2021年新高考数学复习学与练:4.4 导数的综合应用(精练)(教师版)
- 格式:pdf
- 大小:576.07 KB
- 文档页数:26
专题4.4 导数的综合应用(真题测试)一、单选题1.(2017·全国·高考真题(理))已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ( ) A .12-B .13C .12D .12.(2015·陕西·高考真题(理))对二次函数(为非零整数),四位同学分别给出下列结论,其中有且仅有一个结 论是错误的,则错误的结论是 A .是的零点 B .1是的极值点 C .3是的极值D .点在曲线上3.(2022·青海·海东市第一中学模拟预测(理))已知函数()2e 2xx f x a x =-+,若有且仅有两个正整数,使得()0f x <成立,则实数a 的取值范围是( ) A .211,3e e ⎡⎫⎪⎢⎣⎭B .3291,5e e ⎡⎫⎪⎢⎣⎭C .391,5e 3e ⎡⎫⎪⎢⎣⎭D .212,2e e ⎡⎫⎪⎢⎣⎭4.(2014·全国·高考真题(文))已知函数,若存在唯一的零点,且,则的取值范围是( ) A .B .C .D .5.(2022·青海·海东市第一中学模拟预测(理))若函数()()22e e x x f x x ax a a R =+-∈有三个不同的零点,则实数a 的取值范围是( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,1e ⎛⎫ ⎪⎝⎭C .2110,,1e e e ⎛⎫⎛⎫⋃ ⎪ ⎪-⎝⎭⎝⎭D .210,e e ⎛⎫ ⎪-⎝⎭6.(2022·河南·开封市东信学校模拟预测(理))对任意0x >,不等式e ln()(1)0x ax a x -+-≥恒成立,则正数a 的最大值为( ) ABC .1eD .e7.(2015·全国·高考真题(理))设函数()(21)xf x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得2()f x ax bx c =++a 1-()f x ()f x ()f x (2,8)()y f x =32()31f x ax x =-+()f x 0x 00x >a ()2,+∞()1,+∞(),2-∞-(),1-∞-0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭ C .33,2e 4⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭8.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知函数()()e ln e (0)xf x a a a =+>,若对任意实数1x >,不等式()()ln 1f x x ≥-总成立,则实数a 的取值范围为( ) A .210,e ⎛⎫ ⎪⎝⎭B .221,e e ⎛⎤⎥⎝⎦C .21,e ⎛⎫+∞ ⎪⎝⎭D .21,e ⎡⎫+∞⎪⎢⎣⎭二、多选题9.(2022·辽宁实验中学模拟预测)我们把形如(),,0f x y y '=的方程称为微分方程,符合方程的函数()y f x =称为微分方程的解,下列函数为微分方程0xy y xy +-'=的解的是( ) A .e x y = B .e x y x =C .e 1x y x =+D .e (R)x y c x c =⋅∈⋅10.(2022·河北沧州·二模)已知实数,a b 满足e e e a b a b ++=,则( ) A .0ab < B .1a b +> C .e e 4a b +D .e 1a b >11.(2022·湖南·模拟预测)已知1x >,1y >,且()()1e 11e y xx y ++=+,则下列结论一定正确的是( )A .()ln 0x y ->B .122x y +<C .226x y +>D .()ln ln3x y +<12.(2022·全国·高考真题)已知函数,则( )A .有两个极值点B .有三个零点C .点是曲线的对称中心D .直线是曲线的切线三、填空题13.(2020·河南高三其他(理))函数()2222ln x f x x e x ax =--,若0a =,则()f x 在[]1,2的最小值为_______;当0x >时,()1f x ≥恒成立,则a 的取值范围是_____. 14.(2022·全国·模拟预测(理))若曲线ln x y x =与212y kx =-仅有1个公共点,则k 的取值范围是3()1f x x x =-+()f x ()f x (0,1)()y f x =2y x =()y f x =___________.15.(2012·福建·高考真题(理))对于实数a 和b ,定义运算“*”: 设f (x )=(2x -1)*(x -1),且关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是_________________16.(2022·江苏·常州高级中学模拟预测)已知函数22()ln 2e f x x x mx =-+,若()0f x ≥的解集中恰有一个整数,则m 的取值范围为________. 四、解答题17.(2018·全国·高考真题(文))已知函数.(1)求曲线在点处的切线方程; (2)证明:当时,.18.(2017·全国·高考真题(理))已知函数(1)讨论的单调性;(2)若有两个零点,求的取值范围.19.(2017·全国·高考真题(文))已知函数.(1)讨论的单调性; (2)当时,证明. 20.(2016·全国·高考真题(文))设函数. (Ⅰ)讨论的单调性; (Ⅱ)证明当时,; (Ⅲ)设,证明当时,.21.(2015·全国·高考真题(理))设函数.(1)证明:在单调递减,在单调递增;(2)若对于任意,都有,求m 的取值范围.22.(2014·四川·高考真题(理))已知函数,其中,为自然对数的底数.(Ⅰ)设是函数的导函数,求函数在区间上的最小值;22,,a ab a ba b b ab a b ⎧-≠=⎨->⎩()21x ax x f x e +-=()y f x =()0,1-1a ≥()0f x e +≥()()2e 2e x xf x a a x =+--()f x ()f x a 2()ln (21)f x x ax a x =+++()f x 0a <3()24f x a≤--()ln 1f x x x =-+()f x (1,)x ∈+∞11ln x x x-<<1c >(0,1)x ∈1(1)xc x c +->2()e mx f x x mx =+-()f x (,0)-∞(0,)+∞12,[1,1]x x ∈-12|()()|1f x f x e -≤-2()1x f x e ax bx =---,a b R ∈ 2.71828e =()g x ()f x ()g x [0,1](Ⅱ)若,函数在区间内有零点,求的取值范围(1)0f ()f x (0,1)a专题4.4 导数的综合应用(真题测试)一、单选题1.(2017·全国·高考真题(理))已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ( ) A .12-B .13C .12D .1【答案】C 【解析】 【分析】 【详解】因为()221111()2()1()1x x x x f x x x a e e x a e e --+--+=-++=-++-,设1t x =-,则()()()21t t f x g t t a e e -==++-,因为()()g t g t =-,所以函数()g t 为偶函数,若函数()f x 有唯一零点,则函数()g t 有唯一零点,根据偶函数的性质可知,只有当0=t 时,()0g t =才满足题意,即1x =是函数()f x 的唯一零点,所以210a -=,解得12a =.故选:C. 2.(2015·陕西·高考真题(理))对二次函数(为非零整数),四位同学分别给出下列结论,其中有且仅有一个结 论是错误的,则错误的结论是 A .是的零点 B .1是的极值点 C .3是的极值 D .点在曲线上【答案】A 【解析】 【详解】若选项A 错误时,选项B 、C 、D 正确,,因为是的极值点,是的极值,所以,即,解得:,因为点在曲线上,所以,即,解得:,所以,,所以,因为,所以不是的零点,所以选项A 错误,选项B 、C 、D 正确,故选A .3.(2022·青海·海东市第一中学模拟预测(理))已知函数()2e 2xx f x a x =-+,若有且仅有两个正整2()f x ax bx c =++a 1-()f x ()f x ()f x (2,8)()y f x =()2f x ax b ='+1()f x 3()f x ()()10{13f f '==203a b a b c +=⎧⎨++=⎩2{3b a c a =-=+()2,8()y f x =()42238a a a +⨯-++=5a =10b =-8c =()25108f x x x =-+()()()21511018230f -=⨯--⨯-+=≠1-()f x数,使得()0f x <成立,则实数a 的取值范围是( ) A .211,3e e ⎡⎫⎪⎢⎣⎭B .3291,5e e ⎡⎫⎪⎢⎣⎭C .391,5e 3e ⎡⎫⎪⎢⎣⎭D .212,2e e ⎡⎫⎪⎢⎣⎭【答案】C 【解析】 【分析】将()0f x <转化为2(2)exx a x +<,再分别求导分析2()e x x g x =和()(2)h x a x =+的图象,再分别求得1,1g ,()()2,2g ,()()3,3g 到()20-,的斜率,分析临界情况即可 【详解】由()0f x <且0x >,得2(2)exx a x +<,设2()e x x g x =,()(2)h x a x =+, 22()exx x g x '-=,已知函数()g x 在(0,2)上单调递增,在(2,)+∞上单调递减, 函数()(2)h x a x =+的图象过点(2,0)-,(1)11(2)3e g =--,2(2)12(2)e g =--,3(3)93(2)5e g =--,结合图象,因为329115e 3e e <<,所以3915e 3ea ≤<. 故选:C4.(2014·全国·高考真题(文))已知函数,若存在唯一的零点,且,则的取值范围是( ) A . B . C . D .【答案】C 【解析】 【详解】试题分析:当时,,函数和,不满足题意,舍去;当时,,令,得或.时,;时,;时,,且,此时在必有零点,故不满足题意,舍去;当时,时,32()31f x ax x =-+()f x 0x 00x >a ()2,+∞()1,+∞(),2-∞-(),1-∞-0a =2()31f x x =-+()f x 0a >2()36f x ax x '=-()0f x '=0x =2x a =(,0)x ∈-∞()0f x '>2(0,)x a ∈()0f x '<2(,)x a∈+∞()0f x '>(0)0f >(,0)x ∈-∞0a <2(,)x a∈-∞;时,;时,,且,要使得存在唯一的零点,且,只需,即,则,选C .5.(2022·青海·海东市第一中学模拟预测(理))若函数()()22e e x xf x x ax a a R =+-∈有三个不同的零点,则实数a 的取值范围是( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,1e ⎛⎫ ⎪⎝⎭C .2110,,1e e e ⎛⎫⎛⎫⋃ ⎪ ⎪-⎝⎭⎝⎭D .210,e e ⎛⎫ ⎪-⎝⎭【答案】D 【解析】 【分析】令()0f x =得20e e x xx xa a ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,利用导数研究()e x x g x =的图像,由函数()f x 有三个零点可知,若令1e e xxt t ⎛⎫=≤ ⎪⎝⎭,则可知方程20t at a +-=的一根1t 必在10,e ⎛⎫ ⎪⎝⎭内,另一根21e t =或20t =或()2,0t ∈-∞上,分类讨论即可求解. 