概率论试卷及答案
- 格式:doc
- 大小:232.50 KB
- 文档页数:12
一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( )(A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )3311()()()()328168A B C D(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-adx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记5011,50i i X X ==∑ 则 50211()4i i X X =-∑服从分布为( ) (A )4(2,)50N (B) 2(,4)50N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f , 则使)()(a X P a X P <=>的常数a =(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P (4)设()221xx f x -+-=, 则EX = , DX =(5)设总体~(,9)X N μ,已知样本容量为25,样本均值x m =;记0.1u a =,0.05u b =;()0.124t c =,()0.125t d =;()0.0524t l =,()0.0525t k =,则μ的置信度为0.9的置信区间为三、解答题 (共60分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%, 求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?2、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y求:随机变量Y X Z +=的概率密度函数.3、(10分)设随机变量X 服从参数2λ=的指数分布,证明:21XY e-=-服从()0,1上的均匀分布。
1。
将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球。
解:把4个球随机放入5个盒子中共有45=625种等可能结果。
(1)A={4个球全在一个盒子里}共有5种等可能结果,故P(A )=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果. 故12572625360)(==B P2.某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时和2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。
解:设x,y 分别为两船到达码头的时刻.由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω.设A 为“两船不碰面",则表现为阴影部分。
222024,024024,024,2111()24576,()2322506.522()()0.8793()x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===⨯+⨯===Ω={(x,y)},A={(x,y)或},有所以,3。
设商场出售的某种商品由三个厂家供货,其供应量之比是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求:(1) 该件商品是次品的概率。
(2) 该件次品是由第一厂家生产的概率。
厦门大学概统课程期中试卷____学院___系___年级___专业考试时间 2013.11.8解:1231122331,(1)()()(|)()(|)()(|)=60%*(1-98%)+20%*(1-98%)+20%*(1-96%) =0.024(2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++=设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知111()()(|)60%*(1-98%)()()0.024=0.5P AB P B P A B P A P A ==4。
2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。
[模拟试卷1]一、(15分)玻璃杯成箱出售,每箱20只。
已知任取一箱,箱中0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回。
试求:(1)顾客买下该箱的概率 ;(2)在顾客买下的该箱中,没有残次品的概率 。
二、(12分)设随机变量X 的分布列为 .求:(1)参数 ;(2) ;(3) 的分布列。
三、(10分)设二维随机变量 在矩形 上服从均匀分布,(1)求 的联合概率密度(2)求 关于 、 的边缘概率密度(3)判断 与 的独立性。
四、(12分)设 , ,且 与 相互独立,试求 和 的相关系数(其中a 、b 是不全为零的常数)。
五、(12分)设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率。
六、(12分)设总体 的概率密度为是取自总体 的简单随机样本。
求:(1) 的矩估计量 ;(2) 的方差 。
七、(12分)设 服从 , 是来自总体 的样本, + 。
试求常数 ,使得 服从 分布。
八、(15分)从一批木材中抽取100根,测量其小头直径,得到样本平均数为 ,已知这批木材小头直径的标准差 ,问该批木材的平均小头直径能否认为是在 以上(取显著性水平 =) 附表一: , , , ,[模拟试卷2]一、(14分)已知50只铆钉中有3只是次品,将这50只铆钉随机地用在10个部件上。
