由题可得2C 的参数方程为2cos sin x y ββ=+⎧⎨=⎩(β为参数),则2C 的直角方程为()2221x y -+=,即22430x y x +-+=, 因为cos x ρθ=,sin y ρθ=,所以24cos 30ρρθ-+=,所以曲线2C 的极坐标方程为24cos 30ρρθ-+=. (2)解:设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根, 2Δ16cos 120α=->,则124cos ρρα+=①,123ρρ=②, 因为3OB OA =,所以213ρρ=③,由①②③解得cos 1α=,则sin 0α=,tan 0α∴=,此时16120∆=->,合乎题意. 故tan 0α=.13.(2022·贵州遵义·三模(文))在极点为O 的极坐标系中,经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,且与极轴的交点为N . (1)当π2α=时,求l 的极坐标方程; (2)当ππ,43α⎡⎤∈⎢⎥⎣⎦时,求MON △面积的取值范围.【答案】(1)cos ρθ=(2)⋃⎣⎦⎣⎦【解析】 【分析】(1)先求得l 的直角坐标方程,再转化为极坐标方程.(2)对直线l 的倾斜角进行分类讨论,结合三角形的面积公式求得MON △面积的取值范围. (1)点π2,6M ⎛⎫ ⎪⎝⎭,则π2cos 6π2sin 16x y ⎧=⨯=⎪⎪⎨⎪=⨯=⎪⎩,所以M点的直角坐标为),当π2α=时,直线l的直角坐标方程为x =转化为极坐标方程为cos ρθ=.(2)在极坐标系下:经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,在直角坐标系下:经过点)M的直线l 的倾斜角为α或πα-.即直线l 的倾斜角是α或πα-. 当直线l 的倾斜角为α时,直线l 的方程为(1tan y x α-=,令0y =得1tan N x α-=ππ,43α⎡⎤∈⎢⎥⎣⎦,tan α⎡∈⎣,111,1,,tan tan tan N x ααα⎤⎡∈-∈-=-⎥⎢⎣⎦⎣⎦⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯-+⨯ ⎝11tan 2α⎛=-⨯∈ ⎝⎣⎦.当直线l 的倾斜角为πα-时,直线l 的方程为()((1tan πtan y x x αα-=-=-,令0y =得1tan N x α=11,1tan tan N x αα⎤⎤∈=⎥⎥⎣⎦⎣⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯⨯ ⎝11tan 2α⎛=⨯∈ ⎝⎣⎦.综上所述,MON △面积的取值范围是⋃⎣⎦⎣⎦. 14.(2022·江西·上饶市第一中学二模(文))在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的普通方程为:22(2)4x y -+=,曲线2C 的参数方程是2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),点2,2P π⎛⎫⎪⎝⎭.(1)求曲线1C 和2C 的极坐标方程; (2)设射线(0)3πθρ=>分别与曲线1C 和2C 相交于A ,B 两点,求PAB △的面积.【答案】(1)4cos ρθ=,22123sin ρθ=+(2)1 【解析】 【分析】(1)由公式法求极坐标方程(2)联立方程后分别求出A ,B 坐标,及P 到直线AB 距离后求面积 (1)曲线1C 的直角坐标方程为:2240x y x +-=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线1C 的极坐标方程为:4cos ρθ=. 曲线2C 的普通方程是:22143x y +=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线2C 的极坐标方程为:22123sin ρθ=+.(2)设12,,,33A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1||4cos23OA πρ===,22221216||53sin 3OB ρπ===+,所以||OB =,所以||||||2AB OA OB =-=-. 又(0,2)P到直线:AB y =的距离为:1d ==所以12112PABS⎛=⨯⨯= ⎝⎭ 15.(2022·全国·模拟预测(文))在直角坐标系xOy 中,曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 4ρθθ=. (1)求C 和l 的直角坐标方程;(2)若点M ,N 分别为曲线C 和直线l 上的动点,求MN 的最小值.【答案】(1)22163x y +=,40x -=2- 【解析】 【分析】(1)利用22cos sin 1θθ+=消去参数θ,可得曲线C 的普通方程,利用极坐标与直角坐标的互化公式可求出直线l 的直角坐标方程, (2)设曲线C上任意一点)Mθθ到直线l 的距离为d ,然后利用点到直线的距离公式表示出d ,再根据三角函数的性质可求出其最小值 (1)由曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)可知2222cos sin 1θθ+=+=,故曲线C 的直角坐标方程为22163x y +=.由直线l的极坐标方程为cos sin 4ρθθ=,结合cos x ρθ=,sin y ρθ=可知l的直角坐标方程为40x -=. (2)MN 的最小值即为曲线C 上任意一点到直线l 距离的最小值.设曲线C上任意一点)Mθθ到直线l 的距离为d ,则2cos 24d πθ⎛⎫==+≥ ⎪⎝⎭,故MN 2..。
参数方程大题及答案【篇一:高考极坐标参数方程含答案(经典39题)】p class=txt>a,b两点.(1)求圆c及直线l的普通方程.(224.已知直线lc(1)求圆心c的直角坐标;(2)由直线l上的点向圆c引切线,求切线长的最小值.l,且ll分别交于b,c两点.在极坐标系(与直角坐标系5.在直角坐标系xoy 中,直线lxoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,圆c的方程为??4cos?. (Ⅰ)求圆c在直角坐标系中的方程;(Ⅱ)若圆c与直线l相切,求实数a的值.6.在极坐标系中,o为极点,已知圆c(Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线l和直线l(Ⅱ)求|bc|的长.3.在极坐标系中,点m轴为x轴的正半轴建立平面直角坐标系,斜率是?1(1)写出直线l的参数方程和曲线c的直角坐标方程;(2)求证直线l和曲线c相交于两点a、b,并求|ma|?|mb|的值.cr=1,p在圆c上运动。
(i)求圆c的极坐标方程;(ii)在直角坐标系(与极坐标系取相同的长度单位,且以极点o为原点,以极轴为x轴正半轴)中,若q为线段op的中点,求点q轨迹的直角坐标方程。
l的极坐7.在极坐标系中,极点为坐标原点o,已知圆c(1)求圆c的极坐标方程;(2)若圆c和直线l相交于a,b两点,求线段ab的长.9.在直角坐标平面内,以坐标原点o为极点,x轴的正半轴为极轴建立极坐标系,曲线c的极坐标方程是??4cos?,直线lt为参数)。
求极点在直线l上的射影点p的极坐标;若m、n分别为曲线c、直线l10.已知极坐标系下曲线c的方程为??2cos??4sin?,直线l?x?4cos??y?sin?8.平面直角坐标系中,将曲线?(?为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线c1 .以坐标原点为极点,x的非负半轴为极轴,建立的极坐标中的曲线c2的方程为??4sin?,求c1和c2公共弦的长度.(Ⅰ)求直线l在相应直角坐标系下的参数方程;(Ⅱ)设l与曲线c相交于两点a、b,求点p到a、b两点的距离之积.11.在直角坐标系中,曲线c1的参数方程为??x?4cos?(?为参数).以坐标原点为极点,x轴的正?y?3sin?14.已知椭圆cf1,f2为其左,右焦点,直线l的参数半轴为极轴的极坐标系中.曲线c2(1)分别把曲线c1与c2化成普通方程和直角坐标方程;并说明它们分别表示什么曲线.(2)在曲线c1上求一点q,使点q到曲线c2的距离最小,并求出最小距离.12.设点m,n分别是曲线??2sin??01)求直线l和曲线c的普通方程;(2)求点f1,f2到直线l的距离之和.?x?3cos?15.已知曲线c:?,直线l:?(cos??2sin?)?12.y?2sin??⑴将直线l的极坐标方程化为直角坐标方程;⑵设点p在曲线c上,求p点到直线l距离的最小值.m,n间的最小距离.16.已知?o1的极坐标方程为??4cos?.点a的极坐标是(2,?).(Ⅰ)把?o1的极坐标方程化为直角坐标参数方程,把点a的极坐标化为直角坐标.(Ⅱ)点m(x0,y0)在?o1上运动,点p(x,y)是线段am的中点,求点p运动轨迹的直角坐标方程.求曲线c2上的点到直线l距离的最小值.19.在直接坐标系xoy中,直线l的方程为x-y+4=0,曲线c的参数方程为(1)已知在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,点p17.在直角坐标系xoy中,直线l为参数),若以o为极点,x轴正半轴为极轴建立极坐标系,则曲线c的极坐标方程为?长.18.已知曲线c1的极坐标方程为??4cos?,曲线c2p与直线l的位置关系;,求直线l被曲线c所截的弦(2)设点q 是曲线c上的一个动点,求它到直线l的距离的最小值.20l交曲线c:?比数列,求直线l的方程.?x?2cos?(?为参数)于a、b?y?2sin?的方程是4x?y?4, 直线l的参数方程22(t为参数).(1)求曲线c1的直角坐标方程,直线l的普通方程;(2)21.已知曲线c1的极坐标方程是,曲线c2的参数方程是(1)写出曲线c和直线l的普通方程;(2)若|pm|,|mn|,|pn|成等比数列,求a的值.1)写出曲线c1的直角坐标方程和曲线c2的普通方程;(2)求t 的取值范围,使得c1,c2没有公共点.22.设椭圆e24.已知直线lc(1)设y?sin?,?为参数,求椭圆e的参数方程;(2)点p?x,y?是椭圆e 上的动点,求x?3y的取值范围.23.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线a2c?s??,已知过点0p??2,?4?的直线l的参数方程为?oal与曲线c(i)求圆心c的直角坐标;(Ⅱ)由直线l上的点向圆c引切线,求切线长的最小值.25.在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方弦长.?x?2cos?c的参数方程为?(?为对数),求曲线c截直线l所得的?y?sin? c:?si2n??分别交于m,n【篇二:2015高考理科数学《参数方程》练习题】lass=txt>一、选择题?x=1+3t,1.若直线的参数方程为?答案:d?x=3t+2,2.参数方程为?2?y=t-1a.线段 c.圆弧2(t为参数),则直线的倾斜角为( )y-2-3t3(0≤t≤5)的曲线为( )b.双曲线的一支 d.射线解析:化为普通方程为x=3(y+1)+2,即x-3y-5=0,由于x =3t2+2∈[2,77],故曲线为线段.故选a. 答案:a3.曲线?解析:曲线化为普通方程为答案:c4.若直线2x-y-3+c=0与曲线?x2b.3 d.2312+y218=1,∴c=6,故焦距为26.b.6或-4-----欢迎登陆明师在线浏览更多的学习资讯!-----c.-2或8解析:将曲线?22d.4或-6|-3+c|=0与圆x+y=5相切,可知=5,解得c=-2或8.5答案:c5.已知曲线c:??x=t,?y=t+b(t为参数,b为实数),若曲线c上恰有3个点到直线l的距离等于1,则b=( )a.2 c.0解析:将曲线c和直线l的参数方程分别化为普通方程为x2+y2=4和y=x+b,依题意,若要|b|使圆上有3个点到直线l的距离为1,只要满足圆心到直线的距离为1即可,得到=1,解得b=答案:d?x=4t,6.已知点p(3,m)在以点f为焦点的抛物线??y=4ta.1 c.3b.2 d.42(t为参数)上,则|pf|=( )解析:将抛物线的参数方程化为普通方程为y2=4x,则焦点f(1,0),准线方程为x=-1,又p(3,m)在抛物线上,由抛物线的定义知|pf|=3-(-1)=4.答案:d 二、填空题??x=-2-2t,7.(2014年深圳模拟)直线??y=3+2t?坐标是________.??x=-2-2t,1222??y=3+2t2222(t为参数)上与点a(-2,3)的距离等于2的点的(t-----欢迎登陆明师在线浏览更多的学习资讯!-----为参数),得所求点的坐标为(-3,4)或(-1,2).答案:(-3,4)或(-1,2)8.(2014年东莞模拟)若直线l:y=kx与曲线c:?解析:曲线c化为普通方程为(x-2)2+y2=1,圆心坐标为(2,0),半径r=1.由已知l与圆相切,则r=|2k|333解析:利用直角坐标方程和参数方程的转化关系求解参数方程. 1?21?2x-+y=将x+y-x=0配方,得?2?4?22所以圆的直径为1,设p(x,y),?2210.已知曲线c的参数方程为?24??-----欢迎登陆明师在线浏览更多的学习资讯!-----(1)将曲线c的参数方程化为普通方程;解析:(1)由?2x2+y=1,x∈[-1,1].4???x+y+2=0,?2?x+y=1得x2-x-3=0.解得x=[-1,1],故曲线c与曲线d无公共点.2?x=2cos t,11.已知动点p、q都在曲线c:?(1)求m的轨迹的参数方程;m的轨迹的参数方程为?212.(能力提升)在直角坐标系xoy中,圆c1:x+y=4,圆c2:(x-2)+y=4.(1)在以o为极点,x轴正半轴为极轴的极坐标系中,分别写出圆c1,c2的极坐标方程,并求出圆c1,c2的交点坐标(用极坐标表示);222-----欢迎登陆明师在线浏览更多的学习资讯!-----3(2)解法一由?得圆c1与c2交点的直角坐标分别为(1,3),(1,-3).?x=1,故圆c1与c2的公共弦的参数方程为??y=t,?x=1,(或参数方程写成??y=y,-3≤t≤3.-3 ≤ y ≤3)解法二将x=1代入?于是圆c1与c2的公共弦的参数方程为 ?x=1,?======*以上是由明师教育编辑整理======------欢迎登陆明师在线浏览更多的学习资讯!-----【篇三:坐标系与参数方程典型例题(含高考题----答案详细)】ass=txt>一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. ⑤了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2.参数方程:①了解参数方程,了解参数的意义.②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.③了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.④了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.二、基础知识归纳总结:?x????x,(??0),1.伸缩变换:设点p(x,y)是平面直角坐标系中的任意一点,在变换?:?的作用下,?y???y,(??0).?点p(x,y)对应到点p?(x?,y?),称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
极坐标参数方程训练题1、(2014·福建高考理科·T21)已知直线l 的参数方程为2()4x a tt y t=-⎧⎨=-⎩为参数,圆C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 2..(2014·辽宁高考)将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C 的参数方程;(Ⅱ)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.3..(2014·新课标全国卷Ⅱ高考·T23)(2014·新课标全国卷Ⅱ高考理科数学·T23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈0,2π⎡⎤⎢⎥⎣⎦. (1)求C 的参数方程.(2)设点D 在C 上,C 在D 处的切线与直线l:y=3x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标.4.(15年新课标1)在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆的面积.5.(2015新课标(II ))直角坐标系xoy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:23cos C ρθ=.(Ⅰ).求2C 与1C 交点的直角坐标;(Ⅱ).若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB的最大值.6.(2013·辽宁高考)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系。
极坐标与参数方程大题及答案一、极坐标问题1.求解方程$r = 2\\cos(\\theta)$的直角坐标方程。
