2015年江苏省徐州市中考数学试题及解析
- 格式:doc
- 大小:628.50 KB
- 文档页数:27
徐州市2015年初中毕业、升学考试 数学 模拟试题(四)(满分:140分 时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,有且只有一项是正确的)1. -2的倒数是( ) A .2B .-2C .12D .-122. 2014年我市各类全日制学校在校学生172.70万人,该数据用科学记数法表示为A .1.727×106 人B .1.727×105 人C .1.727×104 人D .1.727×103人3.函数1+1y x =中,自变量x 的取值范围是 ( ) A . x <-1 B . x = -1 C .x > 1 D .x ≠-1 4. 下列各式中计算正确的是( )A .a +a =a 2B .a 2·a 2=2a 2C .(-ab)2=-2a 2b 2D .(2a)2÷a=4a5.随机掷一枚质地均匀的硬币两次,两次落地后反面都朝上的概率为( ) A .21 B .31 C .41 D .32 6. 下左图是由八个相同小正方体组合而成的几何体,则其主视图是( )7.如图,一个正方形与一个直角三角形拼成的图形,则该图形的面积为A .mn m 212+ B .22m mn - C .22mn m + D .222n m +8.已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:则下列判断中正确的是A .抛物线开口向上B .抛物线与y 轴交于负半轴B CC .当x =4时,y >0D .方程02=++c bx ax 的正根在3与4之间 二、填空题(本大题共10小题,每小题3分,共30分.) 9.函数x y -=2中,自变量x 的取值范围是 . 10.因式分解:2a 2-8=11.正五边形每个内角度数是 °.12. 当1-=x 时,代数式122++x x 的值等于 .13.小强和小明去测量一座古塔的高度,他们在离古塔60米的A 处,用测角仪器测得塔顶=1.5米,则古塔BE 的高为 米.14.如图,在△中,∠= 90°,∠C = 45°,AB = 6㎝,∠ABC 的平分线交AC 于点D ,DE ⊥BC ,垂足为E ,则DC +DE = ㎝.15.如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠BCD =40°,则∠AB D 的度数为 °.16.如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线AD 交BC 于点D ,CD =2,则点D 到AB 的距离是 .17.已知抛物线y=x 2-2x -3,若点P (-2,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 。
江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣22.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a63.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,104.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.12005.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,386.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y28.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是.10.(3分)使有意义的x的取值范围是.11.(3分)方程x2﹣4=0的解是.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有个.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.20.(10分)(1)解方程:+1=(2)解不等式组:21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣2【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a6【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【解答】解:A、a2+a2=2a2,故选项A不合题意;B.(a+b)2=a2+2ab+b2,故选项B不合题意;C.(a3)3=a9,故选项C符合题意;D.a3•a2=a5,故选项D不合题意.故选:C.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及完全平方公式,熟练掌握法则是解答本题的关键.3.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点评】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.4.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.1200【分析】由抛掷一枚硬币正面向上的可能性为0.5求解可得.【解答】解:抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选:C.【点评】本题主要考查随机事件,关键是理解必然事件为一定会发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.5.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,38【分析】根据众数和中位数的概念求解可得.【解答】解:将数据重新排列为37,37,38,39,40,40,40,所以这组数据的众数为40,中位数为39,故选:B.【点评】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解可得.【解答】解:不是轴对称图形,故选:D.【点评】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2【分析】根据题意和反比例函数的性质可以解答本题.【解答】解:∵函数y=,∴该函数图象在第一、三象限、在每个象限内y随x的增大而减小,∵A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,∴y1<y2,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.8.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108【分析】先化简2.5×106=0.25×107,再从选项中分析即可;【解答】解:2.5×106=0.25×107,(10×107)÷(0.25×107)=40,从数轴看比较接近;故选:D.【点评】本题考查数轴,科学记数法;能够将数进行适当的表示,结合数轴解题是关键.二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)使有意义的x的取值范围是x≥﹣1 .【分析】根据二次根式中的被开方数必须是非负数,可得x+1≥0,据此求出x的取值范围即可.【解答】解:∵有意义,∴x+1≥0,∴x的取值范围是:x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.(3分)方程x2﹣4=0的解是±2 .【分析】首先把4移项,再利用直接开平方法解方程即可.【解答】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为 4 .【分析】由a=b+2,可得a﹣b=2,代入所求代数式即可.【解答】解:∵a=b+2,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4.故答案为:4【点评】本题主要考查了完全平方公式,熟记公式是解答本题的关键.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为16 .【分析】根据中位线的性质求出BO长度,再依据矩形的性质AC=BD=2BO进行求解问题.【解答】解:∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.【点评】本题主要考查了矩形的性质以及三角形中位线的定理,解题的关键是找到线段间的倍分关系.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=140°.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出多边形的边数,再根据多边形的内角和公式计算即可.【解答】解:多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠OAD=.故答案为:140°【点评】本题主要考查了正多边形的外角以及内角,熟记公式是解答本题的关键.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为 6 cm.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262 m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【分析】作AE⊥BC于E,根据正切的定义求出AE,根据等腰直角三角形的性质求出BE,结合图形计算即可.【解答】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为y=(x﹣4)2.【分析】设原来的抛物线解析式为:y=ax2.利用待定系数法确定函数关系式;然后利用平移规律得到平移后的解析式,将点P的坐标代入即可.【解答】解:设原来的抛物线解析式为:y=ax2(a≠0).把P(2,2)代入,得2=4a,解得a=.故原来的抛物线解析式是:y=x2.设平移后的抛物线解析式为:y=(x﹣b)2.把P(2,2)代入,得2=(2﹣b)2.解得b=0(舍去)或b=4.所以平移后抛物线的解析式是:y=(x﹣4)2.故答案是:y=(x﹣4)2.【点评】考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征.利用待定系数法确定原来函数关系式是解题的关键.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有 3 个.【分析】三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;【解答】解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;【点评】本题考查一次函数的图象上点的特征,等腰三角形的性质;掌握利用两圆一线找等腰三角形的方法是解题的关键.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.【分析】(1)先计算零指数幂、算术平方根、负整数指数幂和绝对值,再计算加减可得;(2)先化简各分式,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=1﹣3+9﹣5=2;(2)原式=÷=(x﹣4)•=2x.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式的乘除运算顺序和运算法则.20.(10分)(1)解方程:+1=(2)解不等式组:【分析】(1)两边同时乘以x﹣3,整理后可得x =;(2)不等式组的每个不等式解集为;【解答】解:(1)+1=,两边同时乘以x﹣3,得x﹣2+x﹣3=﹣2,∴x =;经检验x =是原方程的根;(2)由可得,∴不等式的解为﹣2<x≤2;【点评】本题考查分式方程,不等式组的解;掌握分式方程和不等式组的解法是关键.21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.【分析】(1)计算所取两数的乘积即可得;(2)找到符合条件的结果数,再根据概率公式计算可得;(3)利用概率公式计算可得.【解答】解:(1)补全表格如下:(2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为;积为偶数的概率为=,故答案为:,.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.【分析】(1)从条形统计图中可得3﹣4月份电费240元,从扇形统计图中可知3﹣4月份电费占全年的10%,可求全年的电费,进而求出9﹣10月份电费所占的百分比,然后就能求出9﹣10月份对应扇形的圆心角的度数;(2)全年的总电费减去其它月份的电费可求出7﹣8月份的电费金额,确定直条画多高,再进行补全统计图.【解答】解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=,∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×=42°答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元,补全的统计图如图:【点评】考查条形统计图、扇形统计图的特点及反应数据的变化特征,两个统计图联系在一起,可以发现数据之间关系,求出在某个统计图中缺少的数据.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【分析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD =CG,即可得到∠B=∠G,BC=CG,进而得出△EBC≌△FGC.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.【分析】(1)连接OC,由D为的中点,得到=,根据圆周角定理即可得到结论;(2)根据平行线的判定定理得到AE∥OD,根据平行线的性质得到OD⊥DE,于是得到结论.