【详解】由22e e 0xxx ax a +-=得20e ex xx xa a ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,令()e x x g x =, 由()10e xxg x -'==,得1x =,因此函数()g x 在(),1-∞上单调递增,在()1,+∞上单调递减,且()00g =,当0x >时,()0e x x g x =>,则()ex xg x =的图像如图所示: 即函数()g x 的最大值为()11eg =,令1e e xx t t ⎛⎫=≤ ⎪⎝⎭,则()20h t t at a =+-=,由二次函数的图像可知,二次方程的一根1t 必在10,e ⎛⎫ ⎪⎝⎭内,另一根21e t =或20t =或()2,0t ∈-∞上,当21e t =时,21e ea =-,则另一根111e t =-,不满足题意,当20t =时,a =0,则另一根10t =,不满足题意,()0f x '<2(,0)x a ∈()0f x '>(0,)x ∈+∞()0f x '<(0)0f >()f x 0x 00x >2()0f a>24a >2a <-当()2,0t ∈-∞时,由二次函数()20h t t at a =+-=的图像可知22000110e e a a a a ⎧+⋅-<⎪⎨⎛⎫+⋅->⎪ ⎪⎝⎭⎩, 解得210e ea <<-, 则实数a 的取值范围是210,e e ⎛⎫ ⎪-⎝⎭,故选:D.6.(2022·河南·开封市东信学校模拟预测(理))对任意0x >,不等式e ln()(1)0x ax a x -+-≥恒成立,则正数a 的最大值为( ) ABC .1eD .e【答案】D 【解析】 【分析】将不等式化为ln()e ln()e x ax x ax +≥+,构造()e x f x x =+有()(ln())f x f ax ≥,利用函数的单调性及参变分离法有e xa x ≤在0x >上恒成立,应用导数求右侧最小值,即可得结果.【详解】∵e ln()(1)0x ax a x -+-≥,∴ln()e ln()ln()e x ax x ax ax ax +≥+=+.令()e x f x x =+,则不等式化为()(ln())f x f ax ≥. ∵()e (0)x f x x x =+>为增函数,∴ln()x ax ≥,即e xa x≤.令e ()=x g x x ,则2(1)e ()x x g x x '-=,当01x <<时,()0g x '<,即()g x 递减;当1x >时,()0g x '>,即()g x 递增; 所以()()min 1e e g x g a ⇒≤==. ∴实数a 的最大值为e . 故选:D7.(2015·全国·高考真题(理))设函数()(21)xf x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】设()()21xg x e x =-,()1y a x =-,问题转化为存在唯一的整数0x 使得满足()()01g x a x <-,求导可得出函数()y g x =的极值,数形结合可得()01a g ->=-且()312g a e-=-≥-,由此可得出实数a 的取值范围.【详解】设()()21xg x e x =-,()1y a x =-,由题意知,函数()y g x =在直线y ax a =-下方的图象中只有一个点的横坐标为整数,()()21x g x e x '=+,当12x <-时,()0g x '<;当12x >-时,()0g x '>.所以,函数()y g x =的最小值为12122g e -⎛⎫-=- ⎪⎝⎭.又()01g =-,()10g e =>.直线y ax a =-恒过定点()1,0且斜率为a , 故()01a g ->=-且()31g a a e -=-≥--,解得312a e≤<,故选D.8.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知函数()()e ln e (0)xf x a a a =+>,若对任意实数1x >,不等式()()ln 1f x x ≥-总成立,则实数a 的取值范围为( )A .210,e ⎛⎫ ⎪⎝⎭B .221,e e ⎛⎤⎥⎝⎦C .21,e ⎛⎫+∞ ⎪⎝⎭D .21,e ⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】将所求不等式变形为()()ln 1ln eln eln 1x x ax a x -+++≥+-,构造函数()e xg x x =+,可知该函数在R 上为增函数,由此可得出()ln ln 1a x x ≥--,其中1x >,利用导数求出()()ln 1h x x x =--的最大值,即可求得实数a 的取值范围. 【详解】当1x >时,由()()ln 1f x x ≥-可得()ln eln 1ln 1x aa x +++≥-, 即()()()ln 1ln eln 1ln 1eln 1x x ax a x x x -+++≥-+-=+-,构造函数()e xg x x =+,其中x ∈R ,则()e 10x g x '=+>,所以,函数()g x 在R 上为增函数, 由()()ln 1ln eln eln 1x x ax a x -+++≥+-可得()()ln ln 1g x a g x +≥-⎡⎤⎣⎦,所以,()ln ln 1x a x +≥-,即()ln ln 1a x x ≥--,其中1x >, 令()()ln 1h x x x =--,其中1x >,则()12111xh x x x -'=-=--. 当12x <<时,()0h x '>,函数()h x 单调递增, 当2x >时,()0h x '<,函数()h x 单调递减, 所以,()()max ln 22a h x h ≥==-,21e a ∴≥. 故选:D.二、多选题9.(2022·辽宁实验中学模拟预测)我们把形如(),,0f x y y '=的方程称为微分方程,符合方程的函数()y f x =称为微分方程的解,下列函数为微分方程0xy y xy +-'=的解的是( ) A .e x y = B .e x y x =C .e 1x y x =+D .e (R)x y c x c =⋅∈⋅【答案】CD 【解析】 【分析】根据导数的运算求得导函数y ',代入微分方程检验即可. 【详解】选项A ,e x y =,则e x y '=,e e e e 0x x x x xy y xy x x '+-=+-=≠,不是解;选项B ,e x y x =,e e x x y x '=+,22e e e e 0x x x x xy y xy x x x x '+-=+--=,是方程的解;选项C ,e 1x y x =+,e e x x y x '=+,22e e 1e e 10x x x x xy y xy x x x x x x '+-=+++--=+≠,不是方程的解; 选项D ,e (R)x y c x c =⋅∈⋅,e e x x y c cx '=+,22e e e e 0x x x x xy y xy cx cx cx cx '+-=+--=,是方程的解. 故选:CD .10.(2022·河北沧州·二模)已知实数,a b 满足e e e a b a b ++=,则( ) A .0ab < B .1a b +> C .e e 4a b + D .e 1a b >【答案】BCD 【解析】 【分析】A.由e e e a b a b ++=得到111e ea b +=判断;BC.由e e e 2e e a b a b a b ++==2b 判断;D. 由111e e a b +=,得到e e e 1e 11e 1e 1b b b ab b b b b -+-=-=--,令()e e 1,0b b f b b b =-+>,用导数法判断. 【详解】 由e e e a b a b ++=得111e ea b +=,又e 0,e 0a b >>,所以e 1,e 1a b >>,所以0,0a b >>,所以0ab >,选项A 错误;因为e e e 2e e a b a b a b ++==2b ,即e e e 4a b a b ++=,所以ln41a b +>,选项B C ,正确,因为111e e a b +=,所以e e e 1b ab =-,所以e e e 1e 11e 1e 1b b b a bbb b b -+-=-=--.令()e e 1,0b b f b b b =-+>,则()e 0b f b b '=>,所以f b 在区间()0,∞+上单调递增,所以()()00f b f >=,即e e 10b b b -+>,又e 10b ->,所以e 10a b ->,即e 1a b >,选项D 正确. 故选:BCD11.(2022·湖南·模拟预测)已知1x >,1y >,且()()1e 11e y xx y ++=+,则下列结论一定正确的是( )A .()ln 0x y ->B .122x y +<C .226x y +>D .()ln ln3x y +<【答案】AC 【解析】 【分析】构造函数()e xf x x=,利用导数判断函数的单调性,得出1x y >+,结合不等式以及指、对数函数的性质逐一判断即可. 【详解】令()e x f x x=,则()()2e 1e e xx x x x f x x x --'==, 所以当1x >时,()0f x '>,所以()f x 在()1,+∞上单调递增; 由()()1e 11e yxx y ++=+得1e e 111x y x y y +=+++,即1e e 111x y x y y +-=++,∵1y >,∴11012y <<+, ∴1e e 1012x y x y +<-<+,即()()1012f x f y <-+<, ∴1x y >+,即1->x y ,∴()ln 0x y ->,A 正确;由1x y >+知12x y +>+,所以12222x y y ++>>,所以选项B 错误; 由1x y >+知12222326x y y y y ++>+=⋅>,所以选项C 正确.由1x y >+,1y >知213x y y +>+>,所以()()ln ln 21ln3x y y +>+>, 所以D 错误,故选:AC .12.(2022·全国·高考真题)已知函数,则( )A .有两个极值点B .有三个零点C .点是曲线的对称中心D .直线是曲线的切线【答案】AC 【解析】 【分析】利用极值点的定义可判断A ,结合的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义3()1f x x x =-+()f x ()f x (0,1)()y f x =2y x =()y f x =()f x判断D. 【详解】由题,,令得或令得, 所以在上单调递减,在,上单调递增, 所以是极值点,故A 正确;因,,, 所以,函数在上有一个零点, 当时,,即函数在上无零点, 综上所述,函数有一个零点,故B 错误;令,该函数的定义域为,,则是奇函数,是的对称中心, 将的图象向上移动一个单位得到的图象, 所以点是曲线的对称中心,故C 正确;令,可得,又,当切点为时,切线方程为,当切点为时,切线方程为, 故D 错误.故选:AC.三、填空题13.(2020·河南高三其他(理))函数()2222ln x f x x e x ax =--,若0a =,则()f x 在[]1,2的最小值为_______;当0x >时,()1fx ≥恒成立,则a 的取值范围是_____.【答案】e (],1-∞ 【解析】当0a =时,∵()222ln x f x x ex =-,∴()222222x x f x xe x xe x'=+⋅-. 当1x >时,()0f x '>恒成立,()231f x x '=-()0fx '>x >x <()0f x '<x <()f x ((,-∞)+∞x =(10f =+>10f =>()250f -=-<()f x ,⎛-∞ ⎝⎭x ≥()0f x f ≥>⎝⎭()f x ⎫∞⎪⎪⎝⎭()f x 3()h x x x =-R ()()()()33h x x x x x h x -=---=-+=-()h x (0,0)()h x ()h x ()f x (0,1)()y f x =()2312f x x '=-=1x =±()(1)11f f =-=(1,1)21y x =-(1,1)-23y x =+∴()f x 在[]1,2上单调递增.