首先,根据极坐标到直角坐标的转换公式:$$x = r\\cos(\\theta)$$$$y = r\\sin(\\theta)$$将$r = 2\\cos(\\theta)$代入上述两式,得到:$$x = 2\\cos(\\theta)\\cos(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = 2\\cos^2(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$2.将直角坐标方程x2+y2−4x=0转换为极坐标方程。
首先,我们可以将直角坐标方程中的x2和y2替换成r2,从而得到:r2+y2−4x=0然后,将直角坐标方程中的x和y替换成$r\\cos(\\theta)$和$r\\sin(\\theta)$,得到:$$r^2 + (r\\sin(\\theta))^2 - 4(r\\cos(\\theta)) = 0$$将上述方程化简,得到极坐标方程为:$$r^2 + r^2\\sin^2(\\theta) - 4r\\cos(\\theta) = 0$$3.将极坐标方程$r = \\sin(\\theta)$转换为直角坐标方程。
使用极坐标到直角坐标的转换公式,将$r = \\sin(\\theta)$代入,得到:$$x = \\sin(\\theta)\\cos(\\theta)$$$$y = \\sin^2(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = \\frac{1}{2}\\sin(2\\theta)$$$$y = \\sin^2(\\theta)$$二、参数方程问题1.求解方程$\\frac{x + y}{x - y} = 2$的参数方程。
专练67 高考大题专练(七) 坐标系与参数方程1.[2022·贵阳市五校联考]以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数),直线l 的极坐标方程为ρsin (θ-π6)=- 3.(1)已知点M(6,a)在曲线C 上,求a 的值;(2)设点P 为曲线C 上一点,求点P 到直线l 距离的最小值.2.[2022·全国甲卷(理),22]在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+t 6y =t (t为参数),曲线C 2的参数方程为⎩⎪⎨⎪⎧x =-2+s 6y =-s(s 为参数). (1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cos θ-sin θ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标.3.[2022·安阳模拟]在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =sin θ(θ为参数),直线l 过点M(1,0)且倾斜角为α.(1)求出直线l 的参数方程和曲线C 的普通方程; (2)若直线l 与曲线C 交于A ,B 两点,且|MA|·|MB||||MA|-|MB|=33,求cos α的值.4.[2021·全国甲卷]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=22cos θ.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P 满足AP →=2AM →,写出P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.5.[2022·石嘴山模拟]在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,点A 为曲线C 1上的动点,点B 在线段OA 的延长线上且满足|OA|·|OB|=8,点B 的轨迹为C 2.(1)求曲线C 1,C 2的极坐标方程;(2)设点M 的极坐标为(2,3π2),求△ABM 面积的最小值.6.[2022·全国乙卷(理),22]在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =3cos 2t ,y =2sin t(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0.(1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.专练67 高考大题专练(七) 坐标系与参数方程1.解析:(1)∵点M 在曲线C 上,∴6=3t ,∴t=2,∴a=y =2×22+1=9. (2)∵直线l 的极坐标方程为ρsin (θ-π6)=-3,∴直线l 的直角坐标方程为x -3y -23=0. ∵点P 在曲线C 上,∴设P(3t ,2t 2+1), 则点P 到直线l 的距离为d =|3t -23t 2-33|2,当t =34时,d min =21316. 2.解析:(1)C 1的参数方程为⎩⎪⎨⎪⎧x =2+t 6,y =t .消去参数t ,得C 1的普通方程为y 2=6x -2(y≥0). (2)曲线C 3的极坐标方程为2cos θ-sin θ=0, 两边同乘ρ,得2ρcos θ-ρsin θ=0, 则C 3的直角坐标方程为y =2x.联立得方程组⎩⎪⎨⎪⎧y 2=6x -2(y≥0),y =2x ,解得⎩⎪⎨⎪⎧x =12,y =1或⎩⎪⎨⎪⎧x =1,y =2.将曲线C 2的参数方程中的参数s 消去,得y 2=-6x -2(y≤0).联立得方程组⎩⎪⎨⎪⎧y 2=-6x -2(y≤0),y =2x ,解得⎩⎪⎨⎪⎧x =-12,y =-1或⎩⎪⎨⎪⎧x =-1,y =-2.所以C 3与C 1交点的直角坐标为⎝ ⎛⎭⎪⎫12,1和()1,2,C 3与C 2交点的直角坐标为⎝ ⎛⎭⎪⎫-12,-1和(-1,-2).3.解析:(1)曲线C 的参数方程⎩⎨⎧x =2cos θ,y =sin θ(θ为参数),转换为普通方程为x 22+y2=1;直线l 过点M(1,0)且倾斜角为α,则参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数).(2)把直线l 的参数方程⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数)代入x 22+y 2=1.得到(1+sin 2α)t 2+2t cos α-1=0, 所以t 1+t 2=-2cos α1+sin 2α, t 1t 2=-11+sin 2α(t 1和t 2分别为A 和B 对应的参数), t 1t 2<0,则t 1,t 2异号,||MA|-|MB||=||t 1|-|t 2||=|t 1+t 2|, 由|MA|·|MB|||MA|-|MB||=33,整理得|t 1+t 2|=⎪⎪⎪⎪⎪⎪-2cos α1+sin 2α=3|t 1t 2|=31+sin 2α, 解得cos α=±32. 4.解析:(1)根据ρ=22cos θ,得ρ2=22ρcos θ, 因为x 2+y 2=ρ2,x =ρcos θ,所以x 2+y 2=22x ,所以C 的直角坐标方程为(x -2)2+y 2=2. (2)设P(x ,y),M(x′,y′),则AP →=(x -1,y),AM →=(x′-1,y′).因为AP →=2AM →,所以⎩⎨⎧x -1=2(x′-1)y =2y′,即⎩⎪⎨⎪⎧x′=x -12+1y′=y 2,因为M 为C 上的动点,所以(x -12+1-2)2+(y 2)2=2,即(x -3+2)2+y 2=4.所以P 的轨迹C 1的参数方程为⎩⎨⎧x =3-2+2cos α,y =2sin α(其中α为参数,α∈[0,2π)).所以|CC 1|=3-22,⊙C 1的半径r 1=2,又⊙C 的半径r =2,所以|CC 1|<r 1-r , 所以C 与C 1没有公共点.5.解析:(1)由曲线C 1的参数方程⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),消去参数,可得普通方程为(x -1)2+y 2=1,即x 2+y 2-2x =0, 又由x =ρcos θ,y =ρsin θ,代入可得曲线C 1的极坐标方程为ρ=2cos θ,设点B 的极坐标为(ρ,θ),A 点的极坐标为(ρ0,θ0), 则|OB|=ρ,|OA|=ρ0,ρ0=2cos θ0,θ=θ0, 因为|OA|·|OB|=8, 所以ρ·ρ0=8,即8ρ=2cos θ,即ρcos θ=4, 所以曲线C 2的极坐标方程为ρcos θ=4. (2)由题意,可得|OM|=2,则S △ABM =S △OBM -S △OAM =12|OM|·|x B -x A |=12×2×|4-2cos 2θ|=|4-2cos 2θ|,即S △ABM =4-2cos 2θ,当cos 2θ=1时,可得S △ABM 的最小值为2. 6.解析:(1)由ρsin (θ+π3)+m =0,得12ρsin θ+32ρcos θ+m =0. ∵ρcos θ=x ,ρsin θ=y , ∴l 的直角坐标方程为32x +12y +m =0.(2)(方法一)把x =3cos 2t ,y =2sin t 代入32x +12y +m =0,得m =-32cos 2t -sin t =-32+3sin 2t -sin t =3(sin t -16)2-1912.∵sin t∈[-1,1],∴当sin t =16时,m 取得最小值-1912;当sin t =-1时,m 取得最大值52.∴m 的取值范围是[-1912,52].(方法二)x =3cos 2t =3(1-2sin 2t)=3[1-2(y 2)2]=3-32y 2.∵y=2sin t ,sin t∈[-1,1],∴y∈[-2,2]. 联立得方程组⎩⎪⎨⎪⎧x =3-32y 2,3x +y +2m =0.消去x 并整理,得3y 2-2y -4m -6=0, 即4m =3y 2-2y -6=3(y -13)2-193(-2≤y≤2).∴-193≤4m≤10,∴-1912≤m≤52.∴m 的取值范围是[-1912,52].。
极坐标(一)班级: 姓名:一、填空题:1.极坐标系中,直线sin 24πρθ(+)=被圆4ρ=截得的弦长为 。
答案:2.极坐标方程分别为2cos ρθ=和sin ρθ=的两个圆的圆心距为 。
答案:23.在直角坐标方系中圆C 的参数方程为2cos (22sin x y θθθ=⎧⎨=+⎩为参数),若以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的极坐标方程为 。
答案:4sin ρθ=4.设平面上的伸缩变换的坐标表达式为123x x y y ⎧'=⎪⎨⎪'=⎩,则在这一坐标变换下正弦曲线sin y x =的方程变为 。
答案:3sin 2y x ''=5.极坐标系中,点(1,0)到直线(cos sin )2ρθθ+=的距离为 。
答案:26.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为:cos()13πρθ-=,M 、N 分别为曲线x 轴、y 轴的交点,则MN 的中点P 在平面直角坐标系中的坐标为 .答案:37.已知直线的极坐标方程为sin()42πρθ+=,则极点到这条直线的距离是 .答案:28.在极坐标系中,圆4ρ=上的点到直线(cos )6ρθθ+=的距离的最大值是 . 答案:79.在极坐标系中,设圆32ρ=上的点到直线sin sin )θθθ-=的距离为d ,则d 的最大值为 。
答案:2二、解答题:10.求极坐标方程cos(4πρθ=-)所表示的曲线。
答案:以44(,)为圆心,12为半径的圆11.已知圆1O 和圆2O 的极坐标方程分别为2ρ=,2cos()24πρθ--=. (1)把圆1O 和圆2O 的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.答案:(1)222220x y x y +---=;(2)sin()42πρθ+=.12.在极坐标系下,已知圆:cos sin O ρθθ=+和直线:sin()42l πρθ-=.(1)求圆O 和直线l 的直角坐标方程;(2)当(0,)θπ∈时,求直线l 与圆O 公共点的一个极坐标。
x 中,⊙ 的参数方程为cos ,( 为参数), xOy O过点 0, 2 且倾斜角为 的直线 与⊙ 交于 , 两点.l O AB Ptl,( 为参数),设 与 的交点为 ,当 变化时, 的轨迹为曲线 . m l l P k P Cm y , k(1)写出 的普通方程: C(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设l : (co s s in ) , 为 与 M lxC3 cosx 3、(2016 全国 I I I 卷高考)在直角坐标系s in1坐 标 原 点 为 极 点 , 以 x 轴 的 正 半 轴 为 极 轴 ,, 建 立 极 坐 标 系 , 曲 线) 2 2 . 41(II )设点 P 在 上,点 Q 在 上,求|P Q |的最小值及此时 P 的直角坐标.4、(成都市 2018 届高三第二次诊断)在平面直角坐标系xOy 中,曲线C 的参数方程为x.在以坐标原点O 为极点,轴的正半轴为极轴的极坐标2s ins in ( ) 5 2 0 ,直线的极坐标方程为 . 44(1)求直线的直角坐标方程与曲线C 的普通方程;5、(成都市 2018 届高三第三次诊断)在极坐标系中,曲线C 的极坐标方程是 ,直线l 的2 s in 在直线l 上.以极点为坐标原点 O ,极轴为 x 轴的4正半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.(I )求曲线C 及直线l 的直角坐标方程; (Ⅱ)若直线l 与曲线C 相交于不同的两点 A,求 Q A Q B 的值.6、(达州市 2017 届高三第一次诊断)在平面直角坐标系中,以原点为极点,x 轴的非负半轴为极轴2tx 2建立极坐标系,直线l 的参数方程为.t 2y 2 t2 2(1)若l 的参数方程中的t1 1(0, 2) l (2)若点 P, 和曲线C 交于 两点,求.7、(德阳市 2018 届高三二诊考试)在平面直角坐标系xOy 中,直线l : (t 为参数),以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,曲线C :x.0,0l与直线 和曲线C 的交点分别为点M 和点 N (异于点O ), 2 O N 求 的最大值.O M8、(广元市 2018 届高三第一次高考适应性统考)在平面直角坐标系x Oy4cos a 2(a 为参数),以O 为极点,以x 轴的非负半轴为极轴的极坐标系中,直线 的极坐标方y程为 ( ) .R 6C(2)设直线 与曲线 相交于 , 两点,求的值.ABC A B 轴为极轴建立极坐标系,已知直线 l 的极坐标方程为 3 c os s inC3 0 , 的极坐标方程为.4s in( ) 6(I )求直线 l 和 的普通方程;C (II )直线 l 与 有两个公共点 A 、B ,定点 P (2, 3) ,求|||| 的值.C 10、(绵阳市 2018 届高三第一次诊断)在直角坐标系中,曲线C 的参数方程是yx(1)求曲线C 的极坐标方程;C, AOB与曲线 分别交于异于原点的 A B 两点,求 的面积.(2)设l, ,若631211、(南充市 2018 届高三第二次高考适应性考试)在直角坐标系xOy 中,曲线C 的参数方程为1:1 ,以坐标原点O 为极点,以 轴正半轴y1x22 2(Ⅰ)求曲线C 的普通方程和曲线C 的极坐标方程;12C C,与曲线 , 分别交于 A B 两点,求61 212、(仁寿县 2018 届高三上学期零诊)在平面直角坐标系xoy 中 ,圆 C 的参数方程为l3)=7. 43 t 2 (t 为参数),以坐标原 1224 c os(3(1)求圆C 的直角坐标方程; 2(2)若 P(x, y )是直线l 与圆面 4cos( )的公共点,求 3x y的取值范围.32 0( PQ (1)求点 的轨迹C 的直角坐标方程;3 (2)若C 上点 M 处的切线斜率的取值范围是,求点 M 横坐标的取值范围. 315、(雅安市 2018 届高三下学期三诊)在直角坐标系中,已知圆 的圆心坐标为(2,0) ,半径为CXCl(2)点 的极坐标为 1,,直线 与圆 相交于 , ,求 PAC 的值.P l A B 235 cos16、(宜宾市 2018 届高三第一次诊断)在直角坐标系 中,曲线C 的参数方程为xOy 5 s iny(其中参数 ).xCx 1 t c os (2)直线l 的参数方程为(其中参数 , 是常数),直线l 与曲线 交于t RC y点,且 ,求直线l 的斜率.AB2 3 l2t , x 2 y 4 t的极坐标方程为 4cos .(1)写出直线 l 普通方程和曲线 C 的直角坐标方程;(2)过点 M (1,0) 且与直线 平行的直线 交 于 A , B 两点,求| AB | .l l C 在平面直角坐标系中,以坐标原点为极点, 轴x si n 2 cos ( 0) ,过点 的正半轴为极轴建立极坐标系,已知曲线 的极坐标方程为 a a2x 2 ( 为 t参数),直线 与曲线 相交于 两点. 的直线 的参数方程为2 y 42 (1)写出曲线 的直角坐标方程和直线 的普通方程; 2 PA PB AB 求 的值 (2)若 ,. a 1、解答:的参数方程为的普通方程为 22yl : x 0 与e O有两个交点,当| 0 0 2 |t an2 ,由直线l 与e O时,设直线l 的方程为 y x1 两个交点有,得 ,∴或,综上时,点P 坐标为 (0,0)ly 22A22为 y, 1 1 2 2③2 2k 2(1 k )x 2 2kx 1 0 2 2 ,∴,∴得121222y ④2xk 代入④得 x y 2y 0 .