【解答】(1)证明:连接OC,∵D为的中点,∴=,∴∠BCD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.【点评】本题考查了直线与圆的位置关系,圆心角、弧、弦的关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?【分析】设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,根据长方体盒子的侧面积为200cm2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.【分析】根据已知条件作图可知40cm时,所有图案个数4个;猜想得到结论;【解答】解:如图:根据作图可知40cm时,所有图案个数4个;50cm时,所有图案个数5个;60cm时,所有图案个数6个;故答案为4,5,6;【点评】本题考查应用与设计作图,规律探究;能够根据条件作图图形,探索规律是解题的关键.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?【分析】(1)设甲、乙两人的速度,并依题意写出函数关系式,再根据图②中函数图象交点列方程组求解;(2)设甲、乙之间距离为d,由勾股定理可得d2=(1200﹣240x)2+(80x)2 =64000(x﹣)2+144000,根据二次函数最值即可得出结论.【解答】解:(1)设甲、乙两人的速度分别为am/min,bm/min,则:y1=y2=bx由图②知:x=3.75或7.5时,y1=y2,∴,解得:答:甲的速度为240m/min,乙的速度为80m/min.(2)设甲、乙之间距离为d,则d2=(1200﹣240x)2+(80x)2=64000(x﹣)2+144000,∴当x=时,d2的最小值为144000,即d的最小值为120;答:当x=时,甲、乙两人之间的距离最短.【点评】本题考查了函数图象的读图识图能力,正确理解图象交点的含义,从图象中发现和获取有用信息,提高分析问题、解决问题的能力.28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.【分析】(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.利用全等三角形的性质解决问题即可.(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,利用勾股定理求出a,b之间的关系,求出OC,OD即可解决问题.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,可得AB=6﹣a﹣b,推出OA+OB+AB =6,可得a+b+=6,利用基本不等式即可解决问题.【解答】解:(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=18﹣6a﹣6b,∴9﹣3a﹣3b=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO====6.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S△AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.【点评】本题属于反比例函数综合题,考查了反比例函数的应用,全等三角形的判定和性质,勾股定理,平行线分线段成比例定理,基本不等式等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。
2014-2015学年江苏省徐州市初三上学期期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,请将正确选项前的字母代号填写在括号里)1.(3分)方程x2﹣4x=0的解是()A.x1=0,x2=4B.x1=0,x2=﹣4C.x=4D.x=﹣42.(3分)二次函数y=(x﹣2)2+1的图象的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)3.(3分)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2B.1:4C.2:1D.4:14.(3分)已知A样本的数据如下:72,73,76,76,77,78,78,78.B样本的数据恰好是A样本数据每个都加2,则A、B两个样本具有相同的()A.平均数B.众数C.中位数D.方差5.(3分)已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm26.(3分)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3 7.(3分)已知⊙O的半径为5,直线l与⊙O相交,点O到直线l的距离为3,则⊙O上到直线l的距离为的点共有()A.1个B.2个C.3个D.4个8.(3分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC、EF∥AB,若AD:DB=3:5,则CF:CB等于()A.2:5B.3:8C.3:5D.5:8二、填空题(本大题共有8小题,每小题3分,共24分,请将答案填写在相应的答题处)9.(3分)任意抛掷一枚均匀的骰子一次,朝上的点数大于4的概率等于.10.(3分)某工厂经过两年时间,将某种产品的年产量从14000台提高到16000台.设平均每年增长的百分率为x,可得方程.11.(3分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.12.(3分)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=.13.(3分)如图,⊙O是△ABC的内切圆,若∠ABC=60°,∠ACB=40°,则∠BOC=°.14.(3分)如图,在正八边形ABCDEFGH中,若四边形BCFG的面积是12cm2,则正八边形的面积为cm2.15.(3分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣10123…y…105212…则当y<5时,x的取值范围是.三、解答题(本大题共有9小题,共72分)17.(10分)(1)计算:﹣22﹣+|1﹣2tan60°|;(2)解方程:2x2﹣4x﹣1=0.18.(6分)某校九年级学生进行了五次体育模拟测试,甲同学的测试成绩见表(1),乙同学的测试成绩如图所示:表(一)次数一二三四五分数4647495048(1)请根据甲、乙两同学这五次体育模拟测试的成绩完成下表:中位数平均数方差甲2乙48(2)甲、乙两位同学在这五次体育模拟测试中,谁的成绩较为稳定?请说明理由.19.(6分)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.20.(7分)如图,计划在长为16m、宽为12m的矩形会议室的地面上铺设一个矩形地毯,若四周未铺地毯地面的宽度相同,且地毯面积占整个会议室地面面积的一半,求地毯的长与宽.21.(7分)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB 位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)22.(8分)图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.23.(8分)如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,AD∥BC,DC∥AB.(1)判断直线DC与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,求图中阴影部分的面积(结果保留π).24.(10分)已知二次函数y=x2+bx+c的图象经过点(﹣4,3)、(﹣3,0).(1)求b、c的值;(2)画出该函数的图象;(3)若x>m时,y随x的增大而增大,则m的最小值为;(4)该函数图象向上平移个单位长度后,所得函数的图象与x轴只有一个公共点.25.(10分)如图,锐角△ABC内接于圆O,AD⊥BC,BE⊥AC,OM⊥BC,垂足分别为D、E、M.(1)若∠ACB=60°,求∠ABO的大小;(2)△OMB与△AEB相似吗?为什么?(3)判断△OBD与△OAE的面积是否相等?并说明理由.2014-2015学年江苏省徐州市初三上学期期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,请将正确选项前的字母代号填写在括号里)1.(3分)方程x2﹣4x=0的解是()A.x1=0,x2=4B.x1=0,x2=﹣4C.x=4D.x=﹣4【解答】解:方程分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:A.2.(3分)二次函数y=(x﹣2)2+1的图象的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)【解答】解:二次函数y=(x﹣2)2+1的图象的顶点坐标是(2,1).故选:A.3.(3分)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2B.1:4C.2:1D.4:1【解答】解:∵△ABC∽△A′B′C′,相似比为1:2,、∴△ABC与△A′B′C′的面积的比1:4.故选:B.4.(3分)已知A样本的数据如下:72,73,76,76,77,78,78,78.B样本的数据恰好是A样本数据每个都加2,则A、B两个样本具有相同的()A.平均数B.众数C.中位数D.方差【解答】解:设样本A中的数据为x i,则样本B中的数据为y i=x i+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有方差没有发生变化,故选:D.5.(3分)已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm2【解答】解:圆锥的侧面积=2π×4×5÷2=20π.故选:A.6.(3分)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3【解答】解:将抛物线y=x2向右平移2个单位可得y=(x﹣2)2,再向上平移3个单位可得y=(x﹣2)2+3,故选:B.7.(3分)已知⊙O的半径为5,直线l与⊙O相交,点O到直线l的距离为3,则⊙O上到直线l的距离为的点共有()A.1个B.2个C.3个D.4个【解答】解:如图,∵⊙O的半径为5,点O到直线l的距离为3,∴CE=2,过点D作AB⊥OC,垂足为D,交⊙O于A、B两点,且DE=,∴⊙O上到直线l的距离为的点在直线l的左边和右边各有两个,共四个,故选:D.8.(3分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC、EF∥AB,若AD:DB=3:5,则CF:CB等于()A.2:5B.3:8C.3:5D.5:8【解答】解:∵DE∥BC,∴==,∴=,∵EF∥AB,∴==.故选:D.二、填空题(本大题共有8小题,每小题3分,共24分,请将答案填写在相应的答题处)9.(3分)任意抛掷一枚均匀的骰子一次,朝上的点数大于4的概率等于.【解答】解:∵任意抛掷一枚均匀的骰子一次,朝上的点数大于4的有2种情况,∴任意抛掷一枚均匀的骰子一次,朝上的点数大于4的概率等于:=.故答案为:.10.(3分)某工厂经过两年时间,将某种产品的年产量从14000台提高到16000台.设平均每年增长的百分率为x,可得方程14000(1+x)2=16000.【解答】解:第一年是14000(1+x),第二年是14000(1+x)2,∴14000(1+x)2=16000.故填空答案:14000(1+x)2=16000.11.(3分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15m.【解答】解:设旗杆高度为x米,由题意得,=,解得x=15.故答案为:15.12.(3分)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=9.【解答】解:∵关于x的方程x2﹣6x+m=0有两个相等的实数根,∴△=b2﹣4ac=0,即(﹣6)2﹣4×1×m=0,解得m=9故答案为:913.(3分)如图,⊙O是△ABC的内切圆,若∠ABC=60°,∠ACB=40°,则∠BOC= 130°.【解答】解:∵⊙O是△ABC的内切圆,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC=30°,∠OCB=∠ACB=20°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣30°﹣20°=130°.故答案为130.14.(3分)如图,在正八边形ABCDEFGH中,若四边形BCFG的面积是12cm2,则正八边形的面积为24cm2.【解答】解:连接HE,AD,在正八边形ABCDEFGH中,可得:HE⊥BG于点M,AD⊥BG于点N,∵正八边形每个内角为:=135°,∴∠HGM=45°,∴MH=MG,设MH=MG=x,则HG=AH=AB=GF=x,∴BG×GF=2(+1)x2=12,∴四边形ABGH面积=(AH+BG)×HM=(+1)x2=6,∴正八边形的面积为:6×2+12=24(cm2).故答案为:24.15.(3分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为2cm.【解答】解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣10123…y…105212…则当y<5时,x的取值范围是0<x<4.【解答】解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.三、解答题(本大题共有9小题,共72分)17.(10分)(1)计算:﹣22﹣+|1﹣2tan60°|;(2)解方程:2x2﹣4x﹣1=0.【解答】解:(1)原式=﹣4﹣2+2﹣1=﹣5;(2)方程整理得:x2﹣2x=,配方得:x2﹣2x+1=,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.18.