若每个部件用3只铆钉,问3只次品铆钉恰好用在同一部件上的概率是多少 二、(14分)已知随机变量X 的概率密度为()⎩⎨⎧<<=其他,010,2x Ax x f ,求:(1)参数A ;(2)}35.0{<<X P ;(3)}{x X P <。
三、(14分)设随机变量X 和Y 的联合分布以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Y X U +=的方差。
《概率论》考试试题(含答案) ................................................................................................... 1 解答与评分标准 . (3)《概率论》考试试题(含答案)一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12(),()23P A P B == 则()P AB 可能为( ) (A) 0; (B) 1; (C) 0.6; (D) 1/62. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为( )(A)12; (B) 225; (C) 425; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A)518; (B) 13; (C) 12; (D)以上都不对 4.某一随机变量的分布函数为()3xxa be F x e +=+,则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( )(A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对二.填空题(每小题3分,共15分)1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B =_____.2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =______.3.随机变量ξ的期望为()5E ξ=,标准差为()2σξ=,则2()E ξ=_______.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。
设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为2()22af x x x =++,a 为常数,则P (ξ≥0)=_______.三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球.四.(本题10分) 设随机变量ξ的分布密度为, 03()10, x<0x>3Ax f x x⎧⎪=+⎨⎪⎩当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望.五.(本题10分) 设二维随机变量(ξ,η)的联合分布是η=1 η=2 η=4 η=5ξ=0 0.05 0.12 0.15 0.07 ξ=1 0.03 0.10 0.08 0.11 ξ=2 0.070.010.110.10(1) ξ与η是否相互独立? (2) 求ξη⋅的分布及()E ξη⋅;六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少?七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件? (注:(1.28)0.90Φ=,(1.65)0.95Φ=)九.(本题6分)设事件A 、B 、C 相互独立,试证明AB 与C 相互独立.某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________.十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):1820,1834,1831,1816,1824 假定重复测量所得温度2~(,)N ξμσ.估计10σ=,求总体温度真值μ的0.95的置信区间. (注:(1.96)0.975Φ=,(1.65)0.95Φ=)解:1(18201834183118161824)18255ξ=++++=-------------------2分 已知10.95, 0.05αα-==,0.02521.96u u α==---------------------------5分10σ=,n=5,0.025210 1.96108.7755u u nασ⨯===-------------------8分所求真值μ的0.95的置信区间为[1816.23, 1833.77](单位:℃)-------10分解答与评分标准一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2()E ξ=29、4. 0.94、5. 3/4三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故P (A )=5/625=1/125------------------------------------------------------5分(2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法----------------------------------------------------7分4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故12572625360)(==B P --------------------------------------------------10分四.解:(1)⎰⎰∞∞-==+=34ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)⎰==+=<1212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3300()()[ln(1)]1AxE xf x dx dx A x x x ξ∞-∞===-++⎰⎰13(3ln 4)1ln 4ln 4=-=-------------------------------------10分 五.解:(1)ξ的边缘分布为⎪⎪⎭⎫ ⎝⎛29.032.039.02 10--------------------------------2分 η的边缘分布为⎪⎪⎭⎫ ⎝⎛28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη⋅的分布列为ξη⋅0 1 2 4 5 8 10。