当点 P(0,0) 时满足方程 x y 2y 0 ,∴ AB 中点的 P2 2 2 2 y22 2 的 轨 迹 方 程 是 x, 即 xy2 22 2 2 222 2 22B (y 0 ,故点 P 的参数方程为 ,则22 2 2 2y s in2 2 0).2、【解析】⑴将参数方程转化为一般方程l : y k x 2 112k① ②消 可得: 4k x 2 y 2 即 的轨迹方程为 4 ;P ⑵将参数方程转化为一般方程……③Cl3422x 2y2 c os解得 5y.5s in c os 10 0.4c oss in ,可得直线的直角坐标方程为y , 2 3 c osx x 2 y 2 将曲线C 的参数方程C12 4(2)设Q(2 3cos ,2s in ) (0 ).(4 2, ) 化为直角坐标为(4, 4).4则 M.2s in( ) 103 cos s in 103.225s in ( ) 1,即 当 3 6∴点 M 到直线的距离的最大值为6 25、.316C242 2 t ) (2 2 22 2121 21121 121 2,4. s in c os2由得:2,所以 x 2 y 2 y ,所以曲线C 的直角坐标方程为: x .224 2s in, s in c oss in s in cos 2O N所以,4 4 23由于0 ,所以当时, 取得最大值:.2844cos a 2得曲线 的普通方程:C所以曲线 的极坐标方程为: 4 c os 12 C 2(2)设 , 两点的极坐标方程分别为( , ),( , ) ,661224 c os 12 0 的两根2是 C2∴ 2 3, 12121 29、解:(I )直线 l 的普通方程为: 3 3 0, ·································································· 1 分x y因为圆 的极坐标方程为, C 63 1所以 2 4( s i n cos ) , ··············································································· 3 分2 2所以圆 的普通方程 22 3 0 ;·························································· 4 分 C x 2 y 2 x y (II )直线 l : 3 3 0的参数方程为: x y3 y 3 t2代入圆 的普通方程 22 3 0 消去 x 、y 整理得: x 2 y 2 x y 2 9 17 0 , ··········································································································· 6 分t t | | | ,| | | |,··························································································· 7 分PB tPA t 1 2|| PA | | PB |||| t | | t ||| t t | (t t ) ······························································· 8 分2 12122 12219 417 13 .··································································································· 10 分2 10、解:(Ⅰ)将 C 的参数方程化为普通方程为(x -3) +(y -4) =25,2 2 22.(Ⅱ)把 代入 6 c os 8s in ,得,6 1∴ . ……………………………………………………………6 分A66 c os 8s in32∴ . ……………………………………………………………8 分B31s in AOB2 1 21225 3. 4211、解:(Ⅰ)由2.3yx 2所以曲线 的普通方程为C 2.13 c os1 s i n 1,得到,化简得到曲线把 x,代入22的极坐标方程为2 cos.C 2(Ⅱ)依题意可设 A,曲线C 的极坐标方程为 2.2 261211代入C 的极坐标方程得 2 2,解得 .621.622.12)=7.根据 ρcosθ=x ,ρsinθ=y 可得:﹣y+x=7. 即直线 l 的直角坐标方程为 x.---------------------------5 分(θ 为参数),其圆心为(﹣1,2),半径r=4.----6 分5 2.---------------------8 分2∴ AB 的最小值为圆心到直线的距离 d ﹣r ,即 AB min4 c os( )13、【解析】(1)∵圆C 的极坐标方程为323 14 c os ( cos )∴ , 322又∵ 2222∴圆C 的普通方程为 x 22(2)设 z,y 2x 2 3y 0 (x 1) (y 3) 4 ,22 2 2 ∴圆C 的圆心是(1, 3)3 t2 3x y 得 z t , 代入 z 12,圆C 的半径是 ,2 3,即 x y 的取值范围是∴,∴.……10 分 2 0 14、解:(1)由,得22设,,1 1x 2 yx 2x 2, y 2y则 x ,122111 1得22,∴221,0 为圆心,1半径的半圆,如图所示,,设点处切线 的倾斜角为 lM设253 由l 斜率范围, …………7 分3 3 63 而,∴,∴ ,26 3 22M , 所以,点 横坐标的取值范围是 . …………10 分22,,化简得圆 的极坐标方程:,:由l 得 ,y1l 的极坐标方程为.4(1,0), (2)由 PP22 t x2直线 的参数的标准方程可写成2y 1 t2 2 2t 2) (1 t) 2 ,2 2 2 2,,.3 5 cosx Q 16、解: (1)5 s iny 的普通方程 x 22x 1t c osQ1 直线l 的普通方程 y k xy3k 0 k k 122 t ,217、(1)由2y 4 t2 又由 4cos 得 4cos ,则 的直角坐标方程为 0 . ··············5 分2C x 2 y 22 t , x2 (2) 过点 M ( 1,0) 且与直线 平行的直线 的参数方程为l l 2 y t .2 将其代入 4 0 得 2 23 0 ,则 t t,x 2 y 2 x tt 1 2 所以| AB ||t t | (t t ) 4t t14 . ······················································10 分2 1212(1)由 整理得= ,,(2)将直线 的参数方程代入曲线 的直角坐标方程 = 得,.设两点对应的参数分别为,则有∵=,即=,解得或者(舍去),。
专题18坐标系与参数方程考向一极坐标与参数方程【母题来源】2022年高考浙江卷【母题题文】在直角坐标系xOy 中,曲线1C的参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C的参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 的极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点的直角坐标,及3C 与2C 交点的直角坐标.【试题解析】【小问1详解】因为26t x +=,y =,所以226y x +=,即1C 的普通方程为()2620y x y =-≥.【小问2详解】因为2,6sx y +=-=,所以262x y =--,即2C 的普通方程为()2620y x y =--≤,由2cos sin 02cos sin 0θθρθρθ-=⇒-=,即3C 的普通方程为20x y -=.联立()262020y x y x y ⎧=-≥⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩或12x y =⎧⎨=⎩,即交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2;联立()262020y x y x y ⎧=--≤⎨-=⎩,解得:121x y ⎧=-⎪⎨⎪=-⎩或12x y =-⎧⎨=-⎩,即交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.【命题意图】本题考查极坐标、参数方程与直角坐标的互化,属于较为简单题目.【命题方向】这类试题在考查题型上以解答题的形式出现.试题难度不大,多为低档题,是历年高考的热点,考查学生的基本运算能力.常见的命题角度有:(1)极坐标与直角坐标互化;(2)参数方程与直角坐标互化;(3)直线参数方程中参数的几何意义.【得分要点】(1)运用极坐标,借助极径的几何意义;(2)参数方程与直角方程的互化,借助直线的参数的几何意义;1.(2022·四川成都·模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t为参数,α为常数且2πα≠),在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为:22sin 40ρρθ--=.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)点(1,1)P ,直线l 与曲线C 交于,A B 两点,若2PA PB =,求直线l 的斜率.2.(2022·河南安阳·模拟预测(文))在直角坐标系xOy 中,1C 的圆心为()11,1C点为极点,x 轴正半轴为极轴建立极坐标系,2C的极坐标方程为ρθ=.(1)求1C 的极坐标方程,判断1C ,C 的位置关系;(2)求经过曲线1C ,2C 交点的直线的斜率.3.(2023·四川·成都七中模拟预测(理))在直角坐标系xOy 中,倾斜角为α的直线l的参数方程为:2cos sin x t y t αα=+⎧⎪⎨=⎪⎩,(t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为22cos 8ρρθ=+.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A B ,两点,且AB =,求直线l 的倾斜角.4.(2022·青海·海东市第一中学模拟预测(理))在直角坐标系xOy 中,已知曲线1C的参数方程为x y t ⎧=⎪⎨=⎪⎩(t 为参数).曲线2C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程;(2)若曲线1C ,2C 的交点为A ,B,已知)1P-,求PA PB ⋅.5.(2022·内蒙古·海拉尔第二中学模拟预测(文))在平面直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=+⎩(其中α为直线的倾斜角,t 为参数),在以为O 极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为2sin 4cos 0.ρθθ-=(1)当直线l 的斜率k =2时,求曲线C 上的点A 与直线l 上的点B 间的最小距离;(2)如果直线l 与曲线C 有两个不同交点,求直线l 的斜率k 的取值范围.6.(2022·全国·模拟预测(文))在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 36πρθ⎛⎫-= ⎪⎝⎭,圆C 的极坐标方程为2sin ρθ=.(1)求C 的参数方程;(2)判断l 与C 的位置关系.7.(2022·河南·开封市东信学校模拟预测(理))在平面直角坐标系xOy 中,曲线C 的参数方程为2,2x t y t =⎧⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 20ρθρθ+-=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 与曲线C 交于P ,Q 两点,且点(0,2)M ,求11||||MP MQ +的值.8.(2022·四川·成都市锦江区嘉祥外国语高级中学模拟预测(理))在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系(取相同的单位长度),曲线1C 的极坐标方程为4cos ρθ=,曲线2C的参数方程为2222x y ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数),曲线1C ,2C 相交于A 、B 两点,曲线3C 经过伸缩变换22x x y y ='+='⎧⎨⎩后得到曲线1C .(1)求曲线1C 的普通方程和线段AB 的长度;(2)设点P 是曲线3C 上的一个动点,求PAB △的面积的最小值.9.(2022·全国·模拟预测(理))在直角坐标系xOy中,曲线1C的参数方程是11cos221sin2xyϕϕ⎧=+⎪⎪⎨⎪=⎪⎩(ϕ为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线2C的极坐标方程为1()ρθρ=∈R.(1)求曲线1C和曲线2C除极点外的交点的极坐标(02π)θ≤<;(2)若A,B分别为曲线1C和2C上的异于极点O的两点,且OA OB⊥,求OAB面积的最大值.10.(2022·吉林市教育学院模拟预测(理))以等边三角形的每个顶点为圆心,以其边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形被称为勒洛三角形,如图,在极坐标系Ox中,曲边三角形OPQ为勒洛三角形,且π2,6P⎛⎫-⎪⎝⎭,π2,6Q⎛⎫⎪⎝⎭,以极点O为直角坐标原点,极轴Ox为x轴正半轴建立平面直角坐标系xOy,曲线1C的参数方程为2112x ty t⎧=⎪⎪⎨⎪=-+⎪⎩(t为参数).(1)求 PQ的极坐标方程和OQ所在圆2C的直角坐标方程;(2)已知点M的直角坐标为()0,1-,曲线1C和圆2C相交于A,B两点,求11||||MA MB-.1.(2022·四川成都·模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数,α为常数且2πα≠),在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为:22sin 40ρρθ--=.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)点(1,1)P ,直线l 与曲线C 交于,A B 两点,若2PA PB =,求直线l 的斜率.【答案】(1)tan (1)1y x α=⋅-+;22240x y y +--=(2)±1【解析】【分析】(1)消参可以把参数方程转化为普通方程,根据极坐标和直角坐标的转化,可将极坐标方程化成直角坐标方程.(2)根据直线的标准参数方程的几何意义以及韦达定理即可求解2cos 2α=±,进而可求tan α.(1)1cos 1sin x t y t αα=+⎧⎨=+⎩()tan 11y x α⇒=⋅-+,2222sin 40240x y y ρρθ--=⇒+--=;(2)将1cos 1sin x t y t αα=+⎧⎨=+⎩代入22240x y y +--=得22cos 40t t α+-=,12122cos 4t t t t α+=-⎧⎨=-⎩,因为点P 在圆内,故,A B 在点P 两侧,由题意知,122t t =-,因此122152t t t t +=-,即21212()12t t t t +=-,故2(2cos )142α-=--,解得2cos 2α=,进而tan 1k α==±因此斜率为±1.2.(2022·河南安阳·模拟预测(文))在直角坐标系xOy 中,1C 的圆心为()11,1C ,半径为2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,2C 的极坐标方程为2ρθ=.(1)求1C 的极坐标方程,判断1C ,2C 的位置关系;(2)求经过曲线1C ,2C 交点的直线的斜率.【答案】(1)2cos 2sin r q q =+,1C ,2C 相交21【解析】【分析】(1)先求解1C 的标准方程,再根据直角坐标与极坐标的转换求解1C 的极坐标方程,再根据2C 的直角坐标方程,分析1C ,2C 圆心之间的距离与半径之和差的关系判断即可;(2)根据1C ,2C 均过极点,联立极坐标方程,求解tan θ即可(1)由题意,1C 的标准方程为()()22112x y -+-=,即22220x y x y +--=,故1C 的极坐标方程为22cos 2sin =+ρρθρθ,即2cos 2sin r q q =+,又,2C 的极坐标方程为222cos ρθ=,即2222x y +=,(2222x y +=.因为()()22122110422C C -+-=-1C ,2C 半径相等,半径和为22124224222C C =-=<1C ,2C 相交.故1C 的极坐标方程2cos 2sin r q q =+,1C ,2C 相交.(2)由(1)1C :2cos 2sin r q q =+,2C :22ρθ=均经过极点且相交,联立2cos 2sin 22ρθθρθ=+⎧⎪⎨=⎪⎩有2cos 2sin 22θθθ+=,显然cos 0θ≠,故22tan 22θ+=,即tan 21θ=,即经过曲线1C ,2C 213.(2023·四川·成都七中模拟预测(理))在直角坐标系xOy 中,倾斜角为α的直线l 的参数方程为:2cos 3sin x t y t αα=+⎧⎪⎨=⎪⎩,(t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为22cos 8ρρθ=+.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A B ,两点,且42AB =,求直线l 的倾斜角.