∴()f x 在[]1,2上最小值为()1f e =.又0x >时,()1f x ≥恒成立,令 ()1xg x e x =--,()()100xg x e g ''=->=,所以()g x 在()0,∞+ 递增,()()00g x g >= 所以1x e x >+ ∴()22222ln 22ln 2ln x x x f x x e x ax e x ax +=--=--()2222ln 12ln 111x x x ax a x ≥++--=-+≥恒成立,∴1a ≤.故答案为e ;(],1-∞.14.(2022·全国·模拟预测(理))若曲线ln x y x =与212y kx =-仅有1个公共点,则k 的取值范围是___________. 【答案】(]1,02⎧⎫-∞⋃⎨⎬⎩⎭##1|02k k k ⎧⎫≤=⎨⎬⎩⎭或【解析】 【分析】将原问题转化为32ln 12x k x x =+只有一个解,令()()32ln 102x g x x x x =+>,利用导数求出()g x 的单调性及最值即可得答案. 【详解】 由题意可得:2ln 12x kx x =-只有一个解()0x >, 即32ln 12x k x x=+只有一个解. 令()32ln 12x g x x x=+, ()0x >原问题等价于y k =与()y g x =只有一个交点. 因为()43413ln 113ln x x xg x x x x '---=-= 因为13ln y x x =--在()0,∞+上单调递减, 且在1x =处的值为0 ,所以当()0,1x ∈时, ()()0,g x g x '>单调递增,当()1,x ∈+∞时, ()()0,g x g x '<单调递减且恒为正, 所以()()max 112g x g ==, 又因为y k =与()y g x =只有一个交点, 所以(]1,02k ⎧⎫∈-∞⎨⎬⎩⎭.故答案为: (]1,02⎧⎫-∞⋃⎨⎬⎩⎭.15.(2012·福建·高考真题(理))对于实数a 和b ,定义运算“*”: 设f (x )=(2x -1)*(x -1),且关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是_________________ 【答案】【解析】 【详解】由定义运算“*”可知 即,该函数图像如下:由,假设当关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根时, m 的取值范围是,且满足方程,所以令则, 所以令22,,a ab a ba b b ab a b ⎧-≠=⎨->⎩⎫⎪⎪⎝⎭22(21)(21)(1)0()?(1)(21)(1)0x x x x f x x x x x ⎧----=⎨---->⎩2220()0x x x f x x x x ⎧-=⎨-+>⎩1124f ⎛⎫= ⎪⎝⎭1230x x x <<<10,4⎛⎫⎪⎝⎭23,x x 2-+=x x m 23=x x m 22-=x x m 1=x 123==x x x m 10,4⎛⎫=∈ ⎪⎝⎭y m所以, 又在递增的函数, 所以,所以,所以在递减, 则当时,;当时,所以.16.(2022·江苏·常州高级中学模拟预测)已知函数22()ln 2e f x x x mx =-+,若()0f x ≥的解集中恰有一个整数,则m 的取值范围为________.【答案】22ln 22e ,4e 2⎡⎫-⎪⎢⎣⎭【解析】【分析】由()0f x ≥且0x >,得出2ln 2e x x m x -+≥-,构造函数()ln =-xg x x,利用导数研究()g x 的单调性,画出()ln =-x g x x 和22e y x =-的大致图象,由图可知0m >,设0x 为()ln =-xg x x和22e y x m =-+的交点的横坐标,结合题意可知该整数为1,即012x ≤<,当直线22e y x m =-+过1,0A 和ln 22,2B ⎛⎫- ⎪⎝⎭时,即可求出求出m 的值,从而得出m 的取值范围.【详解】由题可知,22()ln 2e f x x x mx =-+,0x >, 由于()0f x ≥的解集中恰有一个整数,即22ln 2e 0x x mx -+≥,即222e ln x mx x -+≥-,因为0x >,所以2ln 2e xx m x-+≥-的解集中恰有一个整数, 令()ln =-x g x x ,则()2ln 1-'=x g x x , 当1e x <<时,()0g x '<;当e x >时,()0g x '>, 所以()g x 在()1,e 上单调递减,在()e,+∞上单调递增, 画出()ln xy xg x ==-和22e y x =-的大致图象,如图所示: 要使得2ln 2e xx m x-+≥-,可知0m >, 114'⎛= ⎝y ()=h m 10,4⎛⎫⎪⎝⎭()()01>=h m h 0y '<=y 10,4⎛⎫ ⎪⎝⎭0m =0y =14m ==y 123⎫∈⎪⎪⎝⎭x x x设0x 为()ln =-xg x x和22e y x m =-+的交点的横坐标, 而2ln 2e xx m x-+≥-的解集中恰有一个整数,可知该整数为1,即012x ≤<, 当01x =时,得()10g =;当02x =时,得()ln 222g =-, 即1,0A ,ln 22,2B ⎛⎫- ⎪⎝⎭,当直线22e y x m =-+过点1,0A 时,得22e m =,当直线22e y x m =-+过点ln 22,2B ⎛⎫- ⎪⎝⎭时,得2ln 24e 2m =-, 所以m 的取值范围为22ln 22e ,4e 2⎡⎫-⎪⎢⎣⎭.故答案为:22ln 22e ,4e 2⎡⎫-⎪⎢⎣⎭四、解答题17.(2018·全国·高考真题(文))已知函数.(1)求曲线在点处的切线方程; (2)证明:当时,.【答案】(1)切线方程是(2)证明见解析 【解析】 【分析】(1)求导,由导数的几何意义求出切线方程.(2)当时,,令,只需证明即可.【详解】()21x ax x f x e +-=()y f x =()0,1-1a ≥()0f x e +≥210x y --=a 1≥()12f x e 1x x e x x e +-+≥++-()12gx 1x e x x +=++-gx 0≥(1),.因此曲线在点处的切线方程是.(2)当时,.令,则,当时,,单调递减;当时,,单调递增; 所以 .因此.18.(2017·全国·高考真题(理))已知函数(1)讨论的单调性;(2)若有两个零点,求的取值范围. 【答案】(1)见解析;(2). 【解析】 【详解】试题分析:(1)讨论单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对按,进行讨论,写出单调区间;(2)根据第(1)问,若,至多有一个零点.若,当时,取得最小值,求出最小值,根据,,进行讨论,可知当时有2个零点.易知在有一个零点;设正整数满足,则.由于,因此在有一个零点.从而可得的取值范围为.试题解析:(1)的定义域为,,(ⅰ)若,则,所以在单调递减. (ⅱ)若,则由得.当时,;当时,,所以在单调递减,在单调递增.(2)(ⅰ)若,由(1)知,至多有一个零点.(ⅱ)若,由(1)知,当时,取得最小值,最小值为. ()()2212xax a x f x e-++'-=()02f '=()y f x =()0,1-210x y --=1a ≥()()211x xf x e x x e e +-+≥+-+()211xg x x x e +=+-+()121x g x x e +=++'()120x g x e +''=+>1x <-()()10g x g '-'<=()g x 1x >-()()10g x g '-'>=()g x ()g x ()1=0g ≥-()0f x e +≥()()2e 2e x xf x a a x =+--()f x ()f x a (0,1)()f x a 0a ≤0a >0a ≤()f x 0a >ln x a =-()f x 1(ln )1ln f a a a-=-+1a =(1,)∈+∞a (0,1)a ∈(0,1)a ∈()f x (,ln )a -∞-0n 03ln(1)n a>-00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->3ln(1)ln a a->-()f x (ln ,)a -+∞a (0,1)()f x (),-∞+∞()()()()2221121x x x xf x ae a e ae e =+---'=+0a ≤()0f x '<()f x (),-∞+∞0a >()0f x '=ln x a =-(),ln x a ∈-∞-()0f x '<()ln ,x a ∈-+∞()0f x '>()f x (),ln a -∞-()ln ,a -+∞0a ≤()f x 0a >ln x a =-()f x ()1ln 1ln f a a a-=-+①当时,由于,故只有一个零点; ②当时,由于,即,故没有零点; ③当时,,即. 又,故在有一个零点.设正整数满足,则.由于,因此在有一个零点. 综上,的取值范围为.19.(2017·全国·高考真题(文))已知函数.(1)讨论的单调性; (2)当时,证明. 【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)先求函数导数,再根据导函数符号的变化情况讨论单调性:当时,,则在单调递增;当时,在单调递增,在单调递减. (2)证明,即证,而,所以需证,设g (x )=ln x -x +1 ,利用导数易得,即得证. 【详解】(1) 的定义域为(0,+),. 若a ≥0,则当x ∈(0,+)时,,故f (x )在(0,+)单调递增.若a <0,则当时,时;当x ∈时,. 故f (x )在单调递增,在单调递减. (2)由(1)知,当a <0时,f (x )在取得最大值,最大值为. 1a =()ln 0f a -=()f x ()1,a ∈+∞11ln 0a a-+>()ln 0f a ->()f x ()0,1a ∈11ln 0a a-+<()ln 0f a -<()()4222e 2e 22e 20f a a ----=+-+>-+>()f x (),ln a -∞-0n 03ln 1n a ⎛⎫>- ⎪⎝⎭()()00000000e e 2e 20n n n nf n a a n n n =+-->->->3ln 1ln a a ⎛⎫->- ⎪⎝⎭()f x ()ln ,a -+∞a ()0,12()ln (21)f x x ax a x =+++()f x 0a <3()24f x a≤--(21)(1)'()(0)ax x f x x x++=>0a ≥'()0f x >()f x (0,)+∞0a <()f x 1(0,)2a -1(,)2a-+∞3()24f x a ≤--max 3()24f x a ≤--max 1()()2f x f a=-11ln()1022a a -++≤max ()(1)0g x g ==()f x ∞()()‘1211)22(1x ax f x ax a x x++=+++=∞’)(0f x >∞10,2x a ⎛⎫∈- ⎪⎝⎭()0f x '>1()2a ∞-+,’)(0f x <’)(0f x >1()2a∞-+,12x a=-111()ln()1224f a a a -=---所以等价于,即. 设g (x )=ln x -x +1,则. 当x ∈(0,1)时,;当x ∈(1,+)时,.所以g (x )在(0,1)单调递增,在(1,+)单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,,即. 20.(2016·全国·高考真题(文))设函数.(Ⅰ)讨论的单调性; (Ⅱ)证明当时,; (Ⅲ)设,证明当时,.【答案】(Ⅰ)当时,单调递增;当时,单调递减;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】 【详解】试题分析:(Ⅰ)首先求出导函数,然后通过解不等式或可确定函数的单调性;(Ⅱ)左端不等式可利用(Ⅰ)的结论证明,右端将左端的换为即可证明;(Ⅲ)变形所证不等式,构造新函数,然后通过利用导数研究函数的单调性来处理. 