试卷一一、填空每小题2分,共10分1.设是三个随机事件,则至少发生两个可表示为______________________;2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________;3.已知互斥的两个事件满足,则___________;4.设为两个随机事件,,,则___________;5.设是三个随机事件,,,、,则至少发生一个的概率为___________;二、单项选择每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内;每小题2分,共20分1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则 ;A取到2只红球B取到1只白球C没有取到白球D至少取到1只红球2.对掷一枚硬币的试验, “出现正面”称为 ;A随机事件B必然事件C不可能事件D样本空间3. 设A、B为随机事件,则 ;A AB BC AB Dφ4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是 ;A与互斥B与不互斥C D5. 设为两随机事件,且,则下列式子正确的是 ;A BC D6. 设相互独立,则 ;A BC D7.设是三个随机事件,且有,则;A 0.1B 0.6C 0.8D 0.78. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为 ;A p21–p3B4 p 1–p3C5 p21–p3D4 p21–p39. 设A、B为两随机事件,且,则下列式子正确的是 ;A BC D10. 设事件A与B同时发生时,事件C一定发生,则 ;A PAB = PC B P A + P B–P C≤1C P A + P B–P C≥1D P A + P B≤P C三、计算与应用题每小题8分,共64分1. 袋中装有5个白球,3个黑球;从中一次任取两个;求取到的两个球颜色不同的概率;2. 10把钥匙有3把能把门锁打开;今任取两把;求能打开门的概率;3. 一间宿舍住有6位同学,求他们中有4个人的生日在同一个月份概率;4. 50个产品中有46个合格品与4个次品,从中一次抽取3个,求至少取到一个次品的概率;5. 加工某种零件,需经过三道工序,假定第一、二、三道工序的次品率分别为0.2,0.1,0.1,并且任何一道工序是否出次品与其它各道工序无关;求该种零件的次品率;6. 已知某品的合格率为0.95,而合格品中的一级品率为0.65;求该产品的一级品率;7. 一箱产品共100件,其中次品个数从0到2是等可能的;开箱检验时,从中随机抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收;若已知该箱产品已通过验收,求其中确实没有次品的概率;8. 某厂的产品,按甲工艺加工,按乙工艺加工,两种工艺加工出来的产品的合格率分别为0.8与0.9;现从该厂的产品中有放回地取5件来检验,求其中最多有一件次品的概率;四、证明题共6分设,;证明试卷一参考答案一、填空1. 或2. 出现的点数恰为53.与互斥则4. 0.6故5.至少发生一个,即为又由得故二、单项选择1.2. A3. A利用集合的运算性质可得.4.与互斥故5.故6.相互独立7.且则8.9. B10. B故P A + P B–P C≤1三、计算与应用题1. 解:设表示“取到的两球颜色不同”,则而样本点总数故2. 解:设表示“能把门锁打开”,则,而故3. 解:设表示“有4个人的生日在同一月份”,则而样本点总数为故4. 解:设表示“至少取到一个次品”,因其较复杂,考虑逆事件=“没有取到次品”则包含的样本点数为;而样本点总数为故5. 解:设“任取一个零件为次品”由题意要求,但较复杂,考虑逆事件“任取一个零件为正品”,表示通过三道工序都合格,则于是6. 解:设表示“产品是一极品”,表示“产品是合格品”显然,则于是即该产品的一级品率为7. 解:设“箱中有件次品”,由题设,有,又设“该箱产品通过验收”,由全概率公式,有于是8. 解:依题意,该厂产品的合格率为,于是,次品率为设表示“有放回取5件,最多取到一件次品”则四、证明题证明, ,由概率的性质知则又且故试卷二一、填空每小题2分,共10分1. 若随机变量的概率分布为 ,,则__________;2. 设随机变量,且,则__________;3. 设随机变量,则__________;4. 设随机变量,则__________;5. 若随机变量的概率分布为则__________;二、单项选择每题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内;每小题2分,共20分1.设与分别是两个随机变量的分布函数,为使是某一随机变量的分布函数,在下列给定的各组数值中应取 ;A BC D2.设随机变量的概率密度为,则 ;A BC D3.下列函数为随机变量分布密度的是;A BC D4.下列函数为随机变量分布密度的是;A BC D5. 设随机变量的概率密度为,,则的概率密度为 ;A BC D6. 设服从二项分布,则 ;A BC D7. 设,则 ;A BC D8.设随机变量的分布密度为, 则 ;A 2B 1C 1/2D 49.对随机变量来说,如果,则可断定不服从 ;A二项分布B指数分布C正态分布D泊松分布10.