(6分)某校九年级学生进行了五次体育模拟测试,甲同学的测试成绩见表(1),乙同学的测试成绩如图所示:表(一)次数一二三四五分数4647495048(1)请根据甲、乙两同学这五次体育模拟测试的成绩完成下表:中位数平均数方差甲48482乙48480.8(2)甲、乙两位同学在这五次体育模拟测试中,谁的成绩较为稳定?请说明理由.【解答】解:(1)填表如下:中位数平均数方差甲48482乙48480.8(2)乙同学的成绩较为稳定,因为乙同学五次测试成绩的方差小于甲同学五次测试成绩的方差.19.(6分)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.【解答】解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.20.(7分)如图,计划在长为16m、宽为12m的矩形会议室的地面上铺设一个矩形地毯,若四周未铺地毯地面的宽度相同,且地毯面积占整个会议室地面面积的一半,求地毯的长与宽.【解答】解:设空白部分的宽为x米,根据题意得出:(16﹣2x)(12﹣2x)=×16×12,整理得:x2﹣14x+24=0,解得x1=2,x2=12(不合题意,舍去)则16﹣2x=16﹣2×2=12,12﹣2x=12﹣2×2=8.答:地毯的长与宽分半是12m、8m.21.(7分)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB 位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)【解答】解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.22.(8分)图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.【解答】解:(1)见图中△A′B′C′(直接画出图形,不画辅助线不扣分)(2)见图中△A″B′C″(直接画出图形,不画辅助线不扣分)S=π(22+42)=π•20=5π(平方单位).23.(8分)如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,AD∥BC,DC ∥AB.(1)判断直线DC 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径为2,求图中阴影部分的面积(结果保留π).【解答】解:(1)直线CD 与⊙O 相切.理由如下: 如图,连接OD . ∵OA=OD ,∠DAB=45°, ∴∠ODA=45° ∴∠AOD=90° ∵CD ∥AB∴∠ODC=∠AOD=90°,即OD ⊥CD 又∵点D 在⊙O 上, ∴直线CD 与⊙O 相切;(2)∵⊙O 的半径为2,AB 是⊙O 的直径, ∴AB=4,∵BC ∥AD ,CD ∥AB∴四边形ABCD 是平行四边形 ∴CD=AB=4 ∴S 梯形OBCD ===6;∴图中阴影部分的面积=S 梯形OBCD ﹣S 扇形OBD =6﹣×π×22=6﹣π.24.(10分)已知二次函数y=x 2+bx +c 的图象经过点(﹣4,3)、(﹣3,0). (1)求b 、c 的值; (2)画出该函数的图象;(3)若x>m时,y随x的增大而增大,则m的最小值为﹣2;(4)该函数图象向上平移1个单位长度后,所得函数的图象与x轴只有一个公共点.【解答】解:(1)把(﹣4,3)与(﹣3,0)代入得:,解得:b=4,c=3;(2)二次函数解析式为y=x2+4x+3=(x+2)2﹣1,即顶点(﹣2,﹣1),列表得:x0﹣1﹣2﹣3﹣4y30﹣103描点;连线,如图所示:(3)若x>m时,y随x的增大而增大,则m的最小值为﹣2;(4)该函数图象向上平移1个单位长度后,所得函数的图象与x轴只有一个公共点.故答案为:(3)﹣2;(4)125.(10分)如图,锐角△ABC内接于圆O,AD⊥BC,BE⊥AC,OM⊥BC,垂足分别为D、E、M.(1)若∠ACB=60°,求∠ABO的大小;(2)△OMB与△AEB相似吗?为什么?(3)判断△OBD与△OAE的面积是否相等?并说明理由.【解答】解:(1)如图,∵∠ACB=60°,∴∠AOB=120°;而OA=OB,∴∠BAO=∠ABO==30°,即∠ABO=30°.(2)相似;理由如下:如图,连接OC,则OB=OC;∵OM⊥BC,∴∠BOM=∠BOC,而∠BAC=∠BOC,∴∠BOM=∠BAE;而BE⊥AC,∴∠OMB=∠AEB=90°,∴△OMB∽△AEB.(3)相等;理由如下:如图,过点O作ON⊥AC于点N;∵AO=CO,ON⊥AC,∴∠AON=∠AOC,而∠ABC=∠AOC,∴∠AON=∠ABC,而∠ONA=∠BNO,∴△AON∽△ADB,∴;同理可证:△OMB∽△AEB,∴;而OA=OB,∴,OM•BD=ON•AE,∴OM•BD=ON•AE,即△OBD与△OAE的面积相等.附赠模型一:手拉手模型—全等等边三角形条件:△OAB,△OCD均为等边三角形结论:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AED(易忘)等腰RT△条件:△OAB,△OCD均为等腰直角三角形结论:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AED(易忘)导角核心图形任意等腰三角形条件:△OAB,△OCD均为等腰三角形,且∠AOB=∠COD结论:①△OAC≌△OBD;②∠AEB=∠AOB;③OE平分∠AED(易忘)模型总结:核心图形如右图,核心条件如下:①OA=OB,OC=OD;②∠AOB=∠COD模型二:手拉手模型—相似条件:CD ∥AB ,将△OCD 旋转至右图位置结论:右图 △OCD ∽△OAB ⇔△OAC ∽△OBD ;且延长AC 交BD 于点E 必有∠BEC=∠BOA 非常重要的结论:必须会熟练证明手拉手相似(特殊情况)当∠AOB =90°时,除△OCD ∽△OAB ⇔△OAC ∽△OBD 之外还会隐藏OCD OAOBOC OD AC BD ∠===tan ,满足BD ⊥AC ,若连接AD 、BC ,则必有 2222CD AB BC AD +=+;BD AC S ABCD ⨯=21(对角线互相垂直四边形)。
徐州市2015年初中毕业、升学考试数学模拟试题(九)(满分:140分考试时间:120分钟)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.-5的相反数是A.-5 B.5 C.15D.-152.地球绕太阳公转的速度约是110000千米/时,将110000用科学记者数法表示为A.11⨯104B.1.1⨯105C.1.1⨯104D.0.11⨯106 3.某几何体的三视图如图所示,则该几何体是A.三棱柱B.长方体C.圆柱D.圆锥第3题第7题第8题4.下列计算正确的是A.x4·x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a5.下列命题中,假命题是A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360︒6.某工厂现在平均每天比原计算多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是A.60045050x x=+B.60045050x x=-C.60045050x x=+D.60045050x x=-7.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为A.45︒B.55︒C.60︒D.75︒8.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=kx交于E,F两点,若AB=2EF,则k的值是A.-1 B.1 C.12D.34二、填空题(本大题共有10小题。
每小题3分,共30分。
不需要写出解答过程,请把答案直接写在答题卡的相应位置上)9.分解因式:ma+mb= .10.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是 .11.计算:1)1)= .12.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为.14.代数式有意义时,x应满足的条件为.15.若(m-1)2+=0,则m+n的值是 .16.如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是 . 17.如图,在Rt△ABC中,∠ACB=90︒,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC.若AB=10,则EF的长是 .第16题第17题第18题18.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC= .三、解答题(本大题共有10小题,共86分。
2015-2016学年江苏省徐州市铜山区九年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的,把所选答案填入下表.)1.(3分)在下列方程中,是一元二次方程的是()A.3x2﹣6xy+2y2=0 B.x2+3x﹣1=x2C.x2﹣5=﹣2x D.2x﹣=02.(3分)方程(x﹣2)(x+3)=0的解是()A.x=2 B.x=﹣3 C.x1=﹣2,x2=3 D.x1=2,x2=﹣33.(3分)用配方法解方程x2+8x+7=0,则配方正确的是()A.(x﹣4)2=9 B.(x+4)2=9 C.(x﹣8)2=16 D.(x+8)2=574.(3分)圆的半径为4,圆心到直线l的距离为3,则直线l与⊙O位置关系是()A.相离B.相切C.相交D.相切或相交5.(3分)在半径为1的⊙O中,120°的圆心角所对的弧长是()A.B. C.πD.6.(3分)以下是某校九年级10名同学参加学校演讲比赛的统计表:则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,907.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140° D.120°8.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0二、填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)9.(3分)将一元二次方程4x(x﹣1)=1化成一般形式为.10.(3分)已知x=﹣1是关于x的方程2x2+ax﹣a=0的一个根,则a=.11.(3分)一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是%.12.(3分)已知三角形的边长分别是6,8,10,则它的外接圆的半径是.13.(3分)二次函数y=﹣x2﹣4x﹣5的顶点坐标是.14.(3分)A、B、C、D四名选手参加50米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道,若A首先抽签,则A抽到3号跑道的概率是.15.(3分)数据10,8,8,9,10的方差是.16.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=40°,则∠BOD=.17.(3分)在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm,则弦AB与CD之间的距离是.18.(3分)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=.三、解答题(本大题共10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)2+3﹣;(2)(2﹣1)0+|﹣6|﹣8×4﹣1+.20.(10分)解方程:(1)x2﹣5x﹣6=0;(2)3x2﹣x﹣2=0.21.(7分)已知关于x的方程mx2﹣mx+2=0有两个相等的实数根,求m的值.22.(7分)在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是多少?23.(8分)某超市将进货单价为40元的商品按50元出售,每天可卖500个,如果这种商品每涨价1元,其销售量就减少10个,超市为使这种商品每天赚得8000元的利润,商品的售价应定为每件多少元?24.(8分)如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?25.(8分)如图,AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过点E作ED ⊥AC,垂足为D.直线ED是⊙O的切线吗?为什么?26.(8分)在平面直角坐标系中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的函数表达式;(2)写出抛物线的顶点坐标.27.(10分)如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,AE=AB,BE分别交AD、AC于点F、G.(1)∠BAD=∠C吗?为什么?(2)△FAB是等腰三角形吗?请说明理由.(3)F是BG的中点吗?请说明理由.28.(10分)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C 的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.2015-2016学年江苏省徐州市铜山区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的,把所选答案填入下表.)1.(3分)在下列方程中,是一元二次方程的是()A.3x2﹣6xy+2y2=0 B.x2+3x﹣1=x2C.x2﹣5=﹣2x D.2x﹣=0【解答】解:A、是二元二次方程,不是一元二次方程,故本选项错误;B、是一元一次方程,不是一元二次方程,故本选项错误;C、是一元二次方程,故本选项正确;A、不是整式方程,不是一元二次方程,故本选项错误;故选:C.2.(3分)方程(x﹣2)(x+3)=0的解是()A.x=2 B.x=﹣3 C.x1=﹣2,x2=3 D.x1=2,x2=﹣3【解答】解:(x﹣2)(x+3)=0,x﹣2=0,x+3=0,x1=2,x2=﹣3,故选:D.3.(3分)用配方法解方程x2+8x+7=0,则配方正确的是()A.(x﹣4)2=9 B.(x+4)2=9 C.(x﹣8)2=16 D.(x+8)2=57【解答】解:方程x2+8x+7=0,变形得:x2+8x=﹣7,配方得:x2+8x+16=9,即(x+4)2=9,故选:B.4.