试题解析:(Ⅰ)由题设,的定义域为,,令,解得. 当时,,单调递增;当时,,单调递减. (Ⅱ)由(Ⅰ)知,在处取得最大值,最大值为. 所以当时,. 故当时,,,即. (Ⅲ)由题设,设,则,令,解得.当时,,单调递增;当时,,单调递减. 由(Ⅱ)知,,故,又,故当时,. 所以当时,.3()24f x a≤--113ln()12244a a a ---≤--11ln()1022a a -++≤’1(1)g x x=-()0g x '>∞()0g x '<∞11ln()1022a a -++≤3()24f x a≤--()ln 1f x x x =-+()f x (1,)x ∈+∞11ln x x x-<<1c >(0,1)x ∈1(1)xc x c +->01x <<()f x 1x >()f x ()f x '()0f x '>()0f x '<()f x x 1x()f x (0,)+∞1()1f x x=-'()0f x '=1x =01x <<()0f x '>()f x 1x >()0f x '<()f x ()f x 1x =(1)0f =1x ≠ln 1x x <-(1,)x ∈+∞ln 1x x <-11ln1x x <-11ln x x x-<<1c >()1(1)x g x c x c =+--'()1ln xg x c c c =--'()0g x =01lnln ln c c x c-=0x x <'()0g x >()g x 0x x >'()0g x <()g x 11ln c c c-<<001x <<(0)(1)0g g ==01x <<()0g x >(0,1)x ∈1(1)xc x c +->21.(2015·全国·高考真题(理))设函数.(1)证明:在单调递减,在单调递增;(2)若对于任意,都有,求m 的取值范围.【答案】(1)在单调递减,在单调递增;(2).【解析】【详解】(Ⅰ).若,则当时,,;当时,,.若,则当时,,;当时,,.所以,在单调递减,在单调递增.(Ⅱ)由(Ⅰ)知,对任意的,在单调递减,在单调递增,故在处取得最小值.所以对于任意,的充要条件是:即①,设函数,则.当时,;当时,.故在单调递减,在单调递增.又,,故当时,.当时,,,即①式成立.当时,由的单调性,,即;当时,,即.综上,的取值范围是.22.(2014·四川·高考真题(理))已知函数,其中,为自然对数的底数.(Ⅰ)设是函数的导函数,求函数在区间上的最小值;(Ⅱ)若,函数在区间内有零点,求的取值范围【答案】(Ⅰ)当时, ;当 时, ; 当时, .(Ⅱ) 的范围为. 【解析】【详解】试题分析:(Ⅰ)易得,再对分情况确定的单调区间,根据在上的单调性即可得在上的最小值.(Ⅱ)设为在区间内的一个零点,注意到2()e mx f x x mx =+-()f x (,0)-∞(0,)+∞12,[1,1]x x ∈-12|()()|1f x f x e -≤-()f x (,0)-∞(0,)+∞[1,1]-()(1)2mx f x m e x -'=+0m ≥(,0)x ∈-∞10mx e -≤()0f x '<(0,)x ∈+∞10mx e -≥()0f x '>0m <(,0)x ∈-∞10mx e ->()0f x '<(0,)x ∈+∞10mx e -<()0f x '>()f x (,0)-∞(0,)+∞m ()f x [1,0]-[0,1]()f x 0x =12,[1,1]x x ∈-12()()1f x f x e -≤-(1)(0)1,{(1)(0)1,f f e f f e -≤---≤-1,{1,m m e m e e m e --≤-+≤-()1t g t e t e =--+()1t g t e =-'0t <()0g t '<0t >()0g t '>()g t (,0)-∞(0,)+∞(1)0g =1(1)20g e e --=+-<[1,1]t ∈-()0g t ≤[1,1]m ∈-()0g m ≤()0g m -≤1m >()g t ()0g m >1m e m e ->-1m <-()0g m ->1m e m e -+>-m [1,1]-2()1x f x e ax bx =---,a b R ∈ 2.71828e =()g x ()f x ()g x [0,1](1)0f =()f x (0,1)a 12a ≤()(0)1g x g b ≥=-122e a <≤()22ln(2)g x a a a b ≥--2e a >()2g x e a b ≥--a ()2,1e -()2,()2x x g x e ax b g x e a -='=--a ()g x ()g x [0,1]()g x [0,1]0x ()f x (0,1).联系到函数的图象可知,导函数在区间内存在零点,在区间内存在零点,即在区间内至少有两个零点. 由(Ⅰ)可知,当及时,在内都不可能有两个零点.所以.此时,在上单调递减,在上单调递增,因此,且必有.由得:,代入这两个不等式即可得的取值范围.试题解答:(Ⅰ)①当时,,所以.②当时,由得.若,则;若,则. 所以当时,在上单调递增,所以. 当时,在上单调递减,在上单调递增,所以. 当时,在上单调递减,所以. (Ⅱ)设为在区间内的一个零点,则由可知,在区间上不可能单调递增,也不可能单调递减.则不可能恒为正,也不可能恒为负.故在区间内存在零点.同理在区间内存在零点.所以在区间内至少有两个零点.由(Ⅰ)知,当时,在上单调递增,故在内至多有一个零点. 当时,在上单调递减,故在内至多有一个零点. 所以. 此时,在上单调递减,在上单调递增,因此,必有.由得:,有(0)0,(1)0f f ==()g x 0(0,)x 1x ()g x 0(),1x 2x ()g x (0,1)12a ≤2e a ≥()g x (0,1)122e a <<()g x [0,ln 2]a [ln 2,1]a 12(0,ln(2)],(ln(2),1)x a x a ∈∈(0)10,(1)20g b g e a b =->=-->(1)10f e a b =---=1b e a =--a ()2,()2x xg x e ax b g x e a -='=--0a ≤()20x g x e a -'=>()(0)1g x g b ≥=-0a >()20x g x e a -'=>2,ln(2)x e a x a >>12a >ln(2)0a >2e a >ln(2)1a >102a <≤()g x [0,1]()(0)1g x g b ≥=-122e a <≤()g x [0,ln 2]a [ln 2,1]a ()(ln 2)22ln 2g x g a a a a b ≥=--2e a >()g x [0,1]()(1)2g x g e a b ≥=--0x ()f x (0,1)0(0)()0f f x ==()f x 0(0,)x ()g x ()g x 0(0,)x 1x ()g x 0(),1x 2x ()g x (0,1)12a ≤()g x [0,1]()g x (0,1)2e a ≥()g x [0,1]()g x (0,1)122e a <<()g x [0,ln 2]a [ln 2,1]a 12(0,ln(2)],(ln(2),1)x a x a ∈∈(0)10,(1)20g b g e a b =->=-->(1)10f e a b =---=12a b e +=-<.解得.当时,在区间内有最小值.若,则,从而在区间上单调递增,这与矛盾,所以.又,故此时在和内各只有一个零点和.由此可知在上单调递增,在上单调递减,在上单调递增.所以,,故在内有零点.综上可知,的取值范围是. (0)120,(1)210g b a e g e a b a =-=-+>=--=->21e a -<<21e a -<<()g x [0,1](ln(2))g a (ln(2))0g a ≥()0([0,1])g x x ≥∈()f x [0,1](0)(1)0f f ==(ln(2))0g a <(0)20,(1)10g a e g a =-+>=->()g x (0,ln(2))a (ln(2),1)a 1x 2x ()f x 1[0,]x 1(,x 2)x 2[,1]x 1()(0)0f x f >=2()(1)0f x f <=()f x 1(,x 2)x a (2,1)e -。
专题09导数的综合应用1.(2021年全国高考乙卷数学(文)试题)已知函数32()1f x x x ax .(1)讨论 f x 的单调性;(2)求曲线 y f x 过坐标原点的切线与曲线 y f x 的公共点的坐标.【答案】(1)答案见解析;(2)和 11a ,.【分析】(1)由函数的解析式可得: 232f x x x a ,导函数的判别式412a ,当14120,3a a 时, 0,f x f x 在R 上单调递增,当时,的解为:1211,32x x ,当1,3x时,单调递增;当11311333x时,单调递减;当13x时,单调递增;综上可得:当时,在R 上单调递增,当时,在1,3,1,3上单调递增,在113113,33上单调递减.(2)由题意可得: 3200001f x x x ax , 200032f x x x a ,则切线方程为: 322000000132y x x ax x x a x x ,切线过坐标原点,则: 32200000001320x x ax x x a x ,整理可得:3200210x x ,即:20001210x x x ,解得:,则, 0'()11f x f a切线方程为: 1y a x ,与联立得321(1)x x ax a x ,化简得3210x x x ,由于切点的横坐标1必然是该方程的一个根,1x 是321x x x 的一个因式,∴该方程可以分解因式为2110,x x 解得121,1x x , 11f a ,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和 11a ,.2.(2021年全国高考乙卷数学(理)试题)设函数 ln f x a x ,已知0x 是函数 y xf x 的极值点.(1)求a ;(2)设函数()()()x f x g x xf x .证明: 1g x .【答案】1;证明见详解【分析】(1)由 n 1'l a f x a x f x x , 'ln x y a x x ay xf x ,又0x 是函数 y xf x 的极值点,所以 '0ln 0y a ,解得1a ;(2)由(1)得 ln 1f x x ,ln 1()()()ln 1x x x f x g x xf x x x ,1x 且0x ,当 0,1x 时,要证ln 1()1ln 1x x g x x x , 0,ln 10x x ∵, ln 10x x ,即证 ln 1ln 1x x x x ,化简得 1ln 10x x x ;同理,当 ,0x 时,要证ln 1()1ln 1x x g x x x , 0,ln 10x x ∵, ln 10x x ,即证 ln 1ln 1x x x x ,化简得 1ln 10x x x ;令 1ln 1h x x x x ,再令1t x ,则 0,11,t ,1x t ,令 1ln g t t t t , '1ln 1ln g t t t ,当 0,1t 时, '0g x , g x 单减,假设 1g 能取到,则 10g ,故 10g t g ;当 1,t 时, '0g x , g x 单增,假设 1g 能取到,则 10g ,故 10g t g ;综上所述,ln 1()1ln 1x x g x x x 在 ,00,1x 恒成立3.(2021年全国高考甲卷数学(文)试题)设函数22()3ln 1f x a x ax x ,其中0a .(1)讨论 f x 的单调性;(2)若 y f x 的图像与x 轴没有公共点,求a 的取值范围.【答案】(1) f x 的减区间为10,a,增区间为1,+a;(2)1a e .【分析】(1)函数的定义域为 0, ,又 23(1)()ax ax f x x,因为0,0a x ,故230ax ,当10x a 时,()0f x ;当1x a时,()0f x ;所以 f x 的减区间为10,a,增区间为1,+a .