设为服从正态分布的随机变量,则;A9 B 6C 4 D-3三、计算与应用题每小题8分,共64分1. 盒内有12个乒乓球,其中9个是新球,3个是旧球;采取不放回抽取,每次取一个,直到取到新球为止;求抽取次数的概率分布;2. 车间中有6名工人在各自独立的工作,已知每个人在1小时内有12分钟需用小吊车;求1在同一时刻需用小吊车人数的最可能值是多少2若车间中仅有2台小吊车,则因小吊车不够而耽误工作的概率是多少3. 某种电子元件的寿命是随机变量,其概率密度为求1常数;2若将3个这种元件串联在一条线路上,试计算该线路使用150小时后仍能正常工作的概率;4. 某种电池的寿命单位:小时是一个随机变量,且;求1这样的电池寿命在250小时以上的概率;2,使电池寿命在内的概率不小于0.9;5. 设随机变量;求概率密度;6. 若随机变量服从泊松分布,即,且知;求;7. 设随机变量的概率密度为;求和;8. 一汽车沿一街道行使,需要通过三个均没有红绿灯信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,求红或绿两种信号灯显示的时间相等;以表示该汽车未遇红灯而连续通过的路口数;求1的概率分布;2;四、证明题共6分设随机变量服从参数为2的指数分布;证明:在区间上,服从均匀分布;试卷二参考答案一、填空1. 6由概率分布的性质有即,得;2.,则3. 0.54.5. 0.25由题设,可设即0 10.5 0.5则二、单项选择1.由分布函数的性质,知则,经验证只有满足,选2.由概率密度的性质,有3.由概率密度的性质,有4.由密度函数的性质,有5.是单减函数,其反函数为,求导数得由公式,的密度为6.由已知服从二项分布,则又由方差的性质知,7.于是8. A由正态分布密度的定义,有9. D∴如果时,只能选择泊松分布.10. D∵X为服从正态分布N -1, 2,EX = -1∴E2X - 1 = -3三、计算与应用题1. 解:设为抽取的次数只有个旧球,所以的可能取值为:由古典概型,有1 2 3 42. 解:设表示同一时刻需用小吊车的人数,则是一随机变量,由题意有,,于是1的最可能值为,即概率达到最大的23. 解:1由可得2串联线路正常工作的充要条件是每个元件都能正常工作,而这里三个元件的工作是相互独立的,因此,若用表示“线路正常工作”,则而故4. 解:1查正态分布表2由题意即查表得;5. 解:对应的函数单调增加,其反函数为,求导数得, 又由题设知故由公式知:6. 解:,则而由题设知即可得故查泊松分布表得,7. 解:由数学期望的定义知,而故8. 解:1的可能取值为且由题意,可得即0 1 2 32由离散型随机变量函数的数学期望,有四、证明题证明:由已知则又由得连续,单调,存在反函数且当时, 则故即试卷三一、填空请将正确答案直接填在横线上;每小题 2分,共10分1. 设二维随机变量的联合分布律为,则__________,__________.2. 设随机变量和相互独立,其概率分布分别为,则__________.3. 若随机变量与相互独立,且,,则服从__________分布.4. 已知与相互独立同分布,且则__________.5. 设随机变量的数学期望为、方差,则由切比雪夫不等式有__________.二、单项选择在每题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内;每小题2分,共20分1. 若二维随机变量的联合概率密度为,则系数.A BC D2. 设两个相互独立的随机变量和分别服从正态分布和,则下列结论正确的是 .A BC D3. 设随机向量X , Y的联合分布密度为, 则 .A X , Y服从指数分布B X与Y不独立C X与Y相互独立D cov X , Y≠04. 设随机变量相互独立且都服从区间0,1上的均匀分布,则下列随机变量中服从均匀分布的有 .A BC D5. 设随机变量与随机变量相互独立且同分布, 且, 则下列各式中成立的是 .A B C D6.设随机变量的期望与方差都存在, 则下列各式中成立的是 .A BC D7. 若随机变量是的线性函数,且随机变量存在数学期望与方差,则与的相关系数.A B C D8. 设是二维随机变量,则随机变量与不相关的充要条件是 .ABCD9. 设是个相互独立同分布的随机变量,,则对于,有 .A BC D10. 设,为独立同分布随机变量序列,且X i i= 1,2,…服从参数为λ的指数分布,正态分布N0, 1 的密度函数为, 则 .三、计算与应用题每小题8分,共64分1. 将2个球随机地放入3个盒子,设表示第一个盒子内放入的球数,表示有球的盒子个数.求二维随机变量的联合概率分布.2. 设二维随机变量的联合概率密度为1确定的值;2求.3. 设的联合密度为1求边缘密度和;2判断与是否相互独立.4. 设的联合密度为求的概率密度.5. 设,,且与相互独立.求1的联合概率密度;2;3.6. 设的联合概率密度为求及.7. 对敌人阵地进行100次炮击;每次炮击命中目标的炮弹的数学期望是4,标准差是1.5.求100次炮击中有380至420课炮弹命中目标的概率.8. 抽样检查产品质量时,如果发现次品数多于10个,则认为这批产品不能接受.问应检查多少个产品才能使次品率为10%的这批产品不被接受的概率达0.9.四、证明题共6分设随机变量的数学期望存在,证明随机变量与任一常数的协方差是零.试卷三参考解答一、填空1.由联合分布律的性质及联合分布与边缘分布的关系得2.3.相互独立的正态变量之和仍服从正态分布且,,∴4.5.二、单项选择1. B由即∴选择B.2. B由题设可知,故将标准化得∴选择B.3.C∴选择C.4. C∵随机变量相互独立且都服从区间0,1上的均匀分布, 则∴选择C.5.A∴选择A.6. A∵由期望的性质知∴选择A.7. D∴选择D.8. B与不相关的充要条件是即则∴选择B.9. C∴选择C.10. AX i i = 1,2,…服从参数为λ的指数分布,则故∴选择A.三、计算与应用题1. 解显然的可能取值为;的可能取值为注意到将个球随机的放入个盒子共有种放法,则有即的联合分布律为2.解1由概率密度的性质有可得2设,则3. 解1即即,2当时故随机变量与不相互独立.4. 解先求的分布函数显然,随机变量的取值不会为负,因此当时,,当时,故的概率密度为5. 解1与相互独立的联合密度为236. 解于是由对称性故.7. 解设表示第次炮击命中目标的炮弹数,由题设,有,则次炮击命中目标的炮弹数,因相互独立,同分布,则由中心极限定理知近似服从正态分布于是8. 解设应检查个产品,其中次品数为,则由题设,这里,可以认为较大,则由棣莫弗—拉普拉斯定理知, 近似服从正态分布依题意,有即亦即查表得故至少应检查个产品,才能达到题设要求.四、证明题证由协方差的定义及数学期望的性质,得。