【答案】(1)当π2α=时,直线l 的普通方程为2x =;当π2α≠时,直线l 的普通方程为()3tan 2y x α=-;22280x y x +--=(2)π6或π2【解析】【分析】(1)因为直线l 的参数方程为2cos 3sin x t y t αα=+⎧⎪⎨=+⎪⎩(t 为参数),讨论π2α=和π2α≠时,消去参数t ,即可求出直线l 的普通方程,因为222x y ρ=+,cos x ρθ=即可求出曲线C 的直角坐标方程.(2)将直线l 的参数方程代入曲线C 的方程整理,()2232cos 50t t αα++-=.因为0∆>,可设该方程的两个根为2,l t t ,所以()2121224l AB t t t t t t =-=+-线l 的倾斜角.(1)因为直线l 的参数方程为2cos 3sin x t y t αα=+⎧⎪⎨=+⎪⎩(t 为参数),当π2α=时,直线l 的普通方程为2x =.当π2α≠时,直线l 的普通方程为()3tan 2y x α=-.因为222x y ρ=+,cos x ρθ=,因为22cos 8ρρθ=+,所以2228x y x +=+.所以C 的直角坐标方程为22280x y x +--=.(2)曲线C 的直角坐标方程为22280x y x +--=,将直线l 的参数方程代入曲线C 的方程整理,得()2232cos 50t t αα++-=.因为()2232cos 200αα∆=++>,可设该方程的两个根为2,l t t ,则()2232cos l t t αα+=-+,25l t t =-.所以()2121224l AB t t t t t t =-=+-()2[23sin 2cos ]2042αα=-++=整理得()23cos 3αα+=,故π2sin 36α⎛⎫+=± ⎪⎝⎭因为0πα≤<,所以ππ63α+=或π2π63α+=,解得或π6α=或π2α=,综上所述,直线l 的倾斜角为π6或π2.4.(2022·青海·海东市第一中学模拟预测(理))在直角坐标系xOy 中,已知曲线1C 的参数方程为3x ty t ⎧=-⎪⎨=⎪⎩(t 为参数).曲线2C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程;(2)若曲线1C ,2C 的交点为A ,B ,已知)3,1P-,求PA PB ⋅.【答案】(1)1:C πsin 06ρθ⎛⎫+= ⎪⎝⎭(或5π6θ=,R ρ∈),2:C ρ=4.(2)12【解析】【分析】(1)利用消参法进行化简曲线方程,然后通过公式将曲线的普通方程转化成极坐标方程;(2)利用直线的极坐标方程,结合参数的几何意义,联立曲线普通方程进行计算即可.(1)由曲线13:x tC y t ⎧=⎪⎨=⎪⎩(t 为参数),消去参数t 得30x =,化成极坐标方程得cos 3sin 0ρθρθ=.化简极坐标方程为πsin 06ρθ⎛⎫+= ⎪⎝⎭(或5π6θ=,R ρ∈).曲线24cos :4sin x C y θθ=⎧⎨=⎩(θ为参数)消去参数θ得2216x y +=.化简极坐标方程为ρ=4.(2)由已知得P 在曲线1C 上,将曲线1C 化为标准参数方程332112x y t ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数)代入2C 的直角坐标方程2216x y +=,得2231311622t ⎫⎛⎫+-+=⎪ ⎪⎪⎝⎭⎭,即24120t t --=,即A ,B 所对应的参数分别为1t ,2t ,所以121212PA PB t t t t ⋅===.5.(2022·内蒙古·海拉尔第二中学模拟预测(文))在平面直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=+⎩(其中α为直线的倾斜角,t 为参数),在以为O 极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为2sin 4cos 0.ρθθ-=(1)当直线l 的斜率k =2时,求曲线C 上的点A 与直线l 上的点B 间的最小距离;(2)如果直线l 与曲线C 有两个不同交点,求直线l 的斜率k 的取值范围.【答案】52(2)5151(,0))22⋃【解析】【分析】(1)利用极坐标与平面直角坐标互化公式得到曲线C 的平面直角坐标方程为24y x =,设出曲线上点()2,A s s ±,求出直线方程230x y -+=,利用点到直线距离公式,得到曲线C 上的点A 与直线l 上的点B 间的最小距离;(2)直线l 的普通方程为:()11y k x -=+,与曲线C :24y x =联立消去x 后用根的判别式得到不等式,求出斜率k 的取值范围.(1)2sin 4cos 0ρθθ-=两边同乘以ρ得:22sin 4cos 0ρθ-ρθ=,所以曲线C 的平面直角坐标方程为24y x =,设曲线上的一点坐标为()2,2A s s ±,当直线l 的斜率k =2时,直线方程为()121y x -=+,即230x y -+=,则A 点到直线距离为2215222223415s s s d ⎛⎫±+⎪±+⎝⎭==+当12s =±时,d 52,故曲线C 上的点A 与直线l 上的点B 52;(2)直线l 的普通方程为:()()110y k x k -=+≠,与曲线C :24y x =联立得:24440y y k k-++=,由0∆>得:1152k +>1152k -解得:5151()22k ---∈⋃6.(2022·全国·模拟预测(文))在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 36πρθ⎛⎫-= ⎪⎝⎭,圆C 的极坐标方程为2sin ρθ=.(1)求C 的参数方程;(2)判断l 与C 的位置关系.【答案】(1)cos 1sin x y θθ=⎧⎨=+⎩(θ为参数)(2)直线l 与圆C 相切.【解析】【分析】(1)先将圆C 的极坐标方程转化为直角坐标方程,求出圆心及半径,再转化为参数方程即可;(2)将直线l 的极坐标方程转化为直角坐标方程,利用圆心到直线的距离判断直线l 与圆C 的位置关系即可.(1)解:因为圆C 的极坐标方程为2sin ρθ=,则22sin ρρθ=,则其直角坐标方程为222x y y +=,即22(1)1y x +-=,圆心为(0,1),半径为1,则圆C 的参数方程为cos 1sin x y θθ=⎧⎨=+⎩(θ为参数).(2)解:因为直线l 的极坐标方程为2cos 36πρθ⎛⎫-= ⎪⎝⎭,则2cos cos sin sin 3066ππρθθ⎛⎫+-= ⎪⎝⎭3cos sin 30ρθρθ+-=,所以直线l 330x y +-=,由(1)得圆C 的直角坐标方程为22(1)1y x +-=,圆心为(0,1),半径为1,则圆心(0,1)到直线l 22301131(3)1⨯+⨯-=+,故直线l 与圆C 相切.7.(2022·河南·开封市东信学校模拟预测(理))在平面直角坐标系xOy 中,曲线C 的参数方程为2,2x t y t =⎧⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 20ρθρθ+-=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 与曲线C 交于P ,Q 两点,且点(0,2)M ,求11||||MP MQ +的值.【答案】(1)曲线2:2C y x =;直线:20+-=l x y (2)344【解析】【分析】(1)消去参数t 即可得C 的普通方程,并用极坐标与直角坐标互化即可得直线的普通方程;(2)写出直线l 参数方程的标准形式,再与C 的普通方程联立,借助参数的几何意义得解.(1)曲线C 的参数方程为2,2x t y t=⎧⎨=⎩(t 为参数),转化为直角坐标方程为22y x =,可得22y x =;直线l 的极坐标方程为cos sin 20ρθρθ+-=,转化为直角坐标方程为20x y +-=;(2)把直线l 的方程换成参数方程,得2,2222x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),代入22y x =.得22202t t --=,∴12122,22t t t t +==-,显然12,t t 异号.由22111211||,||22MP t t t MQ t =+==,∴()212121212121212121841111342||||24t t t t t t t t MP MQ t t t t t t t t ++-+-+=+=====.8.(2022·四川·成都市锦江区嘉祥外国语高级中学模拟预测(理))在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系(取相同的单位长度),曲线1C 的极坐标方程为4cos ρθ=,曲线2C 的参数方程为222222x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数),曲线1C ,2C 相交于A 、B 两点,曲线3C 经过伸缩变换22x x y y ='+='⎧⎨⎩后得到曲线1C .(1)求曲线1C 的普通方程和线段AB 的长度;(2)设点P 是曲线3C 上的一个动点,求PAB △的面积的最小值.【答案】(1)22(2)4x y -+=,22AB =(2)45【解析】【分析】(1)利用极坐标与直角坐标的互化公式可求出1C 的普通方程,求出2C 的普通方程,然后求出圆心到直线的距离,再由圆心距,弦和半径的关系可求出AB 的长度,(2)由伸缩变换可求出曲线3C 的方程为2214xy +=,设点()2cos ,sin P ϕϕ,求出点P 到直线AB 的距离,化简后利用三角函数的性质可求出其最小值,从而可求出PAB △的面积的最小值(1)由4cos ρθ=,得24cos ρρθ=,又222x y ρ=+,cos x ρθ=,所以22(2)4x y -+=.由22222x y ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数),消去参数得4x y -=,1C 的圆心为(2,0),半径为2,则圆心到直线4x y -=的距离为2422d -==,所以()2222222AB =-=(2)曲线3C 经过伸缩变换22x x y y ='+='⎧⎨⎩后得到曲线1C ,则()()222224+-+=x y ,即曲线3C 的方程为2214x y +=,设点()2cos ,sin P ϕϕ,则点P 到直线AB 的距离为2555cos sin 4552cos sin 422d ϕϕϕϕ⎛⎫-- ⎪--⎝⎭==()5sin 4522αϕ--==25sin 5α=,5cos 5α=),故当()sin 1αϕ-=时,d 取得最小值,且min 52d =,因此,当点P 到直线AB 的距离最小时,PAB △的面积也最小,所以PAB △的面积的最小值为min 1152245222AB d ⋅⋅=⨯=.9.(2022·全国·模拟预测(理))在直角坐标系xOy 中,曲线1C 的参数方程是11cos 221sin 2x y ϕϕ⎧=+⎪⎪⎨⎪=⎪⎩(ϕ为参数).以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为13sin ()ρθρ=+∈R .(1)求曲线1C 和曲线2C 除极点外的交点的极坐标(02π)θ≤<;(2)若A ,B 分别为曲线1C 和2C 上的异于极点O 的两点,且OA OB ⊥,求OAB 面积的最大值.【答案】(1)()1,0,14π,23⎛⎫- ⎪⎝⎭31【解析】【分析】(1)求出曲线1C 的普通方程,进而求出极坐标方程,与2C 的极坐标方程联立,求出曲线1C 和曲线2C 除极点外的交点的极坐标;(2)设出,A B 两点的极坐标方程,表达出OAB 的面积,利用三角函数的有界性求出最大值.(1)曲线1C 的普通方程为221124x y ⎛⎫-+= ⎪⎝⎭,化为极坐标方程为:()2211cos sin 24ρθρθ⎛⎫-+= ⎪⎝⎭,化简得到:cos ρθ=,与13sin ()ρθρ=+∈R 联立,得:cos 13θθ=,即π1cos 32θ⎛⎫+= ⎪⎝⎭,因为02πθ≤<,所以ππ7π333θ≤+<,所以π5π33θ+=,或ππ33θ+=,解得:14π3θ=或20θ=,当4π3θ=时,此时4π1cos 32ρ==-,当0θ=时,此时cos01ρ==所以曲线1C 和曲线2C 除极点外的交点的极坐标为()1,0与14π,23⎛⎫- ⎪⎝⎭;(2)因为OA OB ⊥,①设()ππcos ,,13,22A B αααα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则()2πcos 13cos 133cos 2OAB S αααααα⎛⎫⎛⎫=⋅+=⋅=+ ⎪ ⎪⎝⎭⎝⎭ 2333cos 612α=⎭因为[]cos 1,1α∈-,所以当cos 1α=时,OAB 31+;②设()ππcos ,,13,22A B αααα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则()2πcos 13cos 133cos 2OAB S αααααα⎛⎫⎛⎫=⋅-=⋅=-+ ⎪ ⎪⎝⎭⎝⎭ 2333cos 612α⎫=-+⎪⎪⎭,因为[]cos 1,1α∈-,所以当3cos 6α=时,OAB 面积取得最大值,最大值为312;33112>OAB 31.10.(2022·吉林市教育学院模拟预测(理))以等边三角形的每个顶点为圆心,以其边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形被称为勒洛三角形,如图,在极坐标系Ox 中,曲边三角形OPQ 为勒洛三角形,且π2,6P ⎛⎫- ⎪⎝⎭,π2,6Q ⎛⎫⎪⎝⎭,以极点O 为直角坐标原点,极轴Ox 为x 轴正半轴建立平面直角坐标系xOy ,曲线1C 的参数方程为32112x t y t⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数).(1)求 PQ的极坐标方程和 OQ 所在圆2C 的直角坐标方程;(2)已知点M 的直角坐标为()0,1-,曲线1C 和圆2C 相交于A ,B 两点,求11||||MA MB -.【答案】(1)ππ2,,66ρθ⎛⎫=∈- ⎪⎝⎭;222:(3)(1)4++=C x y (2)3【解析】【分析】(1)由已知,可根据题意直接写出 PQ 的极坐标方程,并标注范围,然后求解出点P 的直角坐标,写出 OQ所在圆的直角坐标方程即可;(2)由已知,设A ,B 对应的参数分别为12,t t ,将曲线1C 的参数方程带入圆2C ,并根据根与系数关系,求解11||||MA MB -即可.(1)因为π2,6P ⎛⎫- ⎪⎝⎭,π2,6Q ⎛⎫ ⎪⎝⎭,所以 PQ 的极坐标方程:ππ2,,66ρθ⎛⎫=∈- ⎪⎝⎭,因为点P 的直角坐标是(3,1)-,所以 OQ所在圆的直角坐标方程为222:(3)(1)4++=C x y .(注: PQ的极坐标方程不标明θ的取值范围或写错扣1分)(2)设A ,B 对应的参数分别为12,t t ,将32112x y t ⎧=⎪⎪⎨⎪=-+⎪⎩代入22(3)(1)4x y ++=得:2310,0--=∆>t t 所以12123,1+==-t t t t 因为120t t <,由t 的几何意义得:121212121111113||||+-=-=+==t tMA MB t t t t t t。
1.在平面直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,以分别为与轴,轴的交点(1)写出的直角坐标方程,并求出的极坐标.(2)设的中点为,求直线的极坐标方程.2.已知曲线:(为参数),:的参数方程(为参数)(1)化,的方程为普通方程,并说明它们分别表示什么曲线.(2)若上的点对应的参数为,为上的动点,求中点到直线:(为参数)距离的最小值.3.已知曲线:(为参数),:的参数方程(为参数)(1)指出,是什么曲线,并说明与的公共点的个数.(2)若把,上各点的纵坐标都压缩为原来的一半,分别得到曲线,,写出,参数方程,与公共点的个数和与公共点个数是否相同,说明理由.4.在在平面直角坐标系中,点是椭圆上的一个动点,求的最大值.5.已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段长度.6.已知圆的参数方程为,若是圆与轴正半轴的交点,以坐标原点为极点,轴正半轴为极轴建立极坐标系,试求过点的圆的切线的极坐标方程.7.在极坐标系中,已知圆的圆心坐标为,半径,求圆的极坐标方程.8.在平面直角坐标系中,动圆,的圆心为,求的取值范围.9.已知圆锥曲线:(为参数),点、分别是圆锥曲线的左、右焦点,点为圆锥曲线上的上顶点,求经过点且垂直于直线的直线的方程.10.求圆被直线(为参数)截得的弦长.11.已知直线的参数方程(为参数),是椭圆上的任意一点,求点到直线距离的最大值.12.已知圆,直线,求过点且与直线垂直的直线的极坐标方程。
13.已知直线的参数方程为(为参数),曲线参数方程(为参数)(1)将曲线的参数方程化为普通方程.(2)若直线与曲线相交于点,两点,试求线段的长.14.已知在一个极坐标系中,定点,动点对极点和点的张角,在的延长线上取一点,使,当在极轴上方运动时,求点的轨迹的极坐标方程.15.设是曲线:(为参数,)上任意一点(1)将曲线化为普通方程.(2)求的取值范围.16.在平面直角坐标系中,圆参数方程(为参数),直线经过点,倾斜角.(1)写出直线的参数方程.(2)设与圆交于点,两点,求点到,两点的距离之积.17.在曲线:(为参数)上求一点,使它到直线:(为参数)的距离最小,并求出该点坐标和最小距离.18.以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为圆心,为半径.(1)求直线的参数方程和圆的极坐标方程.(2)试判定直线和圆的位置关系.19.已知圆参数方程(为参数),若是圆与轴正半轴的交点,以圆心为极点,轴正半轴为极轴建立极坐标系,求过点的圆的切线的极坐标方程.。