(3分)圆的半径为4,圆心到直线l的距离为3,则直线l与⊙O位置关系是()A.相离B.相切C.相交D.相切或相交【解答】解:∵圆的半径为4,圆心到直线l的距离为3,3<4,∴直线与圆相交.故选:C.5.(3分)在半径为1的⊙O中,120°的圆心角所对的弧长是()A.B. C.πD.【解答】解:l==.故选:B.6.(3分)以下是某校九年级10名同学参加学校演讲比赛的统计表:则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,90【解答】解:∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选:B.7.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140° D.120°【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.8.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0【解答】解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A 选项不符合题意;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.二、填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)9.(3分)将一元二次方程4x(x﹣1)=1化成一般形式为4x2﹣4x﹣1=0.【解答】解:4x(x﹣1)=1,4x(x﹣1)=1,4x2﹣4x﹣1=0.故答案为:4x2﹣4x﹣1=0.10.(3分)已知x=﹣1是关于x的方程2x2+ax﹣a=0的一个根,则a=1.【解答】解:∵x=﹣1是关于x的方程2x2+ax﹣a=0的一个根,∴2×(﹣1)2﹣a﹣a=0,∴a=1.故答案为:1.11.(3分)一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是10%.【解答】解:设平均每次降价的百分率是x,则第二次降价后的价格为60(1﹣x)2元,根据题意得:60(1﹣x)2=48.6,即(1﹣x)2=0.81,解得,x1=1.9(舍去),x2=0.1.所以平均每次降价的百分率是0.1,即10%.故答案为:1012.(3分)已知三角形的边长分别是6,8,10,则它的外接圆的半径是5.【解答】解:∵三角形的三条边长分别为6,8,10,62+82=102,∴此三角形是以10为斜边的直角三角形,∴这个三角形外接圆的半径为10÷2=5.故答案为:5.13.(3分)二次函数y=﹣x2﹣4x﹣5的顶点坐标是(﹣2,﹣1).【解答】解:∵y=﹣x2﹣4x﹣5=﹣(x+2)2﹣1,∴二次函数的顶点坐标为(﹣2,﹣1),故答案为:(﹣2,﹣1).14.(3分)A、B、C、D四名选手参加50米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道,若A首先抽签,则A抽到3号跑道的概率是.【解答】解:∵赛场共设1,2,3,4四条跑道,∴若A首先抽签,则A抽到3号跑道的概率是:.故答案为:.15.(3分)数据10,8,8,9,10的方差是.【解答】解:这组数据的平均数是:(10+8+8+9+10)÷5=9,则这组数据的方差是:[(10﹣9)2+(8﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2]=;故答案为:.16.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=40°,则∠BOD=100°.【解答】解:∵∠ACD=40°,∴∠AOD=2∠ACD=80°,∴∠BOD=180°﹣∠AOD=100°.故答案为:100°.17.(3分)在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm,则弦AB与CD之间的距离是1cm或7cm.【解答】解:过点O作OE⊥AB于E∵AB∥CD,∴OF⊥CD∵OE过圆心,OE⊥AB∴EB=AB=3cm∵OB=5cm,∴EO=4cm同理,OF=3cm∴EF=1cm当AB、CD位于圆心两旁时EF=7cm∴EF=1cm或EF=7cm.18.(3分)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=8.【解答】解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m2+2m﹣5=0∴m2=5﹣2mm2﹣mn+3m+n=(5﹣2m)﹣(﹣5)+3m+n=10+m+n=10﹣2=8故答案为:8.三、解答题(本大题共10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)2+3﹣;(2)(2﹣1)0+|﹣6|﹣8×4﹣1+.【解答】解:(1)原式=2+6﹣4=4;(2)原式=1+6﹣2+4=9.20.(10分)解方程:(1)x2﹣5x﹣6=0;(2)3x2﹣x﹣2=0.【解答】解:(1)(x﹣6)(x+1)=0,x﹣6=0或x+1=0,所以x1=6,x2=﹣1;(2)(3x+2)(x﹣1)=0,3x+2=0或x﹣1=0,所以x1=﹣,x2=1.21.(7分)已知关于x的方程mx2﹣mx+2=0有两个相等的实数根,求m的值.【解答】解:∵关于x的方程mx2﹣mx+2=0有两个相等的实数根,∴△=m2﹣4×m×2=0,解得:m1=0,m2=8,∵原方程有两个相等的实数根,∴m≠0,∴m=8.22.(7分)在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是多少?【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号相同的有4种情况,∴两次摸出的小球的标号相同的概率是:=.23.(8分)某超市将进货单价为40元的商品按50元出售,每天可卖500个,如果这种商品每涨价1元,其销售量就减少10个,超市为使这种商品每天赚得8000元的利润,商品的售价应定为每件多少元?【解答】解:设定价为x元,根据题意可得,(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=80,x2=60.答:定价为80元或60元,利润可达到8000元.24.(8分)如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?【解答】解:(1)这些车的平均速度是:(40×2+50×3+60×4+70×5+80×1)÷15=60(千米/时);(2)70千米/时出现的次数最多,则这些车的车速的众数70千米/时;(3)共有15个,最中间的数是第8个数,则中位数是60千米/时.25.(8分)如图,AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过点E作ED ⊥AC,垂足为D.直线ED是⊙O的切线吗?为什么?【解答】证明:是,连接OE,∵AE平分∠BAC,∴∠OAE=∠DAE,∵OA=OE,∴∠OAE=∠AEO,∵ED⊥AC,∴∠ADE=90°,∴∠EDA+∠DEA=90°,∴∠OEA+∠AED=90°,即OE⊥ED,∴ED是圆O的切线.26.(8分)在平面直角坐标系中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的函数表达式;(2)写出抛物线的顶点坐标.【解答】解:(1)∵y=2x2+mx+n经过点A(0,﹣2)B(3,4)代入得:,解得:,∴抛物线的表达式为:y=2x2﹣4x﹣2;(2)∵y=2x2﹣4x﹣2=2(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4).27.(10分)如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,AE=AB,BE分别交AD、AC于点F、G.(1)∠BAD=∠C吗?为什么?(2)△FAB是等腰三角形吗?请说明理由.(3)F是BG的中点吗?请说明理由.【解答】解:(1)相等.理由:∵BC是圆O的直径,∴∠BAC=90°,∴∠C+∠ABC=90°,∵AD⊥BC,∴∠BAD+∠ABC=90°,∴∠C=∠BAD;(2)是等腰三角形.理由:∵AE=AB,∴∠ABE=∠E,∵∠C=∠BAD,∠E=∠C,∴∠BAD=∠ABE=∠C,∴FA=FB;(3)是中点.理由:∵∠ABG+∠AGB=90°,∠C+∠DAC=90°,∠ABE=∠C,∴∠FAG=∠FGA,∴FG=FA,∴FG=FA=FB,即F是BG的中点.28.(10分)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C 的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.【解答】解:(1)连接PA,如图1所示.∵PO⊥AD,∴AO=DO.∵AD=2,∴OA=.∵点P坐标为(﹣1,0),∴OP=1.∴PA==2.∴BP=CP=2.∴B(﹣3,0),C(1,0).(2)连接AP,延长AP交⊙P于点M,连接MB、MC.如图2所示,线段MB、MC即为所求作.四边形ACMB是矩形.理由如下:∵△MCB由△ABC绕点P旋转180°所得,∴四边形ACMB是平行四边形.∵BC是⊙P的直径,∴∠CAB=90°.∴平行四边形ACMB是矩形.过点M作MH⊥BC,垂足为H,如图2所示.在△MHP和△AOP中,∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP.∴MH=OA=,PH=PO=1.∴OH=2.∴点M的坐标为(﹣2,).(3)在旋转过程中∠MQG的大小不变.∵四边形ACMB是矩形,∴∠BMC=90°.∵EG⊥BO,∴∠BGE=90°.∴∠BMC=∠BGE=90°.∵点Q是BE的中点,∴QM=QE=QB=QG.∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.∴∠MQG=2∠MBG.∵∠COA=90°,OC=1,OA=,∴tan∠OCA==.∴∠OCA=60°.∴∠MBC=∠BCA=60°.∴∠MQG=120°.∴在旋转过程中∠MQG的大小不变,始终等于120°.。
专题17 相似三角形及应用学校:___________姓名:___________班级:___________1.【江苏省南通市海安县2015届九年级上学期期末考试数学试题】下列条件不能判定△ABC 与△DEF 相似的是( ) A .B . ,C . ∠A=∠D ,∠B=∠E D .,∠B=∠E【考点定位】相似三角形的判定.2. 【江苏省徐州市市区、铜山县2015届九年级中考模拟数学试题】直线l 1∥l 2∥l 3,且l 1与l 2的距离为1,l 2与l 3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A ,B ,C 恰好分别落在三条直线上,AC 与直线l 2交于点D ,则线段BD 的长度为()A .B .C .D .【答案】A .【解析】分别过点A 、B 、D 作AF ⊥l 3,BE⊥l 3,DG⊥l 3,先根据全等三角形的判定定理得出AB BC AC DE EF DF ==AB BCDE EF=A D ∠=∠AB BCDE EF=254253203154△BCE≌△ACF,故可得出CF 及CE 的长,在Rt△ACF 中根据勾股定理求出AC 的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD 的长,在Rt△BCD 中根据勾股定理即可求出BD 的长.分别过点A 、B 、D 作AF⊥l 3,BE⊥l 3,DG⊥l 3,∵△ABC 是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF, 在△BCE 与△ACF 中,,【考点定位】1.相似三角形的判定与性质;2.平行线之间的距离;3.全等三角形的判定与性质;4.等腰直角三角形.3.【江苏省淮安市2015年中考数学试题】如图,l 1∥l 2∥l 3,直线a ,b 与l 1、l 2、l 3分别相交于A 、B 、C 和点D 、E 、F .若,DE =4,则EF 的长是( )EBC ACF BC ACBCE CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩32=BCABA .B . C.6 D .10 【答案】C .【考点定位】平行线分线段成比例.4.【江苏省南京市2015年中考数学试题】如图所示,△ABC 中,DE ∥BC ,若,则下列结论中正确的是( ) A .B .C .D .【答案】C .【考点定位】相似三角形的判定与性质.5.【江苏省南通市海安县2015届九年级上学期期末考试数学试题】若△ABC∽△A′B′C′,相似比为1:3,则△ABC 与△A′B′C′的面积之比为 . 【答案】1:9.【解析】∵△ABC ∽△A′B′C′,相似比为1:3,∴△A BC 与△A′B′C′的面积之比为1:9.故答案为:1:9.【考点定位】相似三角形的性质.6.【江苏省扬州市2015年中考数学试题】如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A 、B 、C 都在横格线上,若线段AB =4 cm ,则线段BC = cm3832012AD DB =12AE EC =12DE BC =1=3ADE ABC △的周长△的周长1=3ADE ABC △的面积△的面积【答案】12【考点定位】平行线分线段成比例7.【江苏省常州市2015年中考数学试题】如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是.【答案】6.【考点定位】相似三角形的判定与性质.8.【江苏省无锡市2015年中考数学试题】已知:如图,AD 、BE 分别是△ABC 的中线和角平分线,AD ⊥BE ,AD =BE =6,则AC的长等于 .【答案】952故答案为:952【考点定位】全等三角形的判定及性质;相似三角形的判定及性质;勾股定理.9.【江苏省苏州市吴中、相城、吴江区2015届九年级中考一模数学试题】如图,在平面直角坐标系中,已知点A (0,6),B (8,0).