概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
试卷(A 卷)参考答案及评分标准考试方式:闭卷 学分: 3学分 考试时间:110 分钟一、填空题(每题 3 分,共 30分)1、率为85%.若某人今年已50岁,则他的寿命大于60岁 的概率为 0.88 . 2、在假设检验问题中,当减小显著性水平α时,拒绝域将变 小 . 3、设X 服从泊松分布,若26EX =,则(1)P X ==22e -.4、设二维随机变量(,)X Y 的联合分布函数为(,)F x y ,则{},P a X b Y d <≤≤=(,)(,)F b d F a d -.5、设随机变量,X Y 相互独立,且均服正态分布(0,1)N ,则{min(,)0}P X Y ≤= 34. 6、设随机变量X 和Y 不相关,则(2)D X Y -=()4()D X D Y + .7、设随机变量X 服从(0,1)上的均匀分布,今对X 进行4次独立观测,以Y 表示观测值大于0.5的观测次数,则{}1P Y ≥=1516. 8、设1(,)~(1,1;4,9;)2X Y N , 则(,)Cov X Y =__3___.9、在区间估计理论中,当样本容量给定时,置信度与置信区间长度的关系是:置信度1α-越大,置信区间长度越__长__. 10、 随机变量()X t n ,则2~X (1,)F n 分布.二、概率论试题(45分) 1、(9分) 某卡车运送防“禽流感”用品,装了10个纸箱,其中5箱民用口罩、2箱医用口罩、3箱消毒棉花。
到目的地时发现丢失1箱,不知丢失哪一箱。
现从剩下9箱中任意打开2箱,结果都是民用口罩,求丢失的一箱也是民用口罩的概率。
(记A :从剩下9箱中任取2箱都是民用口罩;k B :丢失的一箱为k ,3,2,1=k 分别表示民用口罩,医用口罩,消毒棉花)解:222355422219991318()()()210536k k k C C C P A P B P A B C C C ===⋅+⋅+⋅=∑ (5分).83368363)(/21)(/)()()(2924111=÷=⋅==A P C C A P B A P B P A B P (4分)2、(9分)设随机变量X 服从(0,1)上的均匀分布,2ln Y X =-,求Y 的概率密度. (9分) 解: 由于()2ln y g x x ==-在(0,1)上严格单调,可以使用公式 (2分)(0,1)x ∈时 ,2()yx h y e-==,(0,)y ∈+∞,'21()2y h y e -=-, (4分)由密度转换公式,得210()200yY ey f y y -⎧>⎪=⎨⎪≤⎩(3分)3、(9分)一生产线生产的产品是成箱包装的,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克。
概率论与数理统计 试卷及其答案一、填空题(每空4分,共20分)1、设随机变量ξ的密度函数为2(0,1)()0ax x x φ⎧∈=⎨⎩其它,则常数a =3 。
2、设总体2(,)XN μσ,其中μ与2σ均未知,12,,,n X X X 是来自总体X 的一个样本,2σ的矩估计为211()i ni i X X n ==-∑ 。
3、已知随机变量X 的概率分布为{},1,2,3,4,5,15kP X k k ===则1()15P X E X ⎧⎫<=⎨⎬⎩⎭___ 0.4___。
4、设随机变量~(0,4)X U ,则(34)P X <<= 0.25 。
5、某厂产品中一等品的合格率为90%,二等品合格率80%,现将二者以1:2的比例混合,则混合后产品的合格率为 5/6 。
二、计算题(第1、2、3题每题8分,第4题16分,第5题16分,共56分)1、一批灯泡共20只,其中5只是次品,其余为正品。
做不放回抽取,每次取一只,求第三次才取到次品的概率。
解:设i A 表示第i 次取到次品,i=1,2,3,B 表示第三次才取到次品, 则123121312()()()()()1514535201918228P B P A A A P A P A A P A A A ===⨯⨯=2、设X 服从参数为λ的指数分布,其概率密度函数为0()00xe xf x x λλ-⎧≥=⎨<⎩,求λ的极大似然估计。
解:由题知似然函数为:11()(0)i niii x i nx ni i L eex λλλλλ==-=-=∑=∏=≥对数似然函数为:1ln ()ln i ni i L n x λλλ===-∑由1ln ()0i ni i d L n x d λλλ===-=∑,得:*11i nii nxxλ====∑ 因为ln ()L λ的二阶导数总是负值,故*1Xλ=3、设随机变量X 与Y 相互独立,概率密度分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩,1,01()0,Y y f y <<⎧=⎨⎩其他, 求随机变量Z X Y =+的概率密度解:()()()Z X Y f z f x f z x dx +∞-∞=-⎰1,01,10,0z x z x ze dy z e dy z z ---⎧<<⎪⎪=≥⎨⎪≤⎪⎩⎰⎰ 11,01,10,0z z z e z e e z z ---⎧-<<⎪=-≥⎨⎪≤⎩4、 设随机变量X 的密度函数为,01,()2,12,0,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其它.求(),()E X D X 。