(2)因为 2110f a a 且 y f x 的图与x 轴没有公共点,所以 y f x 的图象在x 轴的上方,由(1)中函数的单调性可得 min 1133ln 33ln f x f a a a,故33ln 0a 即1a e.4.(2021年全国高考甲卷数学(理)试题)已知0a 且1a ,函数()(0)a x x f x x a.(1)当2a 时,求 f x 的单调区间;(2)若曲线 y f x 与直线1y 有且仅有两个交点,求a 的取值范围.【答案】(1)20,ln2上单调递增;2,ln2上单调递减;(2) 1,,e e .【分析】(1)当2a 时,令 '0f x 得2ln 2x,当20ln 2x 时, 0f x ,当2ln 2x 时, 0f x ,∴函数 f x 在20,ln2上单调递增;2,ln2上单调递减;(2) ln ln 1ln ln a x a x x x a f x a x x a a x a x a,设函数 ln x g x x ,则 21ln x g x x,令 0g x ,得x e ,在 0,e 内 0g x , g x 单调递增;在 ,e 上 0g x , g x 单调递减;1max g x g e e,又 10g ,当x 趋近于 时, g x 趋近于0,所以曲线 y f x 与直线1y 有且仅有两个交点,即曲线 y g x 与直线ln a y a有两个交点的充分必要条件是ln 10a a e ,这即是 0g a g e ,所以a 的取值范围是 1,,e e .5.(2021年全国新高考Ⅰ卷数学试题)已知函数 1ln f x x x .(1)讨论 f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b ,证明:112e a b.【答案】(1) f x 的递增区间为 0,1,递减区间为 1,+ ;(2)证明见解析.【分析】(1)函数的定义域为 0, ,又 1ln 1ln f x x x ,当 0,1x 时, 0f x ,当 1,+x 时, 0f x ,故 f x 的递增区间为 0,1,递减区间为 1,+ .(2)因为ln ln b a a b a b ,故 ln 1ln +1b a a b ,即ln 1ln +1a b a b ,故11f f a b,设1211,x x a b,由(1)可知不妨设1201,1x x .因为 0,1x 时, 1ln 0f x x x , ,x e 时, 1ln 0f x x x ,故21x e .先证:122x x ,若22x ,122x x 必成立.若22x ,要证:122x x ,即证122x x ,而2021x ,故即证 122f x f x ,即证: 222f x f x ,其中212x .设 2,12g x f x f x x ,则 2ln ln 2g x f x f x x x ln 2x x ,因为12x ,故 021x x ,故 ln 20x x ,所以 0g x ,故 g x 在 1,2为增函数,所以 10g x g ,故 2f x f x ,即 222f x f x 成立,所以122x x 成立,综上,122x x 成立.设21x tx ,则1t ,结合ln 1ln +1a b a b ,1211,x x a b 可得: 11221ln 1ln x x x x ,即: 111ln 1ln ln x t t x ,故11ln ln 1t t t x t ,要证:12x x e ,即证 11t x e ,即证 1ln 1ln 1t x ,即证: 1ln ln 111t t t t t ,即证: 1ln 1ln 0t t t t ,令 1ln 1ln ,1S t t t t t t ,则 112ln 11ln ln 111t S t t t t t t,先证明一个不等式: ln 1x x .设 ln 1u x x x ,则 1111x u x x x ,当10x 时, 0u x ;当0x 时, 0u x ,故 u x 在 1,0 上为增函数,在 0,+ 上为减函数,故 max 00u x u ,故 ln 1x x 成立由上述不等式可得当1t 时,112ln 11t t t,故 0S t 恒成立,故 S t 在 1, 上为减函数,故 10S t S ,故 1ln 1ln 0t t t t 成立,即12x x e 成立.综上所述,112e a b.6.(2021年全国新高考2卷数学试题)已知函数2()(1)x f x x e ax b .(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点①21,222e a b a ;②10,22a b a .【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可;(2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论.【详解】(1)由函数的解析式可得:'2x f x x e a ,当0a 时,若 ,0x ,则 '0,f x f x 单调递减,若 0,x ,则 '0,f x f x 单调递增;当102a 时,若,ln 2x a ,则 '0,f x f x 单调递增,若ln 2,0x a ,则 '0,f x f x 单调递减,若 0,x ,则 '0,f x f x 单调递增;当12a时, '0,f x f x 在R 上单调递增;当12a 时,若 ,0x ,则 '0,f x f x 单调递增,若0,ln 2x a ,则 '0,f x f x 单调递减,若ln 2,x a ,则 '0,f x f x 单调递增;(2)若选择条件①:由于2122e a ,故212a e ,则 21,010b af b ,而 210b f b b e ab b ,而函数在区间 ,0 上单调递增,故函数在区间 ,0 上有一个零点.2ln 22ln 21ln 2f a a a a a b 22ln 21ln 22a a a a a22ln 2ln 2a a a a ln 22ln 2a a a ,由于2122e a ,212a e ,故 ln 22ln 20a a a ,结合函数的单调性可知函数在区间 0, 上没有零点.综上可得,题中的结论成立.若选择条件②:由于102a ,故21a ,则 01210f b a ,当0b 时,24,42e a ,2240f e a b ,而函数在区间 0, 上单调递增,故函数在区间 0, 上有一个零点.当0b 时,构造函数 1x H x e x ,则 1xH x e ,当 ,0x 时, 0,H x H x 单调递减,当 0,x 时, 0,H x H x 单调递增,注意到 00H ,故 0H x 恒成立,从而有:1x e x ,此时:22111x f x x e ax b x x ax b 211a x b ,当x 2110a x b ,取01x,则 00f x ,即:00,10f f,而函数在区间 0, 上单调递增,故函数在区间 0, 上有一个零点.2ln 22ln 21ln 2f a a a a a b 22ln 21ln 22a a a a a22ln 2ln 2a a a a ln 22ln 2a a a ,由于102a ,021a ,故 ln 22ln 20a a a ,结合函数的单调性可知函数在区间 ,0 上没有零点.综上可得,题中的结论成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.7.(2021年天津卷数学试题)已知0a ,函数()x f x ax xe .(I )求曲线()y f x 在点(0,(0))f 处的切线方程:(II )证明()f x 存在唯一的极值点(III )若存在a ,使得()f x a b 对任意x R 成立,求实数b 的取值范围.【答案】(I )(1),(0)y a x a ;(II )证明见解析;(III ),e 【解析】【分析】(I )求出 f x 在0x 处的导数,即切线斜率,求出 0f ,即可求出切线方程;(II )令 0f x ,可得(1)x a x e ,则可化为证明y a 与 y g x 仅有一个交点,利用导数求出 g x 的变化情况,数形结合即可求解;(III )令 2()1,(1)xh x x x e x ,题目等价于存在(1,)x ,使得()h x b ,即min ()b h x ,利用导数即可求出 h x 的最小值.【详解】(I )()(1)x f x a x e ,则(0)1f a ,又(0)0f ,则切线方程为(1),(0)y a x a ;(II )令()(1)0x f x a x e ,则(1)x a x e ,令()(1)x g x x e ,则()(2)x g x x e ,当(,2)x 时,()0g x , g x 单调递减;当(2,)x 时,()0g x , g x 单调递增,当x 时, 0g x , 10g ,当x 时, 0g x ,画出 g x 大致图像如下:所以当0a 时,y a 与 y g x 仅有一个交点,令 g m a ,则1m ,且()()0f m a g m ,当(,)x m 时,()a g x ,则()0f x , f x 单调递增,当 ,x m 时,()a g x ,则()0f x , f x 单调递减,x m 为 f x 的极大值点,故()f x 存在唯一的极值点;(III )由(II )知max ()()f x f m ,此时)1(1,m a m e m ,所以 2max {()}()1(1),m f x a f m a m m e m ,令 2()1,(1)x h x x x e x ,若存在a ,使得()f x a b 对任意x R 成立,等价于存在(1,)x ,使得()h x b ,即min ()b h x , 2()2(1)(2)x x h x x x e x x e ,1x ,当(1,1)x 时,()0h x , h x 单调递减,当(1,)x 时,()0h x , h x 单调递增,所以min ()(1)h x h e ,故b e ,所以实数b 的取值范围 ,e .【点睛】关键点睛:第二问解题的关键是转化为证明y a 与 y g x 仅有一个交点;第三问解题的关键是转化为存在(1,)x ,使得()h x b ,即min ()b h x .8.(2021年浙江卷数学试题)设a ,b 为实数,且1a ,函数 2R ()x f x a bx e x(1)求函数 f x 的单调区间;(2)若对任意22b e ,函数 f x 有两个不同的零点,求a 的取值范围;(3)当a e 时,证明:对任意4b e ,函数 f x 有两个不同的零点12,x x ,满足2212ln 2b b e x x e b .(注: 2.71828e 是自然对数的底数)【答案】(1)0b 时,()f x 在R 上单调递增;0b 时,函数的单调减区间为,log ln a b a ,单调增区间为log ,ln a b a;(2)21,e ;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论即可确定函数的单调性;(2)将原问题进行等价转化,然后构造新函数,利用导函数研究函数的性质并进行放缩即可确定实数a 的取值范围;(3)结合(2)的结论将原问题进行等价变形,然后利用分析法即可证得题中的结论成立.【详解】(1)2(),()ln x x f x b f a x e a x a b ,①若0b ,则()ln 0x f x a a b ,所以()f x 在R 上单调递增;②若0b ,当,log ln a b x a时, '0,f x f x 单调递减,当log ,ln a b x a时, '0,f x f x 单调递增.综上可得,0b 时,()f x 在R 上单调递增;0b 时,函数的单调减区间为,log ln a b a ,单调增区间为log ,ln a b a.