专题14坐标系与参数方程一、解答题1.(2019·安徽高考模拟(文))在平面直角坐标系中,曲线的参数方程为(其中为参数).以坐标原点为原点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(I)写出曲线的普通方程和曲线的直角坐标方程;(II)设点,分别在曲线,上运动,若,两点间距离的最小值为,求实数的值.【答案】(I),;(II)或.【解析】(I)曲线;曲线的极坐标方程为,即,将,代入,得(II)因为曲线的半径,若点,分别在曲线,上运动,,两点间距离的最小值为,即圆的圆心到直线的距离,,解得或.2.(2019·江西高考模拟(文))已知平面直角坐标系,以为极点,轴的非负半轴为极轴建立极坐标系,直线过点,且倾斜角为,圆C的极坐标方程为.(1)求圆C的普通方程和直线的参数方程;(2)设直线与圆C交于M、N两点,求的值.【答案】(1)圆的方程:,直线的参数方程为(为参数)(2)【解析】(1)圆的方程:,直线的参数方程为(为参数)(2)将直线的参数方程代入圆的方程,得:3.(2019·辽宁高考模拟(文))选修4-4:坐标系与参数方程在平面直角坐标系中,圆的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求圆的极坐标方程;(2)已知射线,若与圆交于点(异于点),与直线交于点,求的最大值.【答案】(1);(2)3【解析】(1)由圆的参数方程为消去参数,得到圆的普通方程为,即,所以其极坐标方程为,即;(2)由题意,将代入圆的极坐标方程得;将代入线的极坐标方程,得,所以,因为,所以,因此,当,即时,取得最大值3.4.(2019·湖北高考模拟(理))选修4-4:坐标系与参数方程在平面直角坐标系中,直线的普通方程是,曲线的参数方程是(为参数)。
在以为极点,轴的正半轴为极轴建立的极坐标系中,曲线的极坐标方程是。
(1)求直线及曲线的极坐标方程;(2)已知直线与曲线交于两点,直线与曲线交于两点,求的最大值。
极坐标系与参数方程考点116平面直角坐标系中的伸缩变换考点117极坐标和直角坐标的互化1.(2020全国Ⅱ文理21)已知曲线12,C C 的参数方程分别为2124cos ,:4sin x C y θθ⎧=⎪⎨=⎪⎩(θ为参数),21,:1x t tC y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将12,C C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设12,C C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解析】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=,由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭.设所求圆圆心的直角坐标为(),0a ,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=.2.(2020全国Ⅲ文理22)在直角坐标系xOy 中,曲线C 的参数方程为222,23x t t y t t⎧=--⎪⎨=-+⎪⎩(t 为参数且1t ≠),C 与坐标轴交于,A B 两点.(1)求AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【解析】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==.(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.3.(2020江苏22)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.【解析】(1)1122cos24;4sin 236ππρρρρ=∴==∴=Q Q .(2)5cos 2,4sin 4sin cos 2,sin 21[0,2),44ππρθρθθθθθπθ==∴=∴=∈∴=Q Q ,当4πθ=时ρ=;当54πθ=时0ρ=-<(舍);即所求交点坐标为当)4π.4.(2019全国II 文理22)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==由已知得||||cos23OP OA π==.设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭,经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上.所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ==即 4cos ρθ=..因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.5.(2019全国III 文理22)如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧 CD.(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【解析】(1)由题设可得,弧 ,,AB BCCD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-,所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫= ⎪⎝⎭ ,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫= ⎪⎝⎭ ,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=- ⎪⎝⎭.(2)设(,)P ρθ,由题设及(1)知若π04θ,则2cos θ=,解得π6θ=;若π3π44θ ,则2sin θ=π3θ=或2π3θ=;若3ππ4θ ,则2cos θ-=,解得5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.考点118参数方程与普通方程的互化6.(2020上海14)已知直线方程3410x y ++=的一个参数方程可以是()A .1314x ty t=+⎧⎨=-+⎩B .1413x t y t=-⎧⎨=--⎩C .1314x t y t=-⎧⎨=-+⎩D .1413x t y t=+⎧⎨=--⎩【答案】D【解析】A .参数方程可化简为4370x y --=,故A 不正确;B .参数方程可化简为3470x y --=,故B 不正确;C .参数方程可化简为4310x y +-=,故C 不正确;D .参数方程可化简为3410x y ++=,故D 正确.故选D .7.(2018全国Ⅲ)[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.【解析】(1)O 的直角坐标方程为221x y +=.当2απ=时,l 与O 交于两点.当2απ≠时,记tan k α=,则l 的方程为y kx =-.l 与O 交于两点当且仅当1<,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈.综上,α的取值范围是(,44π3π.(2)l的参数方程为cos ,(sin x t t y t αα=⎧⎪⎨=+⎪⎩为参数,44απ3π<<).设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A BP t t t +=,且A t ,B t满足2sin 10t α-+=.于是A B t t α+=,P t α=.又点P 的坐标(,)x y满足cos ,sin .P P x t y t αα=⎧⎪⎨=+⎪⎩所以点P的轨迹的参数方程是22,2cos 222x y αα⎧=⎪⎪⎨⎪=-⎪⎩(α为参数,44απ3π<<).考点119极坐标方程与参数方程的综合应用8.(2018北京文理)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =___.【答案】1【解析】利用cos x ρθ=,sin y ρθ=,可得直线的方程为0x y a +-=,圆的方程为22(1)1x y -+=,所以圆心(1,0),半径1r =,由于直线与圆相切,故圆心到直线的距离等于半径,即1=,∴1a =或1,又0a >,∴1a =+.9.(2017北京文理)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0)),则||AP 的最小值为___________.【答案】1【解析】圆的普通方程为222440x y x y +--+=,即22(1)(2)1x y -+-=.设圆心为(1,2)C ,所以min ||||211AP PC r =-=-=.10.(2017天津文理)在极坐标系中,直线4cos(106ρθπ-+=与圆2sin ρθ=的公共点的个数为_____.【答案】2【解析】直线的普通方程为210y ++=,圆的普通方程为22(1)1x y +-=,因为圆心到直线的距离314d =<,所以有两个交点.11.(2016北京文理)在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,A B 两点,则||AB =.【答案】2【解析】将cos sin 10ρθθ-=化为直角坐标方程为10x --=,将ρ=2cos θ化为直角坐标方程为22(1)1x y -+=,圆心坐标为(1,0),半径r=1,又(1,0)在直线10x -=上,所以|AB|=2r=2.12.(2015广东文理)已知直线l 的极坐标方程为2sin()24πρθ-=,点Α的极坐标为722,)4πA (,则点Α到直线l 的距离为.【答案】522【解析】由2sin()24πρθ-=得22(sin cos )22ρθθ´-=,所以1y x -=,故直线l 的直角坐标方程为10x y -+=,而点7(22,)4A π对应的直角坐标为(2,2)A -,所以点(2,2)A -到直线l :10x y -+=的距离为|221|5222++=.13.(2015安徽文理)在极坐标系中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是.【答案】6【解析】圆8sin ρθ=即28sin ρρθ=,化为直角坐标方程为22(4)16x y +-=,直线3πθ=,则tan 3θ=,化为直角坐标方程为30x y -=,圆心(0,4)到直线的距离为|4|24-=,所以圆上的点到直线距离的最大值为6.14.(2020全国Ⅰ文理21)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=.(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.【解析】(1)当1k =时,曲线1C 的参数方程为cos ,sin x t y t=⎧⎨=⎩(t 为参数),两式平方相加得221x y +=,∴曲线1C 表示以坐标原点为圆心,半径为1的圆.(2)当4k =时,曲线1C 的参数方程为44cos ,sin x t y t⎧=⎨=⎩(t 为参数),∴0,0x y ≥≥,曲线1C 的参数方程化为22cos (sin x tt y t==为参数),两式相加得曲线1C 方程为1x y +=,得1y x =-,平方得1,01,01y x x y=-+≤≤≤≤,曲线2C的极坐标方程为4cos16sin30ρθρθ-+=,曲线2C直角坐标方程为41630x y-+=,联立12,C C方程1,41630y xx y⎧=-+⎪⎨-+=⎪⎩,整理得12130x-=12=136=(舍去),11,44x y∴==,12,C C∴公共点的直角坐标为11(,)44.15.(2019全国1文理22)在直角坐标系xOy中,曲线C的参数方程为2221141txttyt⎧-=⎪⎪+⎨⎪=⎪+⎩,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin110ρθθ+=.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.【解析】(1)因为221111tt--<≤+,且()22222222141211y t txt t⎛⎫-⎛⎫+=+=⎪⎪+⎝⎭⎝⎭+,所以C的直角坐标方程为221(1)4yx x+=≠-.l的直角坐标方程为2110x++=.(2)由(1)可设C的参数方程为cos,2sinxyαα=⎧⎨=⎩(α为参数,ππα-<<).C上的点到lπ4cos113α⎛⎫-+⎪=.当2π3α=-时,π4cos113α⎛⎫-+⎪⎝⎭取得最小值7,故C上的点到l.16.(2018全国Ⅰ文理)在直角坐标系xOy中,曲线1C的方程为||2y k x=+.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线2C的极坐标方程为22cos30ρρθ+-=.(1)求2C的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.【解析】(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为22=,故0k =或43k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点.综上,所求1C 的方程为4||23y x =-+.17.(2018全国Ⅱ文理)在直角坐标系xOy 中,曲线C 的参数方程为2cos ,4sin ,=⎧⎨=⎩x θy θ(θ为参数),直线l 的参数方程为1cos 2sin =+⎧⎨=+⎩x t αy t α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.【解析】(1)曲线C 的直角坐标方程为221416+=x y .当cos 0α≠时,l 的直角坐标方程为tan 2tan αα=⋅+-y x ;当cos 0α=时,l 的直角坐标方程为1=x .(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos sin )80ααα+++-=t t .①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120+=t t .又由①得1224(2cos sin )13cos ααα++=-+t t ,故2cos sin 0αα+=,于是直线l 的斜率tan 2α==-k .18.(2018江苏)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.【解析】因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过(4,0)A ,倾斜角为π6,所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB=π6,连结OB ,因为OA 为直径,从而∠OBA=π2,所以π4cos 6AB ==.因此,直线l 被曲线C截得的弦长为.19.(2017全国Ⅰ文理)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l,求a .【解析】(1)曲线C 的普通方程为2219x y +=.当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩,从而C 与l 的交点坐标为(3,0),2124(,2525-.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l的距离为d =.当4a -≥时,d=,所以8a =;当4a <-时,d=16a =-.综上,8a =或16a =-.20.(2017全国Ⅱ文理)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,3π,点B 在曲线2C 上,求OAB ∆面积的最大值.【解析】(1)设P 的极坐标为(,)ρθ(0)ρ>,M 的极坐标为1(,)ρθ1(0)ρ>.由椭圆知||OP ρ=,14||cos OM ρθ==.由||||16OM OP ⋅=得2C 的极坐标方程4cos ρθ=(0)ρ>,因此2C 的直角坐标方程为22(2)4(0)x y x -+=≠.(2)设点B 的极坐标为(,)B ρα(0)B ρ>.由题设知||2OA =,4cos B ρα=,于是OAB ∆面积1||sin 2B S OA AOB ρ=⋅⋅∠4cos |sin()|3παα=-32|sin(2|32πα=--2+≤当12πα=-时,S取得最大值2+OAB ∆面积的最大值为2+.21.(2017全国Ⅲ文理)在直角坐标系xOy 中,直线1l 的参数方程为2x ty kt =+⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x mm y k =-+⎧⎪⎨=⎪⎩(m 为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l :(cos sin )ρθθ+-0=,M 为3l 与C 的交点,求M 的极径.