点P 从A 点出发,以每秒1个单位的速度沿AO 运动;同时,点Q 从O 出发,以每秒2个单位的速度沿OB 运动,当Q 点到达B 点时,P 、Q 两点同时停止运动.(1)求运动时间t 的取值范围;(2)t 为何值时,△POQ 的面积最大?最大值是多少?(3)t 为何值时,以点P 、0、Q 为顶点的三角形与Rt △AOB 相似?BACDE【答案】(1) 0≤t ≤4;(2) 当t=3时,△POQ 的面积最大,最大值是9.(3) 当t 为或时,以点P 、0、Q 为顶点的三角形与Rt △AOB 相似. 【解析】试题分析:(1)由点Q 从O 出发,以每秒2个单位的速度沿O B 运动,当Q 点到达B 点时,P 、Q 两点同时停止运动,可得:2t=8,解得:t=4,进而可得:0≤t ≤4;(2)先根据三角形的面积公式,用含有t 的式子表示△POQ 的面积=-t 2+6t ,然后根据二次函数的最值公式解答即可;试题解析:(1)∵点A (0,6),B (8,0),∴OA=6,OB=8,∵点Q 从O 出发,以每秒2个单位的速度沿OB 运动,当Q 点到达B 点时,P 、Q 两点同时停止运动,∴2t=8,解得:t=4, ∴0≤t ≤4;(2)根据题意得:经过t 秒后,AP=t ,OQ=2t ,∴OP=OA-AP=6-t , ∵△POQ 的面积=•OP •OQ ,即△POQ 的面积=×(6-t )×2t=-t 2+6t . ∵a=-1<0,∴△POQ 的面积有最大值,当t=-=3时,△POQ 的面积的最大值==9, 即当t=3时,△POQ 的面积最大,最大值是9. (3)①若Rt △POQ ∽Rt △AOB 时,125181112122b a 244ac b a∵Rt △POQ ∽R t △AOB ,∴,即,解得:t= ②若Rt △QOP ∽Rt △AOB 时, ∵Rt △QOP ∽Rt △AOB ,∴,即,解得:t=. 所以当t 为或时,以点P 、0、Q 为顶点的三角形与Rt △AOB 相似.【考点定位】相似三角形与一次函数综合题.10.【江苏省南京市2015年中考数学试题】如图,△ABC 中,CD 是边AB 上的高,且.(1)求证:△ACD ∽△CBD ; (2)求∠ACB 的大小.【答案】(1)证明见试题解析;(2)90°. 【解析】【考点定位】相似三角形的判定与性质.PO OQ AO OB =6268t t-=125 PO OQ OB AO =6286t t-=18111251811AD CDCD BD=。
一,填空题:本大题共14个小题,每小题5分,共70分.1.已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中圆素地个数为_______.【结果】5【思路】试题思路:{123}{245}{12345}5A B == ,,,,,,,,,个元素考点:集合运算2.已知一组数据4,6,5,8,7,6,那么这组数据地平均数为________.【结果】6考点:平均数3.设复数z 满足234z i =+(i 是虚数单位),则z 地模为_______.【思路】试题思路:22|||34|5||5||z i z z =+=⇒=⇒=考点:复数地模,可知输出地结果S 为________.【结果】7【思路】试题思路:第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7.S =考点:循环结构流程图5.袋中有形状,大小都相同地4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同地概率为________.【结果】5.6(第4题图)考点:古典概型概率6.已知向量a =)1,2(,b=)2,1(-, 若m a +n b =)8,9(-(R n m ∈,), n m -地值为______.【结果】3-【思路】试题思路:由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=-考点:向量相等7.不等式224x x-<地解集为________.【结果】(1,2).-【思路】试题思路:由题意得:2212x x x -<⇒-<<,解集为(1,2).-考点:解指数不等式与一圆二次不等式8.已知tan 2α=-,()1tan 7αβ+=,则tan β地值为_______.【结果】3【思路】试题思路:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++-考点:两角差正切公式9.现有橡皮泥制作地底面半径为5,高为4地圆锥和底面半径为2,高为8地圆柱各一个。
徐州市2015年初中毕业、升学考试 数学 模拟试题(八)(满分:140分 考试时间:120分钟)一、选择题(本大题共有8小题。
每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.5的相反数是( )A .5B .-5C .51 D .512.一组数据:-2,1,1,0,2,1.则这组数据的众数是( ) A .-2B .0C .1D .23.如图1几何体的俯视图是( )4.如图2,已知AB ∥CD ,与∠1是同位角的角是( )A .∠2B .∠3C .∠4D .∠55.如图3,△ABC 与△DEF 关于y 轴对称,已知A (-4,6),B (-6,2),E (2,1),则点D 的坐标为( ) A .(-4,6) B .(4,6) C .(-2,1) D .(6,2)6.下列式子从左到右变形是因式分解的是( )A .a 2+4a-21=a (a+4)-21 B .a 2+4a-21=(a-3)(a+7) C .(a-3)(a+7)=a 2+4a-21 D .a 2+4a-21=(a+2)2-257.将抛物线y =x 2平移得到抛物线y =(x +2)2,则这个平移过程正确的是( ) A .向左平移2个单位 B .向右平移2个单位 C .向上平移2个单位 D .向下平移2个单位图1A B C D图2图38.已知k 1>0>k 2,则函数y =k 1x 和y =2k x的图象在同一平面直角坐标系中大致是( )二、填空题(本大题共有10小题。
每小题3分,共30分。
不需要写出解答过程,请把答案直接写在答题卡的相应位置上) 9.方程x +2=1的解是 .10.据报道,我省西环高铁预计2015年底建成通车,计划总投资27100 000 000元,数据27100 000 000用科学记数法表示为 .11.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是 . 12.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款 元. 13.函数2y x =-中,自变量x 的取值范围是 . 14.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是 . 15.一个圆锥的侧面展开图是半径为8cm 、圆心角为120°的扇形,则此圆锥底面圆的半径为 .16.一个不透明的袋子中有3个分别标有数字3, 1,-2的球,这些球除所标的数字不同外其它都相同.若从袋子中随机摸出两个球,则这两个球上的两个数字之和..为负数的概率是 . 17.如图4,AD 是△ABC 的高,AE 是△ABC 的外接圆⊙O 的直径, 且AB=,AC =5,AD =4,则⊙O 的直径AE = .18.如图5,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形,若点C 恰好落在AB 上,且∠AOD 的度数为90°,则∠B 的度数是 . 三、解答题(本大题共有10小题,共86分。
2014-2015学年度第二学期模拟检测九年级数学试题(全卷共140分,考试时间120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的代号填在答题卷的相应位置上.)1.下列四个数中,最大的数是 ( ) A .2B .1-C .0D .32. 下列运算中,结果正确的是( )A .235a a a += B .623a a a ÷= C .()326aa = D .236a a a ⨯=3.下列图形中,既是中心对称图形又是轴对称图形的是( )4.将抛物线21y x =+先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是( ) A .()222y x =++ B .()222y x =-+C .()222y x =-- D . ()222y x =+-5.以下各图均有彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是( ) A .B .C .D .6.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手 甲 乙 丙 丁平均数(环) 9.2 9.2 9.29.2 方差(环2)0.035 0.015 0.025 0.027则这四人中成绩发挥最稳定的是( ) A . 甲 B . 乙 C . 丙D . 丁7.如图,过点()1,2C 分别作x 轴、y 轴的平行线,交直线6y x =-+于A 、B 两点,若反比例函数ky x=()0x > 的图象与ABC ∆有公共点,则k 的取值范围是( ) A .29k ≤≤ B .28k ≤≤ C . 25k ≤≤ D .58k ≤≤ 第6题8.直线l 1∥l 2∥l 3,且l 1与l 2的距离为1,l 2与l 3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A ,B ,C 恰好分别落在三条直线上,AC 与直线l 2交于点D ,则线段BD 的长度为( ) A.254B .253C .203D .154二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卷相应位置上.) 9.因式分解:34y y -= .10.今年我市参加中考的人数大约有63200人,将63200用科学记数法表示为 . 11.若分式21x x -- 的值为零,则x = . 12.已知2210m m --=,则2243m m -+= .13.已知圆锥的底面圆的半径为3m ,其侧面展开图是半圆,则圆锥的母线长为 m . 14.如图,△ ABC 是⊙ O 的内接三角形,C ∠=50°,则OAB ∠= __ __°.15.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件 .16.关于x 的一元二次方程210kx x -+= 有两个不相等的实数根,则k 的取值范围是 . 17.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1.如图2,将Rt △BCD 沿射线BD 方向平移,在平移的过程中,当点B 的移动距离为 时,四边ABC 1D 1为矩形,当点B 的移动距离为 时,四边形ABC 1D 1为菱形.18.如图,在平面直角坐标系xOy 中,已知直线l :1y x =--,双曲线1y x=,在l 上取一点1A ,过1A 作x 轴的垂线交双曲线于点1B ,过1B 作y 轴的垂线交l 于点2A ,请继续操作并探究:过2A 作x 轴的垂线交双曲线于点2B ,过2B 作y 轴的垂线交l 于点3A ,…,这样依次得到l 上的点1A ,2A ,3A ,…,n A ,…记点n A 的横坐标为n a ,若12a =,则2015a = .第14题第7题 第8题 图130︒30︒B DA C图2D 1C 1B 1CA DB 第17题第15题第18题三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题10分)(1)计算:120141192-⎛⎫-+- ⎪⎝⎭;(2)解方程:2311x x=-+20.(本题10分)(1)求不等式组220350xx+≥⎧⎨-<⎩的整数解;(2)化简:21111xx x⎛⎫+÷⎪--⎝⎭21.(本题7分)为了解某校初三学生英语口语检测成绩等级的分布情况,随机抽取了该校若干名学生的英语口语检测成绩,按A,B,C,D四个等级进行统计分析,并绘制了如下尚不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)本次抽取的学生有___ 名;(2)补全条形统计图;(3)在抽取的学生中C级人数所占的百分比是__ ;(4)根据抽样调查结果,请你估计某校860名初三学生英语口语检测成绩等级为A级的人数.22.(本题7分)一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率(用树状图或列表法求解).23.(本题8分)已知:如图,在平行四边形ABCD 中,点E 、F 在AC 上,且AE =CF . 求证:四边形BEDF 是平行四边形.24.(本题8分)如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1. (1)画出△ AOB 关于x 轴对称的△ 11A OB .(2)画出将△ AOB 绕点O 顺时针旋转90°的△ 22A OB ,并判断△ 11A OB 和△ 22A OB 在位置上有何关系?若成中心对称,请直接写出对称中心坐标;如成轴对称,请直接写出对称轴的函数关系式. (3)若将△ AOB 绕点O 旋转360°,试求出线段AB 扫过的面积.25.(本题8分)如图,AB 为⊙ O 的直径,C 为⊙ O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,AD 交⊙ O 于点E .(1)求证:AC 平分DAB ∠;(2)若B ∠=60°,CD =23,求AE 的长.第23题第24题 第25题26.(本题8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.第26题27.(本题10分))在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:①tan∠PEF的值是否发生变化?请说明理由;②直接写出从开始到停止,线段EF的中点经过的路线长.28.(本题10分)如图,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)点A 的坐标 、点B 的坐标 ;(2)设D 为已知抛物线的对称轴上的任意一点,当△ ACD 的面积等于△ ACB 的面积时,求点D 的坐标; (3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的表达式.