概率论考试题及答案在学习概率论的过程中,一场考试是检验学生掌握程度的重要方式。
下面将为大家介绍一些概率论考试题及其答案,希望能够帮助大家更好地复习和准备考试。
1. 选择题1.1 在一副标准扑克牌中,抽取一张牌,观察到它是黑桃的情况下,再次从该扑克牌中抽取一张牌,观察该牌是红桃的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/3答案:D. 1/31.2 掷一枚骰子,观察到一个正整数出现的情况下,再次掷骰子,观察到另一个正整数出现的概率是多少?A. 1/12B. 1/6C. 1/36D. 1/18答案:B. 1/62. 计算题2.1 有一个有12个不同数字的骰子,抛出两次。
求两次得到的和是偶数的概率。
答案:一共有6 * 6 = 36 种可能的结果。
其中,和为偶数的情况有:(1,1), (1,3), (1,5), (2,2), (2,4), (2,6), (3,1), (3,3), (3,5), (4,2), (4,4), (4,6), (5,1), (5,3), (5,5), (6,2), (6,4), (6,6) 共计18种。
因此,所求概率为18/36 = 1/2。
2.2 一副扑克牌中,黑桃、红桃、梅花、方块各有13张,从中抽取五张牌,求至少有一张黑桃的概率。
答案:总共抽取5张牌,共有C(52,5)种取法。
不抽取黑桃的情况有C(39,5)种取法。
因此,至少有一张黑桃的情况有C(52,5) - C(39,5) 种取法。
所求概率为[C(52,5) - C(39,5)] / C(52,5)。
3. 应用题3.1 有甲、乙两个工人分别制作产品A和产品B,已知甲的合格率为85%,乙的合格率为90%。
如果随机抽查一件产品是合格的,求这件产品是乙制作的概率。
答案:假设事件A为产品合格,事件B为产品由乙制作。
根据题意,可得P(A|B) = 90%,P(A|B') = 85%,P(B) = 1/2,P(B') = 1/2。
概率论期末试卷一、填空题1. 设 A , B 是两个事件,且 P (A ) = P (B ) = 0.4, P (A|B̅) = 0.5 ,则 P (B − A ) + P (A − B ) = 。
2. 设随机变量 X ~ B (1, 0.5) ,Y ~ E (1) ,且 X ,Y 相互独立, Z = X +Y ,则 P {Z > 0} = 。
3. 设随机变量 X 和Y 独立同分布, P {X =k }=k+13,k =0.1 则P {X = Y }= 。
4. 设随机变量 X ~ N (1, 4) ,则 E [(X + 3)2]= 。
5. 设随机变量 X ~ P (5) ,由切比雪夫不等式得 P {1 < X < 9} ≥ 。
二、选择题1. 设(X 1,X 2,X 3)是取自总体 X ~ E (1θ)的简单随机样本,以下θ 的点估计中,方差最小的无偏估计是( )A.12X 1+ 13X 2+ 16X 3 A.15X 1+ 25X 2+ 25X 3 A.12X 1+ 12X 2+ 14X 3A.12X 1+ 14X 2+ 14X 32.设随机变量 X 的分布律为P {X =i }=k2i ,i =1,2,…,则X 取奇数的概率为( )A.23B.34C.12D.143.设随机变量 X 和Y 相互独立,下列结论错误的是( )A.若 X ~ B (1, p ),Y ~ B (1,q ) ,则 X +Y ~ B (1, p + q )B.若 X ~ P (λ1),Y ~ P (λ2) ,则 X +Y ~ P (λ1+λ2)C.若 X ~ N (μ1,σ12),Y ~ N (μ2,σ22) ,则 X +Y ~ N (μ1+μ2,σ12+σ22)D.若 X ~ χ 2(m ),Y ~ χ 2(n ) ,则 X +Y ~ χ 2(m + n )4.设 (X 1,X 2,…,X n ) 为来自正态总体 N (μ,σ2) 的简单随机样本.如果μ已知,则σ2的置信度为1−α的置信区间为( )A.((n−1)S 2χα22(n),(n−1)S 2χ1−α22(n)) B.((n−1)S 2χα22(n−1),(n−1)S 2χ1−α22(n−1))C.(∑(X i −μ)2n i=1χα22(n),∑(X i−μ)2n i=1χ1−α22(n))D.(∑(X i −μ)2n i=1χα22(n−1),∑(X i−μ)2n i=1χ1−α22(n−1))5. 在假设检验中,下列说法正确的是( ).A.一定会犯第一类错误B.一定会犯第二类错误C.可能同时犯两类错误D.不可能同时犯两类错误三、设有两个盒子内装有同型号的电子元件.已知甲盒中有 5 个正品和 3 个次品;乙盒中有 4 个正品和 3 个次品.现从甲盒中任取 3 个元件放入乙盒中,然后再从乙盒中任取一个元件.(1)求从乙盒中所取出的一个元件是正品的概率;(2)已知从乙盒中所取出的元件是正品,求最先从甲盒中取出的 3 个元件都是正品的概率。
概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。
答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。
答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。
答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。
答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。
一、填空题1.设.设 A 、B 、C 是三个随机事件。
试用是三个随机事件。