(2)()f x 有2个不同零点20x a bx e 有2个不同解ln 20x a e bx e 有2个不同的解,令ln t x a ,则220,0ln ln t tb b e e e e t a a t t ,记22222(1)(),()t t t t e t e e e e e t e g t g t t t t ,记2()(1),()(1)10t t t t h t e t e h t e t e e t ,又(2)0h ,所以(0,2)t 时,()0,(2,)h t t 时,()0h t ,则()g t 在(0,2)单调递减,(2,) 单调递增,22(2),ln ln b b g e a a e,22222,ln ,21b b e a a e e∵.即实数a 的取值范围是21,e .(3)2,()x a e f x e bx e 有2个不同零点,则2x e e bx ,故函数的零点一定为正数.由(2)可知有2个不同零点,记较大者为2x ,较小者为1x ,1222412x x e e e e b e x x ,注意到函数2x e e y x在区间 0,2上单调递减,在区间 2, 上单调递增,故122x x ,又由5245e e e 知25x ,122211122x e e e e b x x x b,要证2212ln 2b b e x x e b ,只需22ln e x b b,222222x x e e e b x x 且关于b 的函数 2ln e g b b b在4b e 上单调递增,所以只需证 22222222ln 52x x e x e x x x e,只需证2222222ln ln 02x x x e x e e x e ,只需证2ln ln 202x e x x e,242e ∵,只需证4()ln ln 2x x h x x e 在5x 时为正,由于 11()44410x x x h x xe e e x x x,故函数 h x 单调递增,又54520(5)ln 5l 20n 2ln 02h e e ,故4()ln ln 2x x h x x e 在5x 时为正,从而题中的不等式得证.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.9.(2021年北京卷数学试题)已知函数 232x f x x a.(1)若0a ,求 y f x 在 1,1f 处切线方程;(2)若函数 f x 在1x 处取得极值,求 f x 的单调区间,以及最大值和最小值.【答案】(1)450x y ;(2)函数 f x 的增区间为 ,1 、 4, ,单调递减区间为 1,4 ,最大值为1,最小值为14.【解析】【分析】(1)求出 1f 、 1f 的值,利用点斜式可得出所求切线的方程;(2)由 10f 可求得实数a 的值,然后利用导数分析函数 f x 的单调性与极值,由此可得出结果.【详解】(1)当0a 时, 232x f x x ,则 323x f x x, 11f , 14f ,此时,曲线 y f x 在点1,1f 处的切线方程为 141y x ,即450x y ;(2)因为 232x f x x a ,则 222222223223x a x x x x a f x x a x a ,由题意可得224101a f a ,解得4a ,故 2324x f x x ,222144x x f x x ,列表如下:x,1 1 1,4 4 4,f x 0 0 f x 增极大值减极小值增所以,函数 f x 的增区间为 ,1 、 4, ,单调递减区间为 1,4 .当32x 时, 0f x ;当32x 时, 0f x .所以, max 11f x f , min 144f x f .。
第三讲 导数的综合应用考法1利用导数证明不等式命题角度1 变量不等式的证明1 [2020石家庄市重点高中测试]已知函数f (x )=(2 - x )e k (x - 1) - x (k ∈R ,e 为自然对数的底数). (1)若f (x )在R 上单调递减,求k 的最大值; (2)当x ∈(1,2)时,证明:lnx(2x -1)2-x >2(x - 1x). (1)将函数f (x )单调递减转化为f ' (x )≤0恒成立,将特殊值1代入,可初步算出k 的范围,再加以验证,即可求解;(2)借助第(1)问可证出2(x - 1)<ln x 2-x ,证得不等式的一部分,再证明 - 2x+2<ln (2x - 1),从而使问题得解.(1)∵ f (x )在R 上单调递减,∴f ' (x )=e k (x - 1)[k (2 - x ) - 1] - 1≤0恒成立, 即 - kx +2k - 1≤1e k(x -1)对任意x ∈R 恒成立.设g (x )=1e k(x -1)+kx - 2k +1,则g (x )≥0对任意x ∈R 恒成立.则g (1)=2 - k ≥0,∴k ≤2. 当k =2时,g' (x )=2[1 -1e 2(x -1)],g' (1)=0, 当x ∈(1,+∞)时,g' (x )>0,g (x )单调递增, 当x ∈( - ∞,1)时,g' (x )<0,g (x )单调递减, ∴g (x )min =g (1)=0,即g (x )≥0恒成立, 故k 的最大值为2.(2)当k =2时,f (x )=(2 - x )·e 2(x - 1) - x 单调递减,且f (1)=0, 当x ∈(1,2)时,f (x )<f (1),即(2 - x )·e 2(x - 1)<x , ln(2 - x )+2(x - 1)<ln x , 2(x - 1)<lnx 2-x ①.下面证明: - 2x+2<ln(2x - 1),x ∈(1,2) ②. 令H (x )=ln(2x - 1) - ( - 2x +2)(1<x <2),则H' (x )=2(x -1)2x 2(2x -1)>0,∴H (x )在(1,2)上单调递增,H (x )>ln(2×1 - 1) - ( - 21+2)=0,故②成立. ①+②得, lnx(2x -1)2-x >2(x - 1x)成立.1.[2020陕西省部分学校模拟测试]已知函数f (x )=e x (e x - ax +a )有两个极值点x 1,x2.(1)求a 的取值范围; (2)求证:2x 1x 2<x 1+x 2.命题角度2 与数列有关的不等式的证明2[2019湖南湘潭二模]设函数f (x )=ln(x +1)(x ≥0),g (x )=x(x+a+1)x+1(x ≥0). (1)证明:f (x )≥x - x 2;(2)若f (x )+x ≥g (x )恒成立,求a 的取值范围; (3)证明:当n ∈N *时,ln(n 2+3n +2)>14+29+…+n -1n 2. (1)令h (x )=ln(x +1) - x +x 2,x ∈[0,+∞),则h' (x )=1x+1+2x - 1=2x 2+x 1+x≥0,所以h (x )单调递增,所以h (x )≥h (0)=0,故f (x )≥x - x 2.(2)f (x )+x ≥g (x ),即ln(x +1)≥ax1+x,令m (x )=ln(x +1) - ax x+1,即m (x )≥0恒成立.求导,得m' (x )=1x+1−−a(x+1)-ax (1+x)2=x+1-a (1+x)2,令m' (x )>0,即x +1 - a >0,得x >a - 1.当a - 1≤0,即a ≤1时,m (x )在[0,+∞)上单调递增,m (x )≥m (0)=0(x ≥0),所以当a ≤1时,m (x )≥0在[0,+∞)上恒成立;当a - 1>0,即a >1时,m (x )在(a - 1,+∞)上单调递增,在[0,a - 1]上单调递减,所以m (x )min =m (a - 1)<m (0)=0(x ≥0),所以m (x )≥0不恒成立,故a >1不合题意. 综上所述,a 的取值范围为( - ∞,1].(3)由(1)知ln(x +1)>x - x 2(x >0),令x =1n,n ∈N *,则x ∈(0,1], 所以lnn+1n>n -1n 2,即ln(n +1) - ln n >n -1n 2. 故有ln2 - ln1>0,ln3 - ln2>14,…,ln(n +1) - ln n >n -1n 2. 上述各式相加可得ln(n +1)>14+29+…+n -1n 2. 因为n 2+3n +2 - (n +1)=(n +1)2>0, 所以n 2+3n +2>n +1, 所以ln(n 2+3n +2)>ln(n +1), 所以ln(n 2+3n +2)>14+29+…+n -1n 2. 2.[2020江西赣州两校联考]已知函数f (x )=(x - 1)e x - 12ax 2+1,a ∈R .(1)当a ≤1时,讨论f (x )的单调性; (2)当a =1时,证明不等式1f(1)+1f(2)+…+1f(n)<4(n ∈N *).考法2不等式恒成立问题与有解问题命题角度1 不等式恒成立问题3 [2020四川五校联考]已知函数f (x )=a ln x +x 2 - (a +2)x. (1)当a =4时,求函数f (x )的单调递增区间;(2)当a >0时,对于任意的x ∈[1,+∞),不等式f (x )>1 - a 2恒成立,求实数a 的取值范围.(1)根据题意,将a 的值代入f (x )的解析式,再对f (x )求导,令f ' (x )≥0,求解不等式即可;(2)根据题意,将不等式右侧全部移至左侧,将左侧看成新函数求导,分类讨论即可求解.(1)当a =4时,f (x )=4ln x +x 2 - 6x (x >0),∴f ' (x )=4x+2x - 6=(2x -4)(x -1)x, 令f ' (x )≥0,解得x ≥2或0<x ≤1. ∴f (x )的单调递增区间为(0,1],[2,+∞).(2)令g (x )=f (x )+a 2 - 1(x ≥1),则g' (x )=f ' (x )=a x+2x - (a +2)=(2x -a)(x -1)x(x ≥1). (i)当0<a 2<1,即0<a <2时,对于任意的x ∈[1,+∞),有g' (x )≥0(当且仅当x =1时取等号), ∴g (x )在[1,+∞)上单调递增,∴g (x )min =g (1)=a 2 - a - 2=(a - 2)(a +1)<0(不符合题意,舍去).(ii)当a 2=1,即a =2时,g' (x )=2x(x - 1)2,则g' (x )≥0(当且仅当x =1时取等号), ∴g (x )在[1,+∞)上单调递增,∴g (x )min =g (1)=0(不符合题意,舍去). (iii)当a 2>1,即a >2时,g (x )在[1,a 2]上单调递减,在(a 2,+∞)上单调递增. ∴g (x )min =g (a 2)=a ln a 2+3a 24- a - 1, 令h (x )=x ln x 2+3x 24- x - 1(x >2),则h' (x )=ln x 2+32x.当x >2时,h' (x )>0,∴h (x )在(2,+∞)上单调递增, ∴h (x )>0.∴g (x )≥g (a 2)>0恒成立,满足题意.综上所述,a >2,即实数a 的取值范围为(2,+∞).命题角度2 不等式有解问题4 [2020广东湛江模拟]已知正实数a ,函数g (x )=23ax 3 - 12(a +2)x 2+x (x >0),f (x )=ax 2 - (a +2)x +ln x +2. (1)讨论函数g (x )的单调性;(2)若f (x )<0在[12,1]内有解,求a 的取值范围.(1)通过对导函数的零点进行分类讨论即可确定函数g (x )的单调性;(2)通过对导函数的零点和给定区间进行分类讨论,即可确定f (x )的最小值,进而可求得a 的取值范围.(1)由题意知函数g (x )的定义域为(0,+∞).g' (x )=2ax 2 - (a +2)x +1,令g' (x )=0,解得x 1=12,x 2=1a .当1a<12,即a >2时,易知在(0,1a),(12,+∞)上,g' (x )>0,函数g (x )单调递增,在(1a ,12)上,g' (x )<0,函数g (x )单调递减. 当1a=12,即a =2时,易知函数g (x )在(0,+∞)上单调递增.当1a>12,即0<a <2时,易知在(0,12),(1a,+∞)上,g' (x )>0,函数g (x )单调递增,在(12,1a)上,g' (x )<0,函数g (x )单调递减.