【解析】(1)消去参数t 得1l 的普通方程():l y k x =-12,消去参数m 得2l 的普通方程():l y x k=+212.设(,)P x y ,由题设得()()y k x y x k ⎧=-⎪⎨=+⎪⎩212,消去k 得()x y y -=≠2240,所以C 的普通方程为()x y y -=≠2240.(2)C 的极坐标方程为()cos sin ρθθ-=2224(),θπθπ≠0<<2,联立()()cos sin cos sin ρθθρθθ⎧-=⎪⎨⎪⎩2224+得()cos sin cos sin θθθθ-=2+,故tan θ=-13,从而cos sin θθ2291=,=1010,代入()cos sin ρθθ222-=4得ρ2=5,所以交点M22.(2017江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为82x tty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【解析】直线l 的普通方程为280x y -+=.因为点P 在曲线C上,设2(2,)P s ,从而点P 到直线l的的距离22d ==s =min 455d =.因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l的距离取到最小值5.23.(2016全国I 文理)在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :4cos ρθ=.(I)说明1C 是哪种曲线,并将1C 的方程化为极坐标方程;(II)直线3C 的极坐标方程为0=a θ,其中0a 满足0tan =2a ,若曲线1C 与2C 的公共点都在3C 上,求a .【解析】(1)cos 1sin x a t y a t=⎧⎨=+⎩(t 均为参数),∴()2221x y a +-=①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-=.∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-=,即为1C 的极坐标方程.(2)24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+= ,,224x y x ∴+=,即()2224x y -+=②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C ,①—②得:24210x y a -+-=,即为3C ,∴210a -=,∴1a =.24.(2016全国II 文理)在直角坐标系xOy 中,圆C 的方程为()22625x y ++=.(I)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B 两点,10AB =,求l 的斜率.【解析】(Ⅰ)整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.(Ⅱ)记直线的斜率为k ,则直线的方程为0kx y -=,由垂径定理及点到直线距离公式知:226102521kk ⎛⎫-=- ⎪ ⎪+⎝⎭,即22369014k k =+,整理得253k =,则153k =±.25.(2016全国III 文理)在直角坐标系xOy 中,曲线1C 的参数方程为3cos sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+=.(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.【解析】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=.(Ⅱ)由题意,可设点P 的直角坐标为3,sin )αα,因为2C 是直线,所以||PQ 的最小值,即为P 到2C的距离()d α的最小值,|3cos sin 4|()2|sin()2|32d ααπαα+-==+-.当且仅当2()6k k Z παπ=+∈时,()d α2,此时P 的直角坐标为31(,)22.26.(2016江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为()11,23,2x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长.【解析】椭圆C 的普通方程为2214y x +=,将直线l 的参数方程11232x t y t⎧=+⎪⎪⎨⎪=⎪⎩,代入2214y x +=,得223()12(1)124t ++=,即27160t t +=,解得10t =,2167t =-,所以1216||7AB t t =-=.27.(2015全国Ⅰ文理)在直角坐标系xOy 中,直线1C :2x =-,圆2C :22(1)(2)1x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.【解析】(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=222ρ2,|MN|=1ρ-2ρ2,因为2C 的半径为1,则2C MN 的面积o121sin 452⨯=12.28.(2015全国Ⅱ文理)在直角坐标系xOy 中,曲线1C :cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数,t ≠0)其中0απ<≤,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :2sin ρθ=,3C :23ρθ=.(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 的最大值.【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C的直角坐标方程为220x y +-=.联立222220,0,x y y x y ⎧+-=⎪⎨+-=⎪⎩解得0,0,x y =⎧⎨=⎩或3,23,2x y ⎧=⎪⎪⎨⎪=⎪⎩所以2C 与1C 交点的直角坐标为(0,0)和33,22.(Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B的极坐标为,)αα.所以2sin AB αα=-4in(3s πα=-,当56πα=时,AB 取得最大值,最大值为4.29.(2015江苏)已知圆C的极坐标方程为2sin(404πρθ+--=,求圆C 的半径.【解析】以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xoy .圆C的极坐标方程为2sin cos 4022ρθθ⎛⎫+--= ⎪ ⎪⎝⎭,化简,得22sin 2cos 40ρρθρθ+--=.则圆C 的直角坐标方程为222240x y x y +-+-=,即()()22116x y -++=,所以圆C.30.(2015陕西文理)在直角坐标系xOy 中,直线l 的参数方程为13232x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρθ=.(Ⅰ)写出⊙C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.【解析】(Ⅰ)由2,sin ρθρθ==得,从而有(2222+,+3x y x y =-=所以.(Ⅱ)设13(3t,t),22P +又,则|PC |==,故当t =0时,|PC |取最小值,此时P 点的直角坐标为(3,0).31.(2014全国Ⅰ文理)已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.【解析】2cos .().3sin .x y θθθ=⎧⎨=⎩(I)曲线C的参数方程为为参数60.l x y +-=直线的普通方程为2……5分(Ⅱ)cos sin l θθ曲线C上任意一点P(2.3)到的距离为3sin 6.d θθ=+-4)6,tan .sin 303d PA θααα==+-=︒则其中为锐角,且sin 5PA θα当(+)=-1时,取得最大值,最大值为25sin()1.5PA θα+=当时,取得最小值,最小值为32.(2014全国Ⅱ文理)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.【解析】(I)C 的普通方程为22(1)1(01)x y y -+=≤≤,可得C 的参数方程为1cos ,sin ,x t y t =+⎧⎨=⎩(t 为参数,0t x ≤≤).(Ⅱ)设D (1cos ,sin )t t +.由(I)知C 是以G(1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与t 垂直,所以直线GD 与t 的斜率相同,tan 3t t π==.故D 的直角坐标为(1cos,sin 33ππ+,即33(,22.33.(2013全国Ⅰ文理)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.(Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤≤).【解析】将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为4π),(2,2π.34.(2013全国Ⅱ文理)已知动点P ,Q 都在曲线C :()2cos 2sin x y βββ=⎧⎨=⎩为参数上,对应参数分别为βα=与2βα=(02απ<<)M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【解析】(Ⅰ)由题意有()()2cos ,2sin ,2cos 2,2sin 2,P Q αααα因此()cos cos 2,sin sin 2M αααα++,M 的轨迹的参数方程为cos cos 2,sin sin 2,x y αααα=+⎧⎨=+⎩(02απ<<).(Ⅱ)M 点到坐标原点的距离d ==(02απ<<),当απ=时,0d =,故M 的轨迹过坐标原点.35.(2012全国文理)已知曲线1C 的参数方程是⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,且A 、B 、C 、D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PD PC PB P A +++的取值范围.【解析】(1)点,,,A B C D 的极坐标为5411(2,),(2,),(2,),(2,)3636ππππ,点,,,A B C D 的直角坐标为(1,3),(3,1),(1,3),(3,1)----.(2)设00(,)P x y ;则002cos ()3sin x y ϕϕϕ=⎧⎨=⎩为参数,222222004416t PA PB PC PD x y =+++=++23220sin [32,52]ϕ=+∈.36.(2011全国文理)在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足2OP OM =uuu v uuuv,P 点的轨迹为曲线2C (Ⅰ)求2C 的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .【解析】(I)设(,)P x y ,则由条件知M(,22x y).由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩,从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数),(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=.射线3πθ=与1C 的交点A 的极径为14sin 3πρ=,射线3πθ=与2C 的交点B 的极径为28sin 3πρ=.所以21||||23AB ρρ-==。
极坐标与参数方程例题示范(分题型)极坐标与参数方程是选修内容的必考题型,这里按照课本及高考考试说明,归纳总结为四类题型。
题型一。
极坐标与直角坐标的互化。
互化原理(三角函数定义)、数形结合。
1.在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧-=+-=t y t x 13(t 为参数),以O 为极点,x轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位,曲线C 的极坐标方程为0cos 2=+θρ.(1)把曲线C 的极坐标方程化为普通方程;(2)求直线l 与曲线C 的交点的极坐标(πθρ20,0<≤≥).试题解析:(1)由0cos 2=+θρ得θρcos 2-=,两边同乘以ρ,得x y x 222-=+; (2)由直线l 的参数方程为⎩⎨⎧-=+-=ty tx 13(t 为参数),得直线的普通方程为02=++y x ,联立曲线C 与直线l 的方程得,⎩⎨⎧-=-=11y x 或⎩⎨⎧=-=02y x ,化为极坐标为)45,2(π或),2(π.考点:极坐标方程与直角坐标方程的互化,直线参数方程与普通方程的互化. 考点:cos ,sin x y ρθρθ==,222x y ρ=+. 2.在极坐标系中,设圆C经过点6π⎛⎫P ⎪⎝⎭,圆心是直线sin 32πρθ⎛⎫-= ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.试题解析:法一:6π⎛⎫P ⎪⎝⎭直线sin 32πρθ⎛⎫-=⎪⎝⎭它与x 轴的交点也就是圆心为()1,0所以圆的方程为()2211x y -+=,得2220x y x +-=所以,圆的极坐标方程为:2cos ρθ=法二:因为圆心为直线2sin sin 33ππρθ⎛⎫-= ⎪⎝⎭与极轴的交点,所以令0θ=,得1ρ=,即圆心是()1,0 又圆C经过点6π⎫P ⎪⎭,∴圆的半径1r ==,∴圆过原点,∴圆C 的极坐标方程是2cos ρθ=.考点:(1)转化为直角坐标,求出所求方程,再转化为极坐标;(2)先求圆心坐标,再运用余弦定理求半径,最后借助过原点写出圆的极坐标方程.题型二。
备战2022届高考三轮解答题系列 --------极坐标与参数方程(2)题型解法篇(3)圆锥曲线的参数方程的应用题型一、圆的参数方程的应用【罗师导航】圆的参数方程可理解成动点坐标【例1-1】在平面直角坐标系xOy 中,直线l 的参数方程为11232x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为22sin 44πρρθ⎛⎫=⋅+- ⎪⎝⎭,若直线l 与曲线C 交于A ,B 两点.(1)求AB 的值;(2)若点P 是曲线C 上不同于A ,B 的动点,求PAB △面积的最大值. 【答案】133913【解析】(1)242sin 44πρρθ⎛⎫=⋅+- ⎪⎝⎭可化为:24sin 4cos 4ρρθρθ=+-,将cos sinx y代入,得曲线C 的直角坐标方程为:224440x x y y -+-+=.将直线l 的参数方程为11232x t y ⎧=+⎪⎪⎨⎪=⎪⎩,代入化简可得:230t t --=,设点A ,B 所对应的参数方程分别为1t ,2t ,满足0∆>,由12121,3,t t t t +=⎧⎨⋅=-⎩由直线参数的几何意义得,()2121212t 414313AB t t t t t =-=+-=+⨯=(2)将直线l 3230x y -+ , 设()22cos ,22sin P θθ++,得点P 到直线AB 的距离为:()()322cos 22sin 23323cos 2sin d θθθθ+-++-+-34sin 334d πθ⎛⎫+- ⎪+⎝⎭由(1)知13AB =d 取最大值时,1343913132PAB S +=△,所以PAB △3913【能力达标检测】【1-1】 以直角坐标系的原点为极点,x 轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位. 已知直线l 的参数方程为{x =5−√32t y =−√3+12t (t 为参数),圆C 的极坐标方程为ρ=4cos (θ−π3).(1)求直线l 的倾斜角和圆C 的直角坐标方程; (2)若点P(x, y)在圆C 上,求x +√3y 的取值范围.【解析】(1)由直线l 的参数方程为{x =5−√32t y =−√3+12t(t 为参数),可得直线l 的直角坐标方程为y +√3=−√33(x −5),即x +√3y −2=0,则直线l 过(5, −√3),且倾斜角为5π6.由ρ=4cos (θ−π3),可得ρ=2cos θ+2√3sin θ,两边同时乘以ρ,得ρ2=2ρcos θ+2√3ρsin θ,即(x −1)2+(y −√3)2=4.(2)由(1)可得,圆的参数方程为{x =1+2cos θ,y =√3+2sin θ,则x +√3y =2√3sin θ+2cos θ+4=4sin (θ+π6)+4,又−1≤sin (θ+π6)≤1,所以0≤x +√3y ≤8,即x +√3y ∈[0,8].【1-2】以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是ρ=2√2sin (θ+π4).(1)在直角坐标系xOy 中,求曲线C 的参数方程;(2)在直角坐标系xOy 中,已知A(−1,0),B(0,1),P 为曲线C 上任意一点,求AP →⋅BP →的取值范围. 【答案】解:(1)已知ρ2=2√2ρsin (θ+π4)=2ρsin θ+2ρcos θ, 由{x =ρcos θy =ρsin θ,得x 2+y 2=2y +2x ,即(x −1)2+(y −1)2=2,所以参数方程为{x =1+√2cos αy =1+√2sin α,(α为参数).