第28题2014-2015学年度第二学期模拟检测九年级数学试题参考答案及评分标准一、选择题(本大题共8小题,每小题3分,共计24分)二、填空题(本大题共10小题,每小题3分,共计30分)9.()()22y y y+-10.46.3210⨯11.2 12.5 13.3 14.40°15.AC BD=16.14k<且0k≠17.33(对一个得2分) 18.32-三、解答题(本大题共10小题,共计86分)19.(1)原式=-1+3-2--------------------------3分;=0.--------------------------------------------5分(2)()()2131x x+=---------------------------2分5x=----- 4分;5x=代入最简公分母0≠所以5x=是方程的解.-------------5分20.(1)解不等式①,得1x≥-.----------------------2分;解不等式②,得53x<.-----------------3分所以,不等式组的解集是513x-≤<.----------------------4分整数解101-、、------------5分(2)原式=()()111x xxx x+-⋅-----------------------4分=1x+------------5分21.(1)100;--------2分(2)略-------4分(3)30%.------5分(4)172人--------7分22.(1)随机摸出一个球是白球的概率为23;…………3分(2)根据题意画出树状图如下:一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,………6分所以,P(两次摸出的球都是白球)2163==.………7分23.证明:∵□ABCD中,∴AB=CD,AB∥CD,……2分;∴∠BAC=∠ACD,……4分又∵AE=CF,∴△ABE≌△CDF,………5分;∴BE=DF.∴∠AEB=∠DFC∴BE∥DF………7分∴四边形BEDF是平行四边形………8分题号 1 2 3 4 5 6 7 8答案 A C B D D B A A24. ………2分………4分y x =- ………6分线段AB 扫过的面积=()221055 2.5 2.52πππππ⎛⎫-=-= ⎪ ⎪⎝⎭.………8分 25、(1)证明:如图1,连接OC ,∵CD 为⊙ O 的切线,∴OC ⊥ CD ,∴∠ OCD=90°,∵AD ⊥ CD ,∴∠ ADC=90°,∴∠ OCD+∠ ADC=180°,∴ AD ∥ OC ,∴∠ 1=∠ 2,∵ OA=OC ,∴∠ 2=∠ 3,∴∠ 1=∠ 3,则AC平分∠ DAB ; …4分(2)解:如图2,连接OE ,∵AB 是⊙ O 的直径,∴∠ ACB=90°,又∵∠ B=60°,∴∠ 1=∠ 3=30°,在R t △ ACD 中,CD=2,∠ 1=30°,∴AC=2CD=4,在Rt △ABC 中,AC=4,∠CAB=30°,∴ AB===8,∵∠ EAO=2∠ 3=60°,OA=OE ,∴△ AOE 是等边三角形,∴AE=OA=AB=4;………8分 26、设AB =x m ,则BC =()28x -m , 则()28192x x -=,解得:1212,16x x ==, 答:x 的值为12m 或16m ; ………3分 (2)()()22282814196S x x x x x =-=-+=--+ ………5分在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6m ,28﹣15=13, ………6分 6≤x ≤13,当13x =时,S 取到最大值为:S =﹣(13﹣14)2+196=195, ………7分 答:花园面积S 的最大值为195平方米. ………8分 27、(1)在矩形ABCD 中,∠A =∠D =90°,AP =1,CD =AB =2,则PB =,∴∠A BP +∠APB =90°, 又∵ ∠BPC =90°,∴ ∠APB +∠DPC =90°,∴∠ABP =∠DPC , ∴△ APB ∽ △ DCP ,∴=,即=,∴PC =25 ; ………4分(2)①tan ∠PEF 的值不变. ………5分 理由:过F 作FG ⊥ AD ,垂足为G ,则四边形ABFG 是矩形,∴∠A =∠PGF =90°,GF =AB =2, ∴ ∠AEP +∠APE =90°,又∵∠EPF =90°,∴ ∠APE +∠ GPF =90°, ∴ ∠AEP = ∠GPF , ∴ △ A PE ∽ △ GPF ,∴===2,∴ Rt △ E PF 中,tan ∠PEF ==2,所以tan ∠PEF 的值不变; ………8分 ②设线段EF 的中点为O ,连接OP ,OB ,∵在Rt △ EPF 中,OP =EF ,在Rt△EBF中,OB=EF∴OP=OB=EF,∴O点在线段BP的垂直平分线上,∴EF的中点经过的路线长为O1O2=PC=.………10分28、(1)令y=0,即=0,解得x1=﹣4,x2=2,∴A、B点的坐标为A(﹣4,0)、B(2,0).………2分(2)抛物线y=的对称轴是直线x=﹣=﹣1,即D点的横坐标是﹣1,S△ACB=AB•OC=9,在Rt△ AOC中,AC===5,设△ACD中AC边上的高为h,则有AC•h=9,解得h=.如答图1,在坐标平面内作直线平行于AC,且到AC的距离=h=,这样的直线有2条,分别是l1和l2,则直线与对称轴x=﹣1的两个交点即为所求的点D.设l1交y轴于E,过C作CF⊥l1于F,则CF=h=,∴ CE==.设直线AC的解析式为y=kx+b,将A(﹣4,0),C(0,3)坐标代入,得到,解得,∴直线AC解析式为y=x+3.直线l1可以看做直线AC向下平移CE长度单位(个长度单位)而形成的,∴直线l1的解析式为y=x+3﹣=x﹣.则D1的纵坐标为×(﹣1)﹣=,∴D1(﹣1,).同理,直线AC向上平移个长度单位得到l2,可求得D2(﹣1,)综上所述,D点坐标为:D1(﹣1,),D2(﹣1,).………6分(3)如答图2,以AB为直径作⊙F,圆心为F.过E点作⊙F的切线,这样的切线有2条.连接FM,过M作MN ⊥x轴于点N.∵A(﹣4,0),B(2,0),∴F(﹣1,0),⊙F半径FM=FB=3.又FE=5,则在Rt△ MEF中,ME==4,sin∠MFE=,cos∠MFE=.在Rt△FMN中,MN=MF•sin∠MFE=3×=,FN=MF•cos ∠MFE=3×=,则ON=,∴M点坐标为(,)直线l过M(,),E(4,0),设直线l的解析式为y=kx+b,则有,解得,所以直线l的解析式为y=x+3.同理,可以求得另一条切线的解析式为y=x﹣3.综上所述,直线l的解析式为y=x+3或y=x-3.………10分。
2015年某某省某某市中考数学一模试卷一、选择题1.﹣3的绝对值是()A.3 B.﹣3 C.﹣ D.2.下面计算一定正确的是()A.(b2)3=b5B.b2•b3=b6C.b2+b3=2b6D.b3+b3=2b33.将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,则它的俯视图是()A.B.C.D.4.下列判断正确的是()A.“打开电视机,正在播NBA篮球赛”是必然事件B.“掷一枚硬币正面朝上的概率是”表示毎抛掷硬币2次就必有1次反面朝上C.一组数据2,3,4,5,5,6的众数和中位数都是5D.甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,则乙组数据比甲组数据稳定5.平行四边形的对角线一定具有的性质是()A.相等 B.互相平分C.互相垂直 D.互相垂直且相等6.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=()A.35° B.70° C.110°D.140°7.如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°8.如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1 B.2 C.3 D.4二、填空题9.分解因式:x2﹣1=.10.我国第一艘航母“某某舰”的最大的排水量约为68000吨,用科学记数法表示这个数是吨.11.若二次根式有意义,则x的取值X围是.12.学校要从小明等13名同学出选出6名学生参加数学竞赛.经过选拔赛后,小明想提前知道自己能否被选上,他除了要知道自己的成绩以外,还要知道这13名同学成绩的.13.若关于x的一元二次方程x2+4x﹣a=0有两个不相等的实数根,则a的取值X围是.14.若2a2﹣a﹣3=0,则5+2a﹣4a2=.15.如图,在正方形ABCD中,对角线BD的长为.若将BD绕点B旋转后,点D落在BC延长线上的点D′处,点D经过的路径为弧DD′,则图中阴影部分的面积是.16.如图,在△ABC中,∠B与∠C的平分线交于点O,过O点作DE∥BC,分别交于AB、AC于D、E.若AB=7,AC=5.则△ADE的周长是.17.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.18.如图,在平面直角坐标系中,已知点P0坐标为(1,0),将线段OP0绕点O顺时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;将线段OP1绕点O顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2,…,这样依次得到线段OP3,OP4,…,OP n.则点P2的坐标为;当n=4m+1(m为自然数)时,点P n的坐标为.三、解答题19.(1)计算:()﹣2﹣2sin60°+(2)解方程:x(x+5)=x+5.20.(1)解不等式组:,并把解集在数轴上表示出来.(2)先化简,再求值:(﹣)÷(x+1),其中x=.21.某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设A:踢毽子;B:篮球;C:跳绳;D:乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下两个统计图.请结合图中的信息解答下列问题:(1)本次共调查了多少名学生?(2)请将两个统计图补充完整.(3)若该中学有1200名学生,喜欢篮球运动项目的学生约有多少名?22.在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x,小X在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).(1)画树状图或列表,写出点Q所有可能的坐标;(2)求点Q(x,y)在函数y=﹣x+5图象上的概率.23.如图,在矩形ABCD中,把∠B、∠D分别翻折,使点B、D恰好落在对角线AC上的点E、F处,折痕分别为CM、AN.(1)求证:△ADN≌△CBM.(2)请连接MF、NE,判断四边形MFNE的形状?请说明理由.24.如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约是多少m?(精确到).(参考数据:≈1.41,≈1.73)25.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)求直线AC的解析式;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.26.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.27.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结.求证:∠ABC=∠A.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠A还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结.试探究∠ABC与∠A的数量关系,并说明理由.28.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点P作PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0).(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.2015年某某省某某市撷秀中学中考数学一模试卷参考答案与试题解析一、选择题1.﹣3的绝对值是()A.3 B.﹣3 C.﹣ D.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.故选:A.【点评】此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下面计算一定正确的是()A.(b2)3=b5B.b2•b3=b6C.b2+b3=2b6D.b3+b3=2b3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】分别利用幂的乘方运算法则以及合并同类项法则分别计算得出答案.【解答】解:A、(b2)3=b6,故原题计算错误;B、b2•b3=b5,故原题计算错误;C、b2和b3不是同类项,不能合并,故原题计算错误;D、b3+b3=2b3,正确.故选:D.【点评】此题主要考查了幂的乘方运算法则以及同底数幂的乘法运算法则等知识,正确掌握运算法则是解题关键.3.将一包卷筒卫生纸按如图所示的方式摆放在水平桌面上,则它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从几何体的上面看可得两个同心圆,故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.下列判断正确的是()A.“打开电视机,正在播NBA篮球赛”是必然事件B.“掷一枚硬币正面朝上的概率是”表示毎抛掷硬币2次就必有1次反面朝上C.一组数据2,3,4,5,5,6的众数和中位数都是5D.甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,则乙组数据比甲组数据稳定【考点】方差;中位数;众数;随机事件;概率的意义.【分析】根据方差、随机事件、中位数、众数以及概率的意义,分别对每一项进行分析即可.【解答】A.“打开电视机,正在播NBA篮球赛”随机事件,故本选项错误,B.“掷一枚硬币正面朝上的概率是”表示毎抛掷硬币2次1次反面朝上的可能性很大,但不是必然有,故本选项错误,C.