综上所述,当a >2时,函数g (x )在(0,1a),(12,+∞)上单调递增,在(1a ,12)上单调递减; 当a =2时,函数g (x )在(0,+∞)上单调递增;当0<a <2时,函数g (x )在(0,12),(1a,+∞)上单调递增,在(12,1a)上单调递减. (2)若f (x )<0在[12,1]内有解,则当x ∈[12,1]时,f (x )min <0, 由题意知f ' (x )=2ax - (a +2)+1x=2ax 2-(a+2)x+1x=g'(x)x(x >0), 由(1)可知,当1a ≤12,即a ≥2时,在[12,+∞)上,g' (x )≥0,所以当x ∈[12,1]时,f ' (x )≥0,函数f (x )在[12,1]上单调递增,f (x )min =f (12)=a 4−a+22+ln 12+2<0,解得a >4(1 - ln2),所以a ≥2.当12<1a<1,即1<a <2时,由(1)知,在[12,1a]上,g' (x )≤0,f ' (x )≤0,函数f (x )单调递减,在(1a,1]上,g'(x )>0,f ' (x )>0,函数f (x )单调递增, 所以f (x )min =f (1a)=1a−a+2a +ln 1a +2= - 1a +1+ln 1a. 令1a=t ,则t ∈(12,1),令h (t )= - t +1+ln t (12<t <1),则h' (t )= - 1+1t,易知h' (t )>0,函数h (t )在(12,1)上单调递增,所以h (t )<0恒成立,即f (x )min <0恒成立,所以1<a <2.当1a≥1,即0<a ≤1时,由(1)知,在[12,1a]上,g' (x )≤0,所以当x ∈[12,1]时,f ' (x )≤0,函数f (x )在[12,1]上单调递减,所以f (x )min =f (1)=0,f (x )min <0不成立.综上所述,a >1.导函数的零点是否分布在函数定义域内?零点将定义域划分为哪几个区间?这些问题若不能确定,则需要分类讨论.(1)本题第(2)问根据函数f ' (x )的零点1a是否在[12,1]内进行分类,利用导数得到函数在给定区间上的单调性,从而得最值,进而得参数的取值范围;(2)含参不等式有解问题可转化为最值问题来处理,但要注意不等式恒成立与不等式有解的区别.3.[2019辽宁五校联考]已知函数f (x)=ax2 - x ln x.(1)若f (x)在(0,+∞)上单调递增,求a的取值范围;.(2)若a=e(e为自然对数的底数),证明:当x>0时,f (x)<x e x+1e考法3利用导数解决零点问题5[2020惠州市调考]已知函数f (x)=(x - 2)e x+a(a∈R).(1)试确定函数f (x)的零点个数;(2)设x1,x2是函数f (x)的两个零点,证明:x1+x2<2.(1)由f (x)=0得a=(2 - x)e x.令g(x)=(2 - x)e x,函数f (x)的零点个数即直线y=a与曲线g(x)=(2 - x)e x的交点个数.∵ g' (x)= - e x+(2 - x)e x=(1 - x)e x,由g' (x)>0得x<1,∴函数g(x)在( - ∞,1)上单调递增,由g' (x)<0得x>1,∴函数g(x)在(1,+∞)上单调递减.图3 - 3 - 1∴当x=1时,函数g(x)有最大值,g(x)max=g(1)=e.又当x<2时,g(x)>0,g(2)=0,当x>2时,g(x)<0,作出函数g(x)的大致图象,如图3 - 3 - 1所示,∴当a>e时,函数f (x)没有零点;当a=e或a≤0时,函数f (x)有一个零点;当0<a<e时,函数f (x)有两个零点.(2)解法一函数f (x)的零点即直线y=a与曲线g(x)=(2 - x)e x的交点的横坐标,由(1)知0<a<e,不妨设x1<1<x2,则2 - x2<1,∵ 函数g(x)=(2 - x)e x在( - ∞,1)上单调递增,在(1,+∞)上单调递减,∴函数f (x)= - g(x)+a在( - ∞,1)上单调递减,在(1,+∞)上单调递增.要证x1+x2<2,只需证x1<2 - x2,即只需证f (x1)>f (2 - x2),又f (x1)=0,故需证f (2 - x2)<0.由a=g(x2)得f (2 - x2)= - x2e2-x2+a= - x2e2-x2- (x2 - 2)e x2(x2>1),构造函数h(x)= - x e2 - x - (x - 2)e x,则h' (x)=(1 - x)(e x - e2 - x),当x>1时,e x>e2 - x,h' (x)<0,故函数h(x)在(1,+∞)上单调递减,∴当x>1时,h(x)<h(1)=0,即当x2>1时,f (2 - x2)<0,即x1+x2<2.解法二由(1)知0<a<e,不妨设x1<1<x2,设F (x)=f (x) - f (2 - x)(x>1),则F (x)=(x - 2)e x+x e2 - x,F ' (x)=(1 - x)(e2 - x - e x),易知y=e2 - x - e x是单调递减函数,∴当x>1时,e2 - x - e x<e - e=0.又1 - x<0,故F ' (x)>0,∴F (x)在(1,+∞)上单调递增,∴当x>1时,F (x)>0,即f (x)>f (2 - x).由x2>1得f (x2)>f (2 - x2),又f (x2)=0=f (x1),∴f (2 - x2)<f (x1).由g(x)=(2 - x)e x在( - ∞,1)上单调递增,得f (x)= - g(x)+a在( - ∞,1)上单调递减,又2 - x2<1,∴2 - x2>x1,即x1+x2<2.解后反思本题主要考查考生灵活运用导数、数形结合思想分析问题、解决问题的能力,解题过程中重点考查了分类讨论思想、数形结合思想的应用,有助于提升考生的逻辑推理、数学运算和直观想象等核心素养.4.[2019全国卷Ⅰ,20,12分]已知函数f (x)=2sin x - x cos x - x,f ' (x)为f (x)的导数.(1)证明:f ' (x)在区间(0,π)内存在唯一零点;(2)若x∈[0,π]时,f (x)≥ax,求a的取值范围.数学探究1极值点偏移问题6已知函数f (x)=ln x - ax(x>0),a为常数,若函数f (x)有两个零点x1,x2(x1≠x2).证明:x1x2>e2.解法一(抓极值点构造函数)由题意知,函数f (x)有两个零点x1,x2(x1≠x2),即f (x1)=f (x2)=0,易知ln x1,ln x2是方程x=a e x的两个不相等的根.设t1=ln x1,t2=ln x2,g(x)=x e - x,则g(t1)=g(t2),故要证x1x2>e2,即证ln x1+ln x2>2,即证t1+t2>2.下证:t1+t2>2.g' (x)=(1 - x)e - x,易得g(x)在( - ∞,1)上单调递增,在(1,+∞)上单调递减,.所以函数g(x)在x=1处取得极大值(也是最大值)g(1)=1e当x→ - ∞时,g(x)→ - ∞;当x→+∞时,g(x)→0且g(x)>0.由g(t1)=g(t2),t1≠t2,不妨设t1<t2,作出函数g(x)的图象,如图3 - 3 - 2所示,由图3 - 3 -2知必有0<t1<1<t2,令F (x)=g(1+x) - g(1 - x),x∈(0,1],(e2x - 1)>0,则F ' (x)=xe x+1所以F (x)在(0,1]上单调递增,所以F (x)>0对任意的x∈(0,1]恒成立,即g(1+x)>g(1 - x)对任意的x∈(0,1]恒成立,由0<t1<1<t2,得1 - t1∈(0,1),所以g(1+1 - t1)=g(2 - t1)>g(1 - (1 - t1))=g(t1)=g(t2),即g(2 - t1)>g(t2),又2 - t1,t2∈(1,+∞),且g(x)在(1,+∞)上单调递减,所以2 - t1<t2,所以t1+t2>2,即x1x2>e2.上述解题过程中用到的方法就是解决极值点偏移问题的最基本的方法,解题过程中有以下四个解题要点:(1)求函数g(x)的极值点x0;(2)构造函数F (x)=g(x0+x) - g(x0 - x);(3)确定函数F (x)的单调性;(4)确定g(x0+x)与g(x0 - x)的大小关系.解法二(巧抓“根差”——s=t2 - t1构造函数)由题意,函数f (x)有两个零点x1,x2(x1≠x2),即f (x1)=f (x2)=0,易知ln x1,ln x2是方程x=a e x的两个不相等的根.设t1=ln x1,t2=ln x2,g(x)=x e - x,则g(t1)=g(t2),故要证x1x2>e2,即证ln x1+ln x2>2,即证t1+t2>2.下证:t1+t2>2.由g(t1)=g(t2),得t1e-t1=t2e-t2,化简得e t2-t1=t2t1①,不妨设t2>t1,由解法一知,0<t1<1<t2.令s=t2 - t1,则s>0,t2=s+t1,代入①式,得e s=s+t1t1,解得t1=se s-1.则t1+t2=2t1+s=2se s-1+s,故要证t1+t2>2,即证2se s-1+s>2.又e s - 1>0,故要证2se s-1+s>2,即证2s+(s - 2)(e s - 1)>0②,令G(s)=2s+(s - 2)(e s - 1)(s>0),则G' (s)=(s - 1)e s+1,G″(s)=s e s>0(G″ (s)为G' (s)的导函数),故G' (s)在(0,+∞)上单调递增,所以G' (s)>0,从而G(s)在(0,+∞)上单调递增,所以G(s)>0,所以②式成立,故t1+t2>2,即x1x2>e2.该方法的关键是巧妙引入变量s,然后利用等量关系,把t1,t2消掉,从而构造相应的函数,转化所证问题.解题要点如下.(1)取差构元:记s=t2 - t1,则t2=t1+s,利用该式消掉t2.(2)巧解消参:利用g(t1)=g(t2),构造方程,解之,利用s表示t1.(3)构造函数:依据消参之后所得不等式的形式,构造关于s的函数G(s).(4)转化求解:利用导数研究函数G(s)的单调性和最小值,从而证得结论.解法三(巧抓“根商”——c=x1x2构造函数)不妨设x1>x2,因为ln x1 - ax1=0,ln x2 - ax2=0,所以ln x1+ln x2=a(x1+x2),ln x1 - ln x2=a(x1 - x2),所以lnx1-lnx2x1-x2=a,欲证x1x2>e2,即证ln x2+ln x2>2.因为ln x1+ln x2=a(x1+x2), 所以即证a>2x1+x2,所以原问题等价于证明lnx1-lnx2x1-x2>2x1+x2,即ln x1x2>2(x1-x2)x1+x2.令c=x1x2(c>1),则不等式变为ln c>2(c-1)c+1,令h(c)=ln c - 2(c-1)c+1,c>1,所以h' (c)=1c −4(c+1)2=(c-1)2c(c+1)2>0,所以h(c)在(1,+∞)上单调递增,所以h(c)>ln1 - 0=0,即ln c - 2(c-1)c+1>0(c>1),因此原不等式x1x2>e2得证.该方法的基本思路是直接消掉参数a,再结合所证问题,巧妙引入变量c=x1x2,从而构造相应的函数.解题要点如下.(1)巧解消参:利用方程f (x1)=f (x2)=0消掉解析式中的参数a.(2)抓商构元:令c=x1x2,消掉变量x1,x2,构造关于c的函数h(c).(3)用导求解:利用导数求解函数h(c)的最小值,从而可证得结论.素养探源核心素养考查途径素养水平数学建模通过观察分析,构造相关函数.一逻辑推理命题之间的等价转换.二数学运算数式运算,等式的恒等变换,不等式的等价变形等.二5.[2019湖南岳阳模拟]已知函数f (x)= - x+(x+a)ln x(a∈R)有两个不同的极值点.(1)求实数a的取值范围;(2)当a=2时,已知函数f (x)的图象在A(x1,f (x1)),B(x2,f (x2))(x1<x2)两个不同的点处的切线互相平行,证明:x1+x2>4.数学探究2利用洛必达法则求解不等式恒成立问题7已知函数f (x)=alnxx+1+bx,曲线y=f (x)在点(1,f (1))处的切线方程为x+2y - 3=0.(1)求a,b的值;(2)如果当x>0,且x≠1时,f (x)>lnxx-1+kx,求k的取值范围.(1)由题意知f ' (x )=a(x+1x -lnx)(x+1)2−bx 2(x >0).