试用 A 、B 、C 分别表示事件分别表示事件1)A 、B 、C 至少有一个发生至少有一个发生 2)A 、B 、C 中恰有一个发生中恰有一个发生3)A 、B 、C 不多于一个发生不多于一个发生2.设.设 A 、B 为随机事件,为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B )A = 3.若事件A 和事件B 相互独立, P()=,A a P(B)=0.3,P(A B)=0.7, 则a =4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为甲射中的概率为二、选择题1. 设A,B 为两随机事件,且B A Ì,则下列式子正确的是,则下列式子正确的是(A )P (AU B) = P (A); (B )()P(A);P AB = (C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”“甲、乙两种产品均畅销”(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。
3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。
则第二人取到黄球的概率大约是则第二人取到黄球的概率大约是 (A )1/5 (B )2/5 (C )3/5 (D )4/5 4. 对于事件A ,B ,下列命题正确的是,下列命题正确的是(A )若A ,B 互不相容,则A 与B 也互不相容。
也互不相容。
(B )若A ,B 相容,那么A 与B 也相容。
12.设在一次试验中事件A发生的概率为P现重复进行n次独立试验则事件A至多发生一次的概率为(1-P)nD.(1-P)n+nP(1-P)n-1正确答案:D13.一工人看管3台机床,在1小时内机床不需要照顾的概率分别为,设X为1小时内需要照顾的机床台数()正确答案:A14.离散型随机变量X,X所有取值为012,且P(X=0)=(X=1)=,P(X=2)=,则P(X3)=( )正确答案:D15.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为3364正确答案:B二、判断题(25分)16.样本量较小时,二项分布可以用正态分布近似。
A.错误B.正确正确答案:A17.抛一个质量均匀的硬币n次,当n为奇数时,正面出现(n+1)/2和(n-1)/2次的概率最大。
A.错误B.正确正确答案:B18.甲、乙二人做如下的游戏:从编号为1到20的卡片中任意抽出一张,若抽到的数字是奇数,则甲获胜,否则乙获胜,这个游戏对甲、乙双方是公平的。
A.错误B.正确正确答案:B19.小概率事件在一次实验中能够认为不会发生,飞机失事就是小概率事件,虽然乘坐飞机有危险,但是人们还是会乘坐飞机旅行。
A.错误B.正确正确答案:B20.任何情况都可以利用等可能性来计算概率。
A.错误B.正确正确答案:A【奥鹏】[东北大学]19春学期《概率论》在线作业2试卷总分:100 得分:100第1题设X、Y的联合分布函数是F(x,y),则F(+∞,y)等于:A、0;B、1;C、Y的分布函数;D、Y的密度函数。
正确答案:C第2题若P(A)=0B为任一事件,则A、A为空集B、B包含AC、AB相互独立D、AB互不相容正确答案:C第3题如果随机事件A,B相互独立,则有:A、AB=空集;B、P(A)=P(B);C、P(A|B)=P(A);正确答案:C第4题从概率论的角度来看,你认为下列生活中的哪一种现象具有合理的成分?A、某同学认为某门课程太难,考试不可能及格,因此放弃了努力学习;B、某人总是用一个固定的号码去买彩票,她坚信总有一天这个号码会中奖;C、某人总是抢先第一个抽签,认为这样抽到好签的可能性最大;D、某足球教练认为比赛时他的衣服颜色与比赛的结果有关,所以总穿着同一件“幸运服”去指挥比赛。
试卷八
一、填空题(满分15分)
1.已知,,且A与B相互独立,则。
2.设随机变量X服从参数为二项分布,且,则。
3.设,且,则。
4.已知DX=1,DY=2,且X和Y相互独立,则D(2X-Y)=。
5.已知随机变量X服从自由度为n的t分布,则随机变量服从的分布是。
二、选择题(满分15分)
1.抛掷3枚均匀对称的硬币,恰好有两枚正面向上的概率是。
(A)0.125,(B)0.25,(C)0.375,(D)0.5
2.有γ个球,随机地放在n个盒子中(γ≤n),则某指定的γ个盒子中各有一球的概率为。
(A)(B)(C) (D)
3.设随机变量X的概率密度为,则c=。
(A)-(B)0 (C)(D)1
4.掷一颗骰子600次,求“一点”出现次数的均值为。
(A)50 (B)100 (C)120 (D)150
5.设总体X在上服从均匀分布,则参数的矩估计量为。
(A)(B)(C)(D)
三、计算题(满分60分)
1.某商店拥有某产品共计12件,其中4件次品,已经售出2件,现从剩下的10件产品中任取一件,求这件是正品的概率。
2.设某种电子元件的寿命服从正态分布N(40,100),随机地取5个元件,求恰有两个元件寿命小于50的概率。
(,
)
3.在区间(0,1)中随机地取两个数,求事件“两数之和小于”的概率。
4.一台设备由三个部件构成,在设备运转中各部件需要调整的概率分别为0.2,0.3,0.4,各部件的状态相互独立,求需要调整的部件数X的期望EX和方差DX。
5.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差。
(
6.设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可认
为这次考试全体考生的平均成绩为70分?并给出检验过程。
(,
)
四、证明题
1.设A,B是两个随机事件,0<P(A)<1,,证明:A与B相互
独立。
2.设总体X服从参数为的泊松分布,是X的简单随机样本,试证:
是的无偏估计。
一、填空题(满分15分)
1、0.5
2、
3、0.4
4、6
5、
二、填空题(满分15分)
1、C
2、D
3、C
4、B
5、D
三、计算题
1、应用贝叶斯公式,P=0.9523
2、当原方程有实根时,解得或,因此所求概率为
.
3、,
由于与相互独立,因此,所以
.
4、,
.
5、
,
因此至少应取.
6、设,,
由于,所以
,
故拒绝,即认为零件强度的方差较以往发生了变化。
四、证明题
1、证明:
由于
,
,
及,
因此
.