一组数据2,3,4,5,5,6的众数是5中位数是4.5,故本选项错误,D.∵甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,故本选项错误,∴S甲2>S乙2,∴乙组数据比甲组数据稳定,故本选项正确;故选D.【点评】此题考查了方差、随机事件、中位数、众数以及概率的意义,关键是熟练掌握有关定义和概念.5.平行四边形的对角线一定具有的性质是()A.相等 B.互相平分C.互相垂直 D.互相垂直且相等【考点】平行四边形的性质.【分析】根据平行四边形的对角线互相平分可得答案.【解答】解:平行四边形的对角线互相平分,故选:B.【点评】此题主要考查了平行四边形的性质,关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.6.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=()A.35° B.70° C.110°D.140°【考点】圆内接四边形的性质;圆周角定理.【分析】由圆内接四边形的外角等于它的内对角知,∠A=∠DCE=70°,由圆周角定理知,∠BOD=2∠A=140°.【解答】解:∵四边形ABCD内接于⊙O,∴∠A=∠DCE=70°,∴∠BOD=2∠A=140°.故选D.【点评】圆内接四边形的性质:1、圆内接四边形的对角互补;2、圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°【考点】翻折变换(折叠问题);三角形中位线定理.【专题】几何图形问题.【分析】根据三角形的内角和定理得到∠C=104°,再由中位线定理可得DE∥BC,∠ADE=∠B=50°,∠AED=∠C=104°,根据折叠的性质得∠DEA′=∠AED=104°,再求∠AEA′的度数即可.【解答】解:∵∠B=50°,∠A=26°,∴∠C=180°﹣∠B﹣∠A=104°,∵点D、E分别是边AB、AC的中点,∴DE∥BC,∴∠ADE=∠B=50°,∠AED=∠C=104°,∵将△ABC沿DE折叠,∴△AED≌△A′ED,∴∠DEA′=∠AED=104°,∴∠AEA′=360°﹣∠DEA′﹣∠AED=360°﹣104°﹣104°=152°.故选:B.【点评】本题考查了三角形中位线定理的位置关系,并运用了三角形的翻折变换知识,解答此题的关键是要了解图形翻折变换后与原图形全等.8.如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1 B.2 C.3 D.4【考点】二次函数综合题.【专题】压轴题;动点型.【分析】抛物线在平移过程中形状没有发生变化,因此函数解析式的二次项系数在平移前后不会改变.首先,当点B横坐标取最小值时,函数的顶点在C点,根据待定系数法可确定抛物线的解析式;而点A横坐标取最大值时,抛物线的顶点应移动到E点,结合前面求出的二次项系数以及E点坐标可确定此时抛物线的解析式,进一步能求出此时点A的坐标,即点A的横坐标最大值.【解答】解:由图知:当点B的横坐标为1时,抛物线顶点取C(﹣1,4),设该抛物线的解析式为:y=a(x+1)2+4,代入点B坐标,得:0=a(1+1)2+4,a=﹣1,即:B点横坐标取最小值时,抛物线的解析式为:y=﹣(x+1)2+4.当A点横坐标取最大值时,抛物线顶点应取E(3,1),则此时抛物线的解析式:y=﹣(x﹣3)2+1=﹣x2+6x﹣8=﹣(x﹣2)(x﹣4),即与x轴的交点为(2,0)或(4,0)(舍去),∴点A的横坐标的最大值为2.故选B.【点评】考查了二次函数综合题,解答该题的关键在于读透题意,要注意的是抛物线在平移过程中形状并没有发生变化,改变的是顶点坐标.注意抛物线顶点所处的C、E两个关键位置,前者能确定函数解析式、后者能得到要求的结果.二、填空题9.分解因式:x2﹣1= (x+1)(x﹣1).【考点】因式分解﹣运用公式法.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了平方差公式分解因式的知识.题目比较简单,解题需细心.10.我国第一艘航母“某某舰”的最大的排水量约为68000吨,用科学记数法表示这个数是×104吨.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.×104.×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.若二次根式有意义,则x的取值X围是x≥2 .【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件,可得x﹣2≥0,解不等式求X围.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.【点评】本题考查二次根式的意义,只需使被开方数大于或等于0即可.12.学校要从小明等13名同学出选出6名学生参加数学竞赛.经过选拔赛后,小明想提前知道自己能否被选上,他除了要知道自己的成绩以外,还要知道这13名同学成绩的中位数.【考点】统计量的选择.【分析】13人成绩的中位数是第7名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有13个人,且他们的分数互不相同,第7名的成绩是中位数,要判断是否进入前6名,故小明应知道自已的成绩和中位数.故答案为:中位数.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.13.若关于x的一元二次方程x2+4x﹣a=0有两个不相等的实数根,则a的取值X围是a>﹣4 .【考点】根的判别式.【分析】由方程有两个不相等的实数根结合根的判别式即可得出关于a的一元一次不等式,解不等式即可得出结论.【解答】解:∵方程x2+4x﹣a=0有两个不相等的实数根,∴△=42﹣4×1×(﹣a)=16+4a>0,解得:a>﹣4.故答案为:a>﹣4.【点评】本题考查了根的判别式,解题的关键是利用根的判别式找出不等式16+4a>0.本题属于基础题,难度不大,解决该题型题目时,根据根的个数利用根的判别式找出方程(或不等式)是关键.14.若2a2﹣a﹣3=0,则5+2a﹣4a2= ﹣1 .【考点】代数式求值.【专题】计算题;实数.【分析】已知等式变形求出2a2﹣a的值,原式变形后代入计算即可求出值.【解答】解:∵2a2﹣a﹣3=0,∴2a2﹣a=3,则原式=5﹣2(2a2﹣a)=5﹣6=﹣1,故答案为:﹣1.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.如图,在正方形ABCD中,对角线BD的长为.若将BD绕点B旋转后,点D落在BC延长线上的点D′处,点D经过的路径为弧DD′,则图中阴影部分的面积是.【考点】扇形面积的计算.【专题】推理填空题.【分析】要求阴影部分的面积只要求出扇形BDD′和三角形BCD的面积,然后作差即可,扇形BDD′是以BD为半径,所对的圆心角是45°,根据正方形ABCD和BD的长可以求得BC的长,从而可以求得三角形BCD的面积.【解答】解:设BC的长为x,解得,x=1,即BC=1,∴S阴影CDD′=S扇形BDD′﹣S△BCD==,故答案为:.【点评】本题考查扇形面积的计算、三角形的面积,解题的关键是明确题意,找出所求问题需要的条件.16.如图,在△ABC中,∠B与∠C的平分线交于点O,过O点作DE∥BC,分别交于AB、AC于D、E.若AB=7,AC=5.则△ADE的周长是12 .【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线定义和平行线性质得出∠DBO=∠DOB,推出BD=DO,同理E得出O=CE,求出△ADE的周长等于AB+AC,求出即可.【解答】解:∵BO平分∠ABC,∴∠DBO=∠CBO,∵DE∥BC,∴∠DOB=∠CBO,∴∠DBO=∠DOB,∴BD=DO,同理EO=CE,∴△ADE的周长是AE+AD+DE=AD+DO+EO+AE=AD+BD+AE+CE=AB+AC=7+5=12,故答案为:12.【点评】本题考查了角平分线定义,平行线的性质,等腰三角形的判定的应用,关键是推出△ADE 的周长等于AC+AB.17.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为﹣16 .【考点】相似三角形的判定与性质;反比例函数系数k的几何意义.【专题】几何图形问题.【分析】证△DCO∽△ABO,推出===,求出=()2=,求出S△ODC=8,根据三角形面积公式得出OC×CD=8,求出OC×CD=16即可.【解答】解:∵OD=2AD,∴=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴===,∴=()2=,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=16,∵双曲线在第二象限,∴k=﹣16,故答案为:﹣16.【点评】本题考查了反比例函数图象上点的坐标特征,相似三角形的性质和判定的应用,解此题的关键是求出△ODC的面积.18.如图,在平面直角坐标系中,已知点P0坐标为(1,0),将线段OP0绕点O顺时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;将线段OP1绕点O顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2,…,这样依次得到线段OP3,OP4,…,OP n.则点P2的坐标为(0,﹣4);当n=4m+1(m为自然数)时,点P n的坐标为(﹣•2n﹣1,•2n﹣1)或(•2n﹣1,﹣•2n﹣1).【考点】规律型:点的坐标.【分析】根据点P0坐标求出OP0,然后分别求出OP1,OP2,OP3,OP4,…,OP n,再根据点P2在y轴负半轴写出坐标即可;分m是奇数和偶数两种情况确定出点P n所在的象限,然后根据等腰直角三角形的性质写出坐标即可.【解答】解:∵P0的坐标为(1,0),∴OP0=1,∴OP1=2,OP2=2×2=22,OP3=22×2=23,OP4=23×2=24,…,OP n=2n﹣1×2=2n,∵每次旋转45°,点P0在x轴正半轴,∴点P2在y轴负半轴,∴点P2的坐标为(0,﹣4);∵OP n为所在象限的平分线上,∴2n×=•2n﹣1,①m为奇数时,点P n在第二象限,点P n(﹣•2n﹣1,•2n﹣1),②m为偶数时,点P n在第四象限,点P n(•2n﹣1,﹣•2n﹣1),综上所述,点P n的坐标为(﹣•2n﹣1,•2n﹣1)或(•2n﹣1,﹣•2n﹣1).故答案为:(0,﹣4);(﹣•2n﹣1,•2n﹣1)或(•2n﹣1,﹣•2n﹣1).【点评】此题主要考查了点的坐标变化规律,读懂题目信息,理解并求出OP n的长度是解题的关键,难点在于要根据n的表示分情况讨论.三、解答题19.(1)计算:()﹣2﹣2sin60°+(2)解方程:x(x+5)=x+5.【考点】解一元二次方程﹣因式分解法;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)利用负整数指数幂、特殊角的锐角三角函数、平方根的知识分别计算后代入求值即可;(2)移项后提取公因式x+5即可求解.【解答】解:(1)原式=4﹣2×+2=4+;(2)移项得:x(x+5)﹣(x+5)=0,提取公因式x+5得:(x+5)(x﹣1)=0,即:x+5=0,x﹣1=0,解得:x=﹣5或x=1.【点评】本题考查了因式分解法解一元二次方程、实数的运算、负整数指数幂及特殊角的三角函数值的知识,解题的关键是能够利用有关知识正确的计算,难度不大.20.(1)解不等式组:,并把解集在数轴上表示出来.(2)先化简,再求值:(﹣)÷(x+1),其中x=.【考点】分式的化简求值;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可.(2)先根据分式混合运算的法则把原式进行化简,再根据x是方程x2﹣2x=0的根求出x的值,把x 的值代入进行计算即可.【解答】解:(1)由,得,所以原不等式组的解集是2<x<3,表示在数轴上是:;(2)(﹣)÷(x+1),=×,=.把x=代入,得原式==.【点评】本题考查的是分式的化简求值,解一元一次不等式组以及在数轴上表示不等式的解集.解不等式时,学会移项,左边的移到右边,右边的移到左边.所移的项正负号互换;把字母移归到一边,常数移归到另一边.中间的大于、小于号尽量不要动,不然易出错.(两边同除以负数时,大于、小于号调头).21.某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设A:踢毽子;B:篮球;C:跳绳;D:乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下两个统计图.请结合图中的信息解答下列问题:(1)本次共调查了多少名学生?(2)请将两个统计图补充完整.(3)若该中学有1200名学生,喜欢篮球运动项目的学生约有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)结合条形统计图和扇形统计图,利用A组频数80除以A组频率40%,即可得到该校本次调查中,共调查了多少名学生;(2)利用(1)中所求人数,减去A、B、D组的频数即可的C组的频数;B组频数除以总人数即可得到B组频率;(3)用1200乘以抽查的人中喜欢篮球运动项目的人数所占的百分比即可.【解答】解:(1)80÷40%=200(人)故本次共调查200名学生.(2)200﹣80﹣30﹣50=40(人),30÷200×100%=15%,补全如图:(3)1200×15%=180(人)故该学校喜欢篮球项目的学生约有180人.【点评】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x,小X在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).(1)画树状图或列表,写出点Q所有可能的坐标;(2)求点Q(x,y)在函数y=﹣x+5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画出表格,即可得到Q的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:(x,y) 1 2 3 41 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)(1)点Q所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.