(2)AP →⋅BP →=4+3√2cos α+√2sin α=4+2√5sin (α+φ),其中tan φ=3, 所以AP →⋅BP →的取值范围是[4−2√5,4+2√5].题型二、椭圆的参数方程的应用【罗师导航】椭圆的参数方程可理解成动点坐标【例2-1】(点到线的距离)在直角坐标系xOy 中,曲线C 的方程为x 212+y 24=1,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为√2ρcos (θ−π4)=a (a >0). (1)求直线l 的直角坐标方程;(2)已知P 是曲线C 上的一动点,过点P 作直线l 1交直线l 于点A ,且直线l 1与直线l 的夹角为45∘,若|PA|的最大值为6,求a 的值.【解析】(1)由√2ρcos (θ−π4)=a ,得√2ρ(cos θcos π4+sin θsin π4)=a ,∴ρcos θ+ρsin θ=a , ∵x =ρcos θ,y =ρsin θ,∴直线l 的直角坐标方程为x +y =a ,即x +y −a =0.(2)依题意可知曲线C 的参数方程为:{x =2√3cos α,y =2sin α(α为参数),设P(2√3cos α,2sin α),则点P 到直线l 的距离为:d =|2√3cos α+2sin α−a|√2=|4(√32cos α+12sin α)−a|√2=|4sin (α+π3)−a|√2.∵a >0,∴当sin (α+π3)=−1时,d max =√2.依题意得|PA |=√2d ,∴|PA |的最大值为√2d max =6,即√2×√2=6.∵a >0,∴解得a =2.【例2-2】(普通方程坐标表达式)已知曲线C 的极坐标方程是2ρ=,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为1{23x t y t=+= (t 为参数).(1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)设曲线C 经过伸缩变换{ 12x xy y='='后得到曲线C ',设(),M x y 为C '上任意一点,求2232x xy y -+的最小值,并求相应的点M 的坐标.【答案】(1)224x y +=,直线L 3320x y -= (2)1.312M ⎛⎫ ⎪ ⎪⎝⎭,或312M ⎛-- ⎝⎭, 解析:(1)2ρ=,故圆C 的方程为224x y+=.直线l 的参数方程为1{23x t y t=+=, ∴直线l 方程3320x y --=.(2)由{ 12x xy y='='和224x y +=得C ':2214x y +=.设点M 为2{ x cos y sin θθ==,则223232cos 23x xy y πθ⎛⎫+=++ ⎪⎝⎭,所以当31M ⎛ ⎝⎭,或31M ⎛- ⎝⎭时,原式的最小值为1.【能力达标检测】【2-1】在平面直角坐标系中,直线l 的参数方程为102x ty t=⎧⎨=-⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为223645cos ρθ=+. (1)求直线l 的普通方程以及曲线C 的参数方程;(2)过曲线C 上任意一点M 作与直线l 的夹角为60︒的直线,交l 于点N ,求MN 的最小值. 【答案】(1)210x y +-=0,2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数);(2215【详解】(1)将直线l 的参数方程消去参数t ,可得直线l 的普通方程为210x y +-=0.将222p x y =+,cos x ρθ=代入曲线C 的极坐标方程,可得曲线C 的直角坐标方程为229436x y +=,即22149x y +=故曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)(2)设()2cos ,3sin M ϕϕ,则M 到l 的距离55d ==,其中tan 43r =.如图,过点M 作MP l ⊥于点P ,则d MP =,则在Rt MNP △中,3sin602||dMN ︒==.当()sin 1r ϕ+=时,d 5故MN 5215=【2-2】在平面直角坐标系中,曲线C 的参数方程为2cos (3x y ααα=⎧⎪⎨=⎪⎩为参数),以原点为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为cos 2sin 4ρθρθ+=. (1)求曲线C 的普通方程及直线l 的直角坐标方程;(2)设直线l 与坐标轴交于,A B 两点,点P 在椭圆C 上运动,求PAB △面积的最大值.【答案】(1)22143x y +=;24x y +=.(2)8.【解析】曲线C 的参数方程为2cos (3x y ααα=⎧⎪⎨=⎪⎩为参数), 消去参数,可得曲线C 普通方程为22143x y +=,直线l 的极坐标方程为cos 2sin 4ρθρθ+=,根据极坐标与直角坐标的互化公式cos sin x y ρθρθ=⎧⎨=⎩ ,可得直线l 的直角坐标方程为24x y +=.(2)由直线l 的方程为24x y +=,当0x =时,2y =;当0y =时,4x =,即(0,2),(4,0)A B ,所以222(4)25AB =+-=(2cos 3)P αα,利用点P 到直线l 的距离为222cos 23sin 44cos()4512d αααθ+---==+当cos()1αθ-=-时,max 5d =所以PAB △面积的最大值为max 11258225PABS AB d =⨯⋅=⨯=.【2-3】已知曲线C 的极坐标方程为ρ2=364cos 2θ+9sin 2θ,(1)若以极点为原点,极轴所在的直线为x 轴,求曲线C 的直角坐标方程; (2)若P(x, y)是曲线C 上的一个动点,求3x +4y 的最大值. 解:(1)曲线C 的极坐标方程为ρ2=364cos 2θ+9sin 2θ,x 29+y 24=1;(2)设P(3cos θ, 2sin θ),则3x +4y =9cos θ+8sin θ=√145sin (θ+φ) 当sin (θ+φ)=1时,3x +4y 的最大值为√145【2-4】已知直线l 的参数方程为2222x m t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,且曲线C 的左焦点F 在直线l 上. (1)若直线l 与曲线C 交于,A B 两点,求FA FB ⋅的值;(2)求曲线C 的内接矩形的周长的最大值. 【答案】(1)2;(2)16.试题解析:(1)已知曲线C 的标准方程为221124x y +=,则其左焦点为()22,0-,则22m =-l 的参数方程2222x y ⎧=-⎪⎪⎨⎪⎪⎩与曲线C 的方程221124x y +=联立,得2220t t --=,则122FA FB t t ⋅==.(2)由曲线C 的方程为221124x y +=,可设曲线C 上的动点()23,2sin P θθ,则以P 为顶点的内接矩形周长为()4232sin 16sin 032ππθθθθ⎛⎫⎛⎫⨯+=+<< ⎪⎪⎝⎭⎝⎭,因此该内接矩形周长的最大值为16. 【2-5】在直角坐标系xOy 中,曲线1C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t 为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 的方程为213sin ρθ=+.(1)求曲线1C 、2C 的直角坐标方程;(2)若()00,B x y 为曲线2C 上的任意一点,求00232x y --的最小值.【答案】(1)1C :2320x y --=,2C :2214x y +=;(22. 【详解】(1)消去参数t 得1C :2320x y --=,因为213sin ρθ=+,所以22413sin ρθ=+.所以2223sin =4ρρθ+.所以2C :2214x y +=.(3)设()2cos ,sin B θθ,则0022322cos sin 32x y θθ=----=22324πθ⎛⎫-- ⎪⎝⎭(4)当且仅当24k πθπ=-(k Z ∈)时,002322x y --= 【2-6】已知曲线C 1的方程为x 210+y 26=1,曲线C 2的参数方程为{x =12t,y =−8−√32t,(t 为参数). 求C 1的参数方程和C 2的普通方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ|的最小值. 解:(1)曲线C 1的参数方程为{x =√10cos θ,y =√6sin θ,(θ为参数).由曲线C 2的参数方程为{x =12t,y =−8−√32t,(t 为参数),得−√3x =y +8,即曲线C 2的普通方程为√3x +y +8=0.(2)设P(√10cos θ,√6sin θ),点P 到直线C 2的距离为d ,则|PQ|的最小值即为d 的最小值, 因为d =|√30cos θ+√6sin θ+8|2=|3sin (θ+φ)+4|,其中tan φ=√5,当sin (θ+φ)=−1时,d 的最小值为1,所以|PQ|的最小值为1.【2-7】在平面直角坐标系xoy 中,以坐标原点为极点,以x 轴的非负半轴为极轴,建立极坐标系,已知直线l 的参数方程为2x ty t⎧=⎪⎨=⎪⎩(t 为参数),圆C 的极坐标方程是1ρ=.(1)求直线l 与圆C 的公共点个数;(2)在平面直角坐标系中,圆C 经过伸缩变换2x xy y=⎧⎨=''⎩得到曲线C ',设(),M x y 为曲线C '上一点,求224x xy y ++的最大值,并求相应点M 的坐标.【答案】(1)1;(2)5,222⎛⎝或2,22⎛- ⎝. 【详解】(1)直线l 的参数方程2x ty t⎧=+⎪⎨=⎪⎩(t 为参数)化为普通方程是20x y --=,圆C 的极坐标方程1ρ=化为直角坐标方程是221x y +=;∵圆心()0,0到直线l 的距离为()22002111d --==+-,等于圆的半径r ,∴直线l 与圆C 的公共点的个数是1;(2)圆C 的参数方程是cos sin x y θθ=⎧⎨=⎩,()02θπ≤<;∴曲线C '的参数方程是cos 2sin x y θθ=⎧⎨=⎩,()02θπ≤<;∴222244cos cos 2sin 4sin 4sin 2x xy y θθθθθ++=+⋅+=+;当4πθ=或54πθ=时,224x xy y ++取得最大值5,此时M 的坐标为222⎛ ⎝或222⎛- ⎝. 【2-8】平面直角坐标系中, 已知曲线221:1C x y +=,将曲线1C 上所有点横坐标, 纵坐标分别伸长为原来23, 得到曲线2C . (1)试写出曲线2C 参数方程;(2)在曲线2C 上求点P ,使得点P 到直线:50l x y +-=的距离最大, 并求距离最大值.【答案】(1)2(3x y θθθ⎧=⎪⎨=⎪⎩为参数).(2)max 510d =P 点的坐标为2535⎛ ⎝⎭. 试题解析:(1)曲线1C 的参数方程为cos (sin x y θθθ=⎧⎨=⎩为参数), 由'2'3x x y y ⎧=⎪⎨=⎪⎩得'2'3x y θθ⎧=⎪⎨=⎪⎩,2C ∴的参数方程为2(3x y θθθ⎧=⎪⎨=⎪⎩为参数). (2)由(1) 得点()2cos ,3sin Pθθ,点P 到直线l 的距离()max 2cos 3sin 455cos 45255510tan 2232d d θθθϕϕ+---==,此时P 点的坐标为2535⎛ ⎝⎭.题型三、双曲线的参数方程的应用【罗师导航】双曲线的参数方程可理解成动点坐标【例3-1】曲线C :{x =12(t +1t ),y =12(t −1t ) (t 为参数且t ∈R ),直线l 的极坐标方程为tan θ=2(ρ∈R ). (1)求曲线C 和直线l 的直角坐标方程;(2)若P 为曲线C 上一点,求P 到直线l 距离的最小值.解:(1)由x =12(t +1t ),y =12(t −1t ),两边平方作差得:x 2−y 2=1; 由tan θ=yx ,且tan θ=2,得y =2x .所以曲线C 的直角坐标方程为x 2−y 2=1,直线l 的直角坐标方程为y =2x . (2)设P (12(t +1t ),12(t −1t )),由点到直线的距离公式可知:d(P,l)=|t+1t −12(t−1t)|√5=|12t+32t|√5≥√3√5=√155,当且仅当t =±√3,取等号,所以P 到直线l 距离的最小值为√155.【能力达标检测】【3-1】在平面直角坐标系xOy 中,曲线C 的参数方程e e ,e e ,t t t t x y --⎧=+⎨=-⎩(t 为参数),在以原点О为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为()3sin 5cos 26ρθθ-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 距离的最小值.【答案】(1)224(2)x y x -=≥;53260x y -+=34【解析】(1)由e e ,e e ,t t t t x y --⎧=+⎨=-⎩得222222e e 2,e e 2,t t t tx y --⎧=++⎨=+-⎩消去参数t 得224x y -=, 又e e 2t t x -=+≥,所以曲线C 的普通方程为224(2)x y x -=≥. 由(3sin 5cos )26ρθθ-=得5cos 3sin 260ρθρθ-+=, 所以直线l 的直角坐标方程为53260x y -+=.(2)设点P 的坐标为(e e ,e e )t t t t --+-,则点P 到直线l 的距离为2222e 8e 2634343453t tt t t t t t d ----⋅+==+当2e 8e t t -=,即e 2t =,ln 2t =,可以取到上述“=”,此时点P 为53,22⎛⎫⎪⎝⎭.所以曲线C 上的点到直线l 34【3-2】在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =3+t,y =1+2t (t 为参数),曲线C 2的参数方程为{x =√3cos θ,y =√3tan θ(θ为参数,且θ∈(π2,3π2)).(1)求曲线C 1和C 2的普通方程;(2)若A ,B 分别为曲线C 1,C 2上的动点,求|AB|的最小值.解:(1)因为曲线C 1的参数方程为{x =3+t,y =1+2t (t 为参数),消去参数t ,得2x −y −5=0.所以曲线C 1的方程为2x −y −5=0.因为曲线C 2的参数方程为{x =√3cos θ,y =√3tan θ(θ为参数,且θ∈(π2,3π2)),则由x =√3cos θ,得cos θ=√3x,代入y =√3tan θ得,sin θ=yx .消去参数θ,得x 2−y 2=3.因为θ∈(π2,3π2),所以x <0,所以曲线C 2的方程为x 2−y 2=3(x <0).(2)因为点A ,B 分别为曲线C 1,C 2上的动点,设直线2x −y +b =0与曲线C 2相切,由{2x −y +b =0,x 2−y 2=3消去y 得3x 2+4bx +b 2+3=0,所以Δ=(4b )2−4×3×(b 2+3)=0,解得b =±3.因为x <0,所以b =3.因为直线2x −y −5=0与2x −y +3=0间的距离为:d =√22+(−1)2=8√55.所以AB 的最小值8√55.题型四、抛物线的参数方程的应用【罗师导航】抛物线的参数方程可化为斜率【例4-1】在平面真角坐标系xOy 中,曲线1C 的参数方程为222x t y t⎧=⎨=⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2sin cos a ρθθ=+.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)若曲线1C 与曲线2C 交于M ,N 两点,直线OM 和ON 的斜率分别为1k 和2k ,求12k k +的值. 【答案】(1)sin cos 2a ρθρθ+=,20ax y +-=;(2)1解:(1)由222x t y t ⎧=⎨=⎩,(t 为参数),消去参数t ,得22y x =,即1C 的普通方程为22y x =,由2sin cos a ρθθ=+,得()sin cos 2a ρθθ+=,即sin cos 2a ρθρθ+=,将cos sin x y ρθρθ=⎧⎨=⎩代入,得20ax y +-=,即2C 的直角坐标方程为20ax y +-=.(2)由222x t y t ⎧=⎨=⎩(t 为参数),得()10y x x t =≠,则1t 的几何意义是抛物线22y x =上的点(原点除外)与原点连线的斜率.由题意知0a ≠,将222x t y t⎧=⎨=⎩,(t 为参数)代入20ax y +-=,得210at t +-=.由0a ≠,且140a ∆=+>得14a >-,且0a ≠.设M ,N 对应的参数分别为1t 、2t ,则121t t a +=-,121t t a =-,所以12121212111t t k k t t t t ++=+==. 【能力达标检测】【4-1】在平面直角坐标系xOy 中,曲线1C 的参数方程为24x ty t=⎧⎨=⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin cos m ρθθ=+.(Ⅰ)求1C 的普通方程和2C 的直角坐标方程; (Ⅱ)若1C 与2C 交于P ,Q 两点,求11OQOP k k +的值. 【答案】(Ⅰ)1C 的普通方程为214x y =;2C 的直角坐标方程20x mx +-=;(Ⅱ)18. 【详解】(1)由24x t y t =⎧⎨=⎩(t 为参数),消去参数t ,得214x y =,即1C 的普通方程为214x y =.