2、,,
命题得证。
试卷六
一、填空题(请将正确答案直接填在横线上。
每小题 2分,共10分)
1. 设。
2. 一批产品的次品率为0.1, 连取三次, 每次一件(有放回), 则三次中恰有一次取到次品的
概率为。
3. 设随机变量X服从泊松分布, 且P{X = 1}= P{X = 2}, 则D (X -2) = 。
4. 设随机变量都服从均匀分布,且与相互独立, 则随机变量
的联合分布密度。
5. 设总体X的二阶矩存在,是样本,样本均值,样本方差
,则的矩估计是______________________。
二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,并将其号码填在括号内。
每小题 2分,共20分)
1. 对掷一枚硬币的试验, “出现正面”称为()。
(A)样本空间(B)必然事件
(C)不可能事件(D)随机事件
2. 设A、B为两随机事件,且,则下列式子正确的是( )。
(A) (B)
(C) (D)
3. 对于随机变量, 称为的()。
(A) 分布函数(B) 概率
(C) 概率密度(D)概率分布
4. 设X为服从正态分布N (-1, 2)的随机变量,其概率密度函数, 则E (2X -1)= ( )。
(A) 9 (B) 6
(C) 4 (D) -3
5. 设服从二项分布,则()。
(A)(B)
(C)(D)
6.设随机变量的期望与方差都存在, 则下列各式中一定成立的是()。
(A)(B)
(C)(D)
7.设是个相互独立同分布的随机变量,,
则对于,有( )。
(A)(B)
(C) (D)
8.设随机向量(X , Y)的联合分布密度为, 则( )。
(A) (X , Y) 服从指数分布(B) X与Y相互独立
(C) X与Y不独立(D) cov(X , Y) ≠0
9.设X1, X2来自总体X,则下列统计量为总体期望EX的无偏估计的是( )。
(A) X1-X2(B) X1 + X2
(C) 2 X1-X2 (D) 2 X1 + X2
10.设总体,未知,通过样本检验时,需要用统计量()。
(A) (B)
(C) (D)
三、计算题 (每小题8分, 共48分)
1.设某玻璃制品第一次落地时被打破的概率为0.1,第二次落地时被打破的概率为0.4,第三落地时被打破的概率为0.9,求该制品在三次落地过程中被打破的概率。
2.设某产品的合格率为80% 。
检验员在检验时合格品被认为合格的概率为97%,次品被认为合格的概率为2%。
(1)求任取一产品被检验员检验合格的概率;(2)若一产品通过了检验,求该产品确为合格品的概率。
3. 若盒中有5个球,其中2个白球3个黑球, 现从中任意取3个球,设随机变量X为取得白球的个数。
求:(1)随机变量X的分布;
(2)数学期望EX ,方差DX。
4.抽样表明某市新生儿体重X(单位:公斤)近似地服正态分布N(3, 4), 求新生儿体重超过4公斤的概率。
(Φ(0.5=0.6915)
5. 设随机变量(X, Y)的联合分布密度为
,
求:(1) 随机变量(X, Y) 的边缘分布密度;
(2) X与Y是否相互独立? 为什么?
6.设某医院门诊部医生检查一个病人的时间X(小时)服从参数λ= 10的指数分布,若检查每个病人所用时间相互独立。
(1)求X的概率密度及检查一个病人时间超过1小时的概率;
(2)利用中心极限定理,以95%的概率求一个医生一天(8小时)最多所能检查的病人数n。
(Φ(1.64) = 0.95)
四、应用题 (每小题8分, 共16分)
1.设总体X的概率密度为为总体X的一个样本。
求参数θ的极大似然估计量。
2.设某产品的日销售量X服从,且μ= 10件。
为扩大销售,现采用了某种促销手段,7天销售的样本平均值为11.14,样本标准差为s = 2.23;假设促销前后方差不变,试以α=0.05的显著性水平检验日销售量是否有明显的提高?(t0.05(6) = 1.94)
五、证明题(6分)
设随机变量的数学期望存在,证明随机变量与任一常数的协方差是零
试卷六
(参考答案)
一、填空题
1. 0.85
2. 0.234
3.2
∵X服从泊松分布, 则有
且DX=λ
由P{X = 1}= P{X = 2}
∴D(X -2)=2
4.
5.
总体的二阶原点矩的矩估计是样本的二阶原点矩。
二、单项选择题
1.D
2.B
3.A
由分布函数的定义,参见教材P52定义2.7
4.D
X为服从正态分布N (-1, 2),
则
E (2X -1)= 2×(-1)-1 = -3
5.D
6.A
7.C
8.B
联合分布密度为正态分布且相关系数为0
则X与Y相互独立.
9.C
E(2 X1-X2)=2EX –EX = EX
10.C
当未知时,用样本方差代替总体的方差
采用检验法,选用
三、计算题
1.
解:
设A表示“三次落地中被打破”,B i表示“第i次落地打破”(i = 1, 2, 3)
则
即玻璃制品在三次落地过程中被打破的概率为0.946。
2.
解:
(1)
设A表示“产品检验合格”B表示“产品合格”
则由全概率公式有
即任一产品被检验员检验合格的概率为0.78;
(2)
根据题意由贝叶斯公式有
即若一产品通过了检验,则该产品确为合格品的概率为0.99。
3.
解:
(1)
设随机变量X表示白球的个数,
则X的取值为0, 1, 2
由题意得
即随机变量X的分布为
(2)
由数学期望与方差的定义有
4.
解:
由题意知新生儿体重X近似地服正态分布N(3, 4), 则
5.
解:
(1) 随机变量(X, Y) 的边缘分布密度为
(2)
∴X与Y是相互独立。
6.
解:
(1)
由题意知医生检查一个病人的时间X服从参数λ=10的指数分布, 则
四、应用题
1.
解:
五、证明题
证明:
由协方差的定义及数学期望的性质,得。