如图,在矩形ABCD中,把∠B、∠D分别翻折,使点B、D恰好落在对角线AC上的点E、F处,折痕分别为CM、AN.(1)求证:△ADN≌△CBM.(2)请连接MF、NE,判断四边形MFNE的形状?请说明理由.【考点】翻折变换(折叠问题);全等三角形的判定与性质;矩形的性质.【分析】(1)根据折叠的性质得出∠DAN=∠NAC,∠BCM=∠ACM,从而根据AD∥BC可得出∠DAN=∠BCM,从而即可判断出△ADN≌△CBM.(2)连接NE、MF,根据(1)的结论可得出NF=ME,再由∠NFE=∠MEF可判断出NF∥ME,依此即可证明四边形MFNE是平行四边.【解答】(1)证明:由折叠的性质得出∠DAN=∠NAC,∠BCM=∠ACM,∵AD∥BC,∴∠DAC=∠BCA,∴∠DAN=∠BCM,在Rt△ADN和Rt△CBM中,,∴△ADN≌△CBM(ASA),(2)四边形MFNE是平行四边形.理由是:连接NE、MF,∵△ADN≌△CBM,∴NF=ME,∵∠NFE=∠MEF,∴NF∥ME,∴四边形MFNE是平行四边形.【点评】本题主要考查翻折变换的知识点,涉及全等三角形的判定与性质、平行四边形的判定,以及矩形的性质的知识.24.如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约是多少m?(精确到).(参考数据:≈1.41,≈1.73)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△ACD中,根据已知条件求出AC的值,再在Rt△BCD中,根据∠EDB=45°,求出BC=CD=21m,最后根据AB=AC﹣BC,代值计算即可.【解答】解:∵在Rt△ACD中,CD=21m,∠DAC=30°,∴AC===21m,在Rt△BCD中,∵∠EDB=45°,∴∠DBC=45°,∴BC=CD=21m,∴AB=AC﹣BC=21﹣21≈15.3(m);则河的宽度AB约是.【点评】此题考查了解直角三角形的应用,用到的知识点是俯角、特殊角的三角函数值等知识点,关键是要求学生能借助俯角构造直角三角形并解直角三角形.25.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)求直线AC的解析式;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.【考点】反比例函数图象上点的坐标特征;矩形的性质;坐标与图形变化﹣平移.【分析】(1)根据矩形性质得出AB=CD=2,AD=BC=4,即可得出点C的坐标,利用点A、C的坐标来求直线AC的解析式;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.【解答】解:(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).∴AB=CD=2,AD=BC=4,∴B(2,4),C(6,4),设直线AC的解析式为kx+b(k≠0),则,解得,所以直线AC的解析式为:y=﹣k+7;(2)A、C落在反比例函数的图象上,设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),∵A、C落在反比例函数的图象上,∴k=2(6﹣x)=6(4﹣x),x=3,即矩形平移后A的坐标是(2,3),代入反比例函数的解析式得:k=2×3=6,即A、C落在反比例函数的图象上,矩形的平移距离是3,反比例函数的解析式是y=.【点评】本题考查了矩形性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.26.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.【考点】分式方程的应用.【分析】设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,由题意得=,答:纯电动汽车每行驶1千米所需的电费为0.18元.【点评】此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.27.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结.求证:∠ABC=∠A.【类比探究】。
课件园 http://www.kejianyuan.net 第1页(共27页) 2015年江苏省徐州市中考数学试卷 一、选择题(本大题共8小题,每小题3分,共24分) 1.(3分)(2015•徐州)﹣2的倒数是( ) A. 2 B. ﹣2 C. D. ﹣
2.(3分)(2015•徐州)下列四个几何体中,主视图为圆的是( ) A. B. C. D.
3.(3分)(2015•徐州)下列运算正确的是( ) A. 3a2﹣2a2=1 B. (a2)3=a5 C. a2•a4=a6 D. (3a)2=6a2
4.(3分)(2015•徐州)使有意义的x的取值范围是( ) A. x≠1 B. x≥1 C. x>1 D. x≥0
5.(3分)(2015•徐州)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( ) A. 至少有1个球是黑球 B. 至少有1个球是白球 C. 至少有2个球是黑球 D. 至少有2个球是白球
6.(3分)(2015•徐州)下列图形中,是轴对称图形但不是中心对称图形的是( ) A. 直角三角形 B. 正三角形 C. 平行四边形 D. 正六边形
7.(3分)(2015•徐州)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )
A. 3.5 B. 4 C. 7 D. 14 8.(3分)(2015•徐州)若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为( ) 课件园 http://www.kejianyuan.net 第2页(共27页) A. x<2 B. x>2 C. x<5 D. x>5 二、填空题(本大题共10小题,每小题3分,共30分) 9.(3分)(2015•徐州)4的算术平方根是 .
10.(3分)(2015•徐州)杨絮纤维的直径约为0.000 010 5m,该直径用科学记数法表示为 .
11.(3分)(2015•徐州)小丽近6个月的手机话费(单位:元)分别为:18,24,37,28,24,26,这组数据的中位数是 元.
12.(3分)(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是 .
13.(3分)(2015•徐州)已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为 .
14.(3分)(2015•徐州)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA= °.
15.(3分)(2015•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为 cm.
16.(3分)(2015•徐州)如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A= °. 课件园 http://www.kejianyuan.net 第3页(共27页) 17.(3分)(2015•徐州)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为 .
18.(3分)(2015•徐州)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径 .
三、解答题(本大题共10小题,共86分) 19.(10分)(2015•徐州)计算:
(1)|﹣4|﹣20150+()﹣1﹣()2
(2)(1+)÷. 20.(10分)(2015•徐州)(1)解方程:x2﹣2x﹣3=0; (2)解不等式组:.
21.(7分)(2015•徐州)小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品. (1)如果随机翻1张牌,那么抽中20元奖品的概率为 (2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少? 课件园 http://www.kejianyuan.net 第4页(共27页) 22.(7分)(2015•徐州)某校分别于2012年、2014年随机调查相同数量的学生,对数学课开展小组合作学习的情况进行调查(开展情况分为较少、有时、常常、总是四种),绘制成部分统计图如下.请根据图中信息,解答下列问题: (1)a= %,b= %,“总是”对应阴影的圆心角为 °; (2)请你补全条形统计图; (3)若该校2014年共有1200名学生,请你统计其中认为数学课“总是”开展小组合作学习的学生有多少名? (4)相比2012年,2014年数学课开展小组合作学习的情况有何变化?
23.(8分)(2015•徐州)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC. (1)求证:四边形BFCE是平行四边形; (2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.
24.(8分)(2015•徐州)某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,这比打折前少花多少钱?
25.(8分)(2015•徐州)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm (1)若OB=6cm. ①求点C的坐标; ②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离; (2)点C与点O的距离的最大值= cm. 课件园 http://www.kejianyuan.net 第5页(共27页) 26.(8分)(2015•徐州)如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比
例函数y=(k>0)的图象经过点D且与边BA交于点E,连接DE. (1)连接OE,若△EOA的面积为2,则k= ; (2)连接CA、DE与CA是否平行?请说明理由; (3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.
27.(8分)(2015•徐州)为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量xm3之间的函数关系.其中线段AB表示第二级阶梯时y与x之间的函数关系 (1)写出点B的实际意义; (2)求线段AB所在直线的表达式; (3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米? 课件园 http://www.kejianyuan.net
第6页(共27页) 28.(12分)(2015•徐州)如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点. (1)∠OBA= °. (2)求抛物线的函数表达式. (3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个? 课件园 http://www.kejianyuan.net
第7页(共27页) 2015年江苏省徐州市中考数学试卷 参考答案与试题解析 一、选择题(本大题共8小题,每小题3分,共24分) 1.(3分)(2015•徐州)﹣2的倒数是( ) A. 2 B. ﹣2 C. D. ﹣
考点: 倒数. 分析: 根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数. 解答: 解:∵﹣2×()=1,
∴﹣2的倒数是﹣. 故选D. 点评: 主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.
2.(3分)(2015•徐州)下列四个几何体中,主视图为圆的是( ) A. B. C. D.
考点: 简单几何体的三视图. 专题: 计算题. 分析: 找出从正面看,主视图为圆的几何体即可. 解答:
解:主视图为圆的为, 故选B 点评: 此题考查了简单几何体的三视图,解决此类图的关键是由三视图得到立体图形.
3.(3分)(2015•徐州)下列运算正确的是( ) A. 3a2﹣2a2=1 B. (a2)3=a5 C. a2•a4=a6 D. (3a)2=6a2
考点: 幂的乘方与积的乘方;合并同类项;同底数幂的乘法. 分析: 根据同类项、幂的乘方、同底数幂的乘法计算即可. 解答: 解:A、3a2﹣2a2=a2,错误;
B、(a2)3=a6,错误; 课件园 http://www.kejianyuan.net 第8页(共27页) C、a2•a4=a6,正确; D、(3a)2=9a2,错误; 故选C. 点评: 此题考查同类项、幂的乘方、同底数幂的乘法,关键是根据法则进行计算.
4.(3分)(2015•徐州)使有意义的x的取值范围是( ) A. x≠1 B. x≥1 C. x>1 D. x≥0
考点: 二次根式有意义的条件. 分析: 先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可. 解答: 解:∵有意义,
∴x﹣1≥0,即x≥1. 故选B. 点评: 本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.
5.(3分)(2015•徐州)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( ) A. 至少有1个球是黑球 B. 至少有1个球是白球 C. 至少有2个球是黑球 D. 至少有2个球是白球
考点: 随机事件. 分析: 由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确. 解答: 解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件. 故选A. 点评: 本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,
6.(3分)(2015•徐州)下列图形中,是轴对称图形但不是中心对称图形的是( ) A. 直角三角形 B. 正三角形 C. 平行四边形 D. 正六边形