由2sin cos m ρθθ=+,得sin cos 2m ρθρθ+=,将cos x ρθ=,sin y ρθ=代入,得20my x +-=,即2C 的直角坐标方程20my x +-=.(2)由24x t y t =⎧⎨=⎩(t 为参数),可得4y t x =(0x ≠),故4t 的几何意义是抛物线214x y =上的点(原点除外)与原点连线的斜率.由题意知,当0m =时,2:2C x =,则1C 与2C 只有一个交点()216,不符合题意,故0m ≠.把24x ty t =⎧⎨=⎩(t 为参数)代入20x my +-=,得2420mt t +-=,设此方程的两根分别为1t ,2t , 由韦达定理可得,1214t t m +=-,1212t t m=-,所以12121211111141444842OP OQ t t m k k t t t t m -++=+===⎛⎫⨯- ⎪⎝⎭.【4-2】在平面直角坐标系xOy 中,曲线C 的参数方程为2,x u y u =⎧⎨=⎩(u 为参数);以原点O 为极点,x 轴的非负半轴为极轴且取相同的长度单位建立极坐标系,直线l 的极坐标方程为()πsin 03a a ρθ⎛⎫-=> ⎪⎝⎭.(1)求直线l 和曲线C 的直角坐标方程;(2)设直线l 和曲线C 交于A ,B 两点,直线OA ,OB ,AB 的斜率分别为1k ,2k ,k ,求证:12k k k +=. 【答案】(1)直线l 320x y a -+=,曲线C 的直角坐标方程为2x y =;(2)证明见解析.【分析】(1)由cos sin x y ρθρθ=⎧⎨=⎩代入πsin 3a ρθ⎛⎫-= ⎪⎝⎭中,可得直线l 的直角坐标方程,消参可得曲线C 的直角坐标方程.(2)将曲线C 的参数方程2,x u y u=⎧⎨=⎩代入直线l 320x y a -+=,得2320u u a -=.由一元二次方程的根与系数的关系和参数的意义可得证.【详解】(1)解:由πsin 3a ρθ⎛⎫-= ⎪⎝⎭,得13sin cos 2a ρθρθ⋅-=,则直线l 320x y a -+=;曲线C 的直角坐标方程为2x y =.(2)证明:将2,x u y u=⎧⎨=⎩320x y a -+=,得2320u u a -=.由直线l 和曲线C 交于A 、B 两点且0a >,得380a ∆=+>; 设方程2320u u a -=的两根分别为1u ,2u ,则123u u += 而yu x=表示曲线C 上的点(),x y 与原点O 连线的斜率,所以11k u =,22k u =, 所以12123k k u u +=+=l 的斜率为3k =12k k k +=.。
极坐标参数方程1.(2024新课标Ⅲ文数)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 改变时,P 的轨迹为曲线C . (1)写出C 的一般方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ,M 为l 3与C 的交点,求M 的极径.2.(2024新课标Ⅲ理数)[选修44:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 改变时,P 的轨迹为曲线C . (1)写出C 的一般方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ,M 为l 3与C 的交点,求M 的极径.3.(2024新课标Ⅱ文)[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满意||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为π(2,)3,点B 在曲线2C 上,求OAB △面积的最大值. 4(2024新课标Ⅱ理).[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=. (1)M 为曲线1C 上的动点,点P 在线段OM 上,且满意||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.5.(2024新课标Ⅰ文数)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l a.6.(2024新课标Ⅰ理数)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.7(2024天津理)在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________.8[选修4-4:坐标系与参数方程](本小题满分10分) 在平面直角坐标系中,已知直线的参考方程为(为参数),曲线的参数方程为(为参数).设为曲线上的动点,求点到直线的距离的最小值. 9(2024北京理)在极坐标系中,点A 在圆上,点P 的坐标为(1,0),则|AP |的最小值为___________. xOy l 82x t t y =-+⎧⎪⎨=⎪⎩tC 22x s y ⎧=⎪⎨=⎪⎩s P C P l 22cos 4sin 40ρρθρθ--+=。
极坐标系与参数方程高考题练习2014年一.选择题1. (2014)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩〔θ为参数〕的对称中心〔 B 〕.A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上2.(2014)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取一样的长度单位。
直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为〔 D 〕〔A 〕14 〔B 〕214 〔C 〕2 〔D 〕223(2014) (2).〔坐标系与参数方程选做题〕假设以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为〔 〕 A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤ D.cos sin ,04πρθθθ=+≤≤【答案】A 【解析】1y x =-()01x ≤≤10sin cos 2πρθθθ⎛⎫∴=≤≤ ⎪+⎝⎭所以选A 。
二.填空题1. (2014)〔选修4-4:坐标系与参数方程〕曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y tx ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.2. (2014)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,〔α为参数〕交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________. 3 (2014)直线l 的参数方程为⎩⎨⎧+=+=t y t x 32〔t 为参数〕,以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】4 (2014)曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是。
【答案】 31【解析】.C (2014)〔坐标系与参数方程选做题〕在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是C5 (2014**)在以O 为极点的极坐标系中,圆θρ4sin =和直线a =θρsin 相交于,A B 两点.假设ΔAOB 是等边三角形,则a 的值为___________. 解:3 圆的方程为2224xy ,直线为y a .因为AOB 是等边三角形,所以其中一个交点坐标为,代入圆的方程可得3a .6. (2014)〔坐标与参数方程选做题〕在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为*轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__三.解答题1.(2014新课标I)〔本小题总分值10分〕选修4—4:坐标系与参数方程曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩〔t 为参数〕. (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;〔Ⅱ〕过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.【解析】:.(Ⅰ) 曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎨=⎩〔θ为参数〕,直线l 的普通方程为:260x y +-=………5分〔Ⅱ〕〔2〕在曲线C 上任意取一点P (2cos θ,3sin θ)到l 的距离为54cos 3sin 65d θθ=+-, 则()025||5sin 6sin 305d PA θα==+-,其中α为锐角.且4tan 3α=. 当()sin 1θα+=-时,||PA 225; 当()sin 1θα+=时,||PA 取得最小值,最小值为55. …………10分 2. (2014新课标II)〔本小题总分值10〕选修4-4:坐标系与参数方程在直角坐标系*oy 中,以坐标原点为极点,*轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. 〔Ⅰ〕求C 的参数方程;〔Ⅱ〕设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据〔Ⅰ〕中你得到的参数方程,确定D 的坐标.3. 〔2014〕〔本小题总分值10分〕选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. 〔1〕写出C 的参数方程;〔2〕设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,*轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.【答案】 〔1〕π∈[0,θθsin 2,θcos ,==y x 〔2〕 03θsin ρ4-cos θ 2ρ=+ 【解析】〔1〕]π∈[0,θθsin 2,θcos ,的参数方程:曲线==y x C 〔2〕4〔2014〕〔本小题总分值7分〕选修4—4:极坐标与参数方程直线l 的参数方程为⎩⎨⎧-=-=t y ta x 42,〔t 为参数〕,圆C 的参数方程为⎩⎨⎧==θθsin 4cos 4y x ,〔θ为常数〕. 〔I 〕求直线l 和圆C 的普通方程;〔II 〕假设直线l 与圆C 有公共点,数a 的取值围.解:(1)直线l 的普通方程为2*-y -2a =0, 圆C 的普通方程为*2+y 2=16. (2)因为直线l 与圆C 有公共点, 故圆C 的圆心到直线l 的距离d =52a -≤4,解得-25≤a ≤2 5.2007--2013年高考 极坐标与参数方程〔2013数学〔理〕〕在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为〔 B 〕A .=0()cos=2R θρρ∈和B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和〔2013**数学〔理〕〕圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭,则|CP | = 23.1〔2013卷〔理〕〕在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为_____152+_____ 解析:2〔2013卷〔理〕〕在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于____1_____.3〔2013数学〔理〕〕在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.假设极坐标方程为cos 4ρθ=的直线与曲线23x ty t⎧=⎪⎨=⎪⎩(为参数)相交于,A B 两点,则______AB = 【答案】164〔2013〔理〕〕(坐标系与参数方程选讲选做题)曲线C的参数方程为x ty t ⎧=⎪⎨=⎪⎩(为参数),C 在点()1,1处的切线为, 以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则切线的极坐标方程为.【答案】*+y=2 ;sin 4πρθ⎛⎫+= ⎪⎝⎭5〔2013〔理〕〕C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为______ .【答案】R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 26〔2013〔理〕〕(坐标系与参数方程选做题)设曲线C 的参数方程为2x ty t=⎧⎨=⎩(为参数),假设以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________ 【答案】2cos sin 0ρθθ-=7〔2013卷〔理〕〕在平面直角坐标系xoy 中,假设,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为________. 【答案】38〔2013〔理〕〕在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,.在极坐标系(与直角坐标系xOy 取一样的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线与圆O的极坐标方程分别为sin 4πρθ⎛⎫+=⎪⎝⎭()m 为非零常数与b ρ=.假设直线经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为___________.〔2013新课标〔理〕〕动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 【答案】9〔2013〔理〕〕在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭.(I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.直线PQ 的参数方程为()3312x t at R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值 【答案】10〔2013〔理〕〕坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.点A的极坐标为)4π,直线的极坐标方程为cos()4a πρθ-=,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.【答案】解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上,可得a =所以直线的方程可化为cos sin 2ρθρθ+= 从而直线的直角坐标方程为20x y +-= (Ⅱ)由得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0),半径1r =以为圆心到直线的距离212d =<,所以直线与圆相交 11〔2013〕在平面直角坐标系xoy 中,直线的参数方程为⎩⎨⎧=+=ty t x 21(为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线与曲线C 的普通方程,并求出它们的公共点的坐标. 【答案】C 解:∵直线的参数方程为⎩⎨⎧=+=ty t x 21∴消去参数后得直线的普通方程为022=--y x ①同理得曲线C 的普通方程为x y 22=②①②联立方程组解得它们公共点的坐标为)2,2(,)1,21(-12〔2013新课标1〔理〕〕选修4—4:坐标系与参数方程曲线C 1的参数方程为45cos 55sin x t y t=+⎧⎨=+⎩(为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=. (Ⅰ)把C 1的参数方程化为极坐标方程; (Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【答案】将45cos 55sin x ty t=+⎧⎨=+⎩消去参数,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=; (Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为(2,4π),(2,)2π. 【2012新课标文23】曲线C 1的参数方程是〔φ为参数〕,以坐标原点为极点,*轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正三角形ABC 的顶点都在C 2上,且A 、B 、C 以逆时针次序排列,点A 的极坐标为〔2,〕〔Ⅰ〕求点A 、B 、C 的直角坐标;〔Ⅱ〕设P 为C 1上任意一点,求|PA|2+|PB|2+|PC|2的取值围. 解析:【2012文23】在直角坐标xOy 中,圆221:4C x y +=,圆222:(2)4C x y -+=。