由于直线x +2y - 3=0的斜率为 - 12,且直线x +2y - 3=0过点(1,1), 故{f(1)=1,f '(1)=-12,即{b =1,a2-b =-12,解得{a =1,b =1.(2)解法一 由(1)知f (x )=lnx x+1+1x(x >0), 所以f (x ) - (lnx x -1+k x )=11-x 2[2ln x +(k -1)(x 2-1)x ]. 设h (x )=2ln x +(k -1)(x 2-1)x(x >0), 则h' (x )=(k -1)(x 2+1)+2xx 2.①当k ≤0时,由h' (x )=k(x 2+1)-(x -1)2x 2知,当x ≠1时,h' (x )<0,h (x )单调递减. 而h (1)=0,故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0; 当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0. 从而当x >0,且x ≠1时,f (x ) - (lnx x -1+kx)>0. 即f (x )>lnx x -1+kx. ②当0<k <1时.y =(k - 1)(x 2+1)+2x =(k - 1)x 2+2x +k - 1,其图象开口向下,且Δ=4 - 4(k - 1)2>0,对称轴为直线x =11-k ,11-k>1, 所以当x ∈(1,11-k)时,(k - 1)(x 2+1)+2x >0, 故h' (x )>0,而h (1)=0,故当x ∈(1,11-k )时,h (x )>0,可得11-x2h (x )<0,与题设矛盾. ②当k ≥1时,此时h' (x )>0,而h (1)=0, 故当x ∈(1,+∞)时,h (x )>0,可得11-x 2h (x )<0,与题设矛盾. 综上所述,k 的取值范围为( - ∞,0].(很难想到用解法一处理第(2)问,现利用洛必达法则处理如下) 解法二 由题设可得,当x >0,x ≠1时,k <2xlnx1-x 2+1恒成立.令g (x )=2xlnx1-x 2+1(x >0,x ≠1), 则g' (x )=2·(x 2+1)lnx -x 2+1(1-x 2)2,再令m (x )=(x 2+1)ln x - x 2+1(x >0),则m' (x)=2x ln x+1x- x,又m″(x)=2ln x+1 - 1x2(m″(x)为m' (x)的导数),易知m″(x)=2ln x+1 - 1x2在(0,+∞)上为增函数,且m″(1)=0,故当x∈(0,1)时,m″(x)<0,当x∈(1,+∞)时,m″(x)>0,所以m' (x)在(0,1)上单调递减,在(1,+∞)上单调递增,故m' (x)>m' (1)=0,所以m(x)在(0,+∞)上为增函数,又m(1)=0,所以当x∈(0,1)时,m(x)<0,当x∈(1,+∞)时,m(x)>0,所以当x∈(0,1)时,g' (x)<0,当x∈(1,+∞)时,g' (x)>0,所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.由洛必达法则知,lim x→1g(x)=2limx→1xlnx1-x2+1=2limx→11+lnx-2x+1=2×( - 12)+1=0,所以k≤0,故k的取值范围为( - ∞,0].解决本题第(2)问时,如果直接讨论函数的性质,相当烦琐,很难求解.采用变量分离法较易求解,但是分离出来的函数式的最值无法求解,而利用洛必达法则能较好地求出最值,这是一种值得借鉴的方法.素养探源核心素养考查途径素养水平逻辑推理分类讨论及命题间的等价转换等.二数学运算代数式的运算及不等式的等价变换等.二1.(1)因为f (x)=e x(e x - ax+a),所以f ' (x)=e x(e x - ax+a)+e x(e x - a)=e x(2e x - ax).令f ' (x)=0,则2e x=ax.当a=0时,不符合题意.当a≠0时,2a =xe x,令g(x)=xe x,所以g' (x)=1 - xe x,当x<1时,g' (x)>0,当x>1时,g' (x)<0,所以g(x)在( - ∞,1)上单调递增,在(1,+∞)上单调递减, 所以g(x)max=g(1),又g (1)=1e,当x → - ∞时,g (x )→ - ∞,当x →+∞时,g (x )→0且g (x )>0,所以当0<2a<1e,即2e<a 时,f (x )有2个极值点,即a 的取值范围为(2e,+∞).(2)由(1)知g (0)=0,不妨设0<x 1<1<x 2,因为x 1,x 2为f (x )的极值点,所以{2e x 1=ax 1,2e x 2=ax 2,所以{ln2+x 1=lna +lnx 1,ln2+x 2=lna +lnx 2,所以x 2 - x 1=ln x 2 - ln x 1,要证明2x 1x 2<x 1+x 2,可证明2x 1x 2(ln x 2 - ln x 1)<x 22 − x 12,即证明2lnx 2x 1<x 2x 1− x1x 2.设x2x 1=t (t >1),即证明2ln t - t +1t<0在(1,+∞)上恒成立,记h (t )=2ln t - t +1t,则h' (t )=2t- 1 -1t 2=- t 2+2t - 1t 2=- (t - 1)2t 2,当t >1时,h' (t )<0,所以h (t )在区间(1,+∞)上单调递减,所以当t >1时,h (t )<h (1)=0,即2ln t - t +1t <0,即2x 1x 2<x 1+x 2.2.(1)对f (x )求导,得f ' (x )=x e x - ax =x (e x - a ). 当a ≤0时,e x - a >0,令f ' (x )=0,得x =0,所以f (x )在( - ∞,0)上单调递减,在(0,+∞)上单调递增.当a =1时,若x <0,则e x - a <0,f ' (x )>0;若x >0,则e x - a >0,f ' (x )>0. 所以f (x )在R 上单调递增.当0<a <1时,令f ' (x )=0,得x =0或x =ln a ,所以f (x )在( - ∞,ln a ),(0,+∞)上单调递增,在(ln a ,0)上单调递减. 综上所述,当a ≤0时,f (x )在( - ∞,0)上单调递减,在(0,+∞)上单调递增; 当a =1时,f (x )在R 上单调递增;当0<a <1时,f (x )在( - ∞,ln a ),(0,+∞)上单调递增,在(ln a ,0)上单调递减. (2)由题意知,当a =1时,f (x )=(x - 1)e x - 12x 2+1.当n =1时,1f(1)=2<4,显然成立.当n ≥2时,由(1)知,当a =1时,f (x )在(0,+∞)上单调递增, 所以f (x )>f (0)=0在(0,+∞)上恒成立.设g (x )=e x - x - 1,则g' (x )=e x - 1,可知g (x )在( - ∞,0)上单调递减,在(0,+∞)上单调递增. 所以g (x )≥g (0)=0,即e x ≥x +1.所以当n ≥2时,f (n )≥(n - 1)(n +1) - 12n 2+1=12n 2,1f(n)≤2n 2,所以1f(n)<2(n - 1)n=2(1n - 1− 1n).于是1f(1)+1f(2)+…+1f(n)<2+2[(1 - 12)+(12− 13)+…+(1n - 1− 1n)]=4 - 2n<4.综上可知,1f(1)+1f(2)+…+1f(n)<4(n ∈N *).3.(1)易知f (x )的定义域为(0,+∞). 对f (x )求导,得f ' (x )=2ax - ln x - 1.因为f (x )在(0,+∞)上单调递增,所以当x >0时,f ' (x )≥0恒成立, 即2ax - ln x - 1≥0在(0,+∞)上恒成立,也即2a ≥lnx+1x在(0,+∞)上恒成立.令g (x )=lnx+1x ,x >0,则2a ≥g (x )max ,g' (x )= - lnx x 2,令g' (x )>0,可得ln x <0,解得0<x <1;令g' (x )<0,可得ln x >0,解得x >1.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 则g (x )max =g (1)=1.所以2a ≥1,即a ≥12.故a 的取值范围是[12,+∞).(2)当a =e 时,f (x )=e x 2 - x ln x ,要证当x >0时,f (x )<x e x +1e,即证当x >0时,e x 2 - x ln x <x e x +1e.因为x >0,所以只需证e x - ln x <e x +1ex,即证ln x +1ex>e x - e x (x >0).令h (x )=ln x +1ex(x >0),则h' (x )=1x−1ex 2=ex - 1ex 2(x >0).由h' (x )<0,得0<x <1e;由h' (x )>0,得x >1e.所以h (x )在(0,1e)上单调递减,在(1e,+∞)上单调递增,则h (x )在x =1e时取得最小值,最小值为h (1e)=0,从而h (x )≥0,即ln x +1ex≥0.令φ(x )=e x - e x (x >0),则φ' (x )=e - e x (x >0). 由φ' (x )>0,得0<x <1,由φ' (x )<0,得x >1,所以φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )在x =1时取得最大值,最大值为φ(1)=0,从而φ(x )≤0,即e x - e x ≤0. 因为h (x )和φ(x )不同时为0,所以ln x +1ex >e x - e x (x >0),即当x >0时,f (x )<x e x +1e成立.令g' (x )=0,得x =π2.当x ∈(0,π2)时,g' (x )>0;当x ∈(π2,π)时,g' (x )<0,所以g (x )在(0,π2)上单调递增,在(π2,π)上单调递减.又g (0)=0,g (π2)>0,g (π)= - 2,故g (x )在(0,π)内存在唯一零点.所以f ' (x )在(0,π)内存在唯一零点.(2)由题设知f (π)≥a π,f (π)=0,可得a ≤0.由(1)知,f ' (x )在(0,π)内只有一个零点,设此零点为x 0,且当x ∈(0,x 0)时,f ' (x )>0;当x ∈(x 0,π)时,f ' (x )<0,所以f (x )在(0,x 0)上单调递增,在(x 0,π)上单调递减. 又f (0)=0,f (π)=0,所以当x ∈[0,π]时,f (x )≥0. 又当a ≤0,x ∈[0,π]时,ax ≤0,故f (x )≥ax. 因此,a 的取值范围是( - ∞,0].5.(1)由题意知函数f (x )的定义域为(0,+∞).f ' (x )= - 1+ln x +x+a x=ln x +ax.因为函数f (x )有两个不同的极值点,所以f ' (x )=0即ln x +ax =0有两个不同的实数解.分离参数得a = - x ln x.记g (x )= - x ln x (x >0),则g' (x )= - 1 - ln x ,令g' (x )=0,解得x =1e .当x ∈(0,1e)时,g' (x )>0,函数g (x )单调递增;当x ∈(1e,+∞)时,g' (x )<0,函数g (x )单调递减.g (1e )= - 1e ln 1e =1e ,且x → 0时,g (x )→ 0.如图D 3 - 3 - 1,作出函数g (x )的大致图象及直线y =a.图D 3 - 3 - 1由图可知,当直线y =a 与函数g (x )的图象有两个交点时,a ∈(0,1e ).故所求实数a 的取值范围为(0,1e).(2)当a =2时,f (x )= - x +(x +2)ln x ,所以f ' (x )=2x+ln x.不妨设m (x )=2x+ln x (x >0).由题意可知,函数f (x )的图象在A (x 1,f (x 1)),B (x 2,f (x 2))两个不同的点处的切线互相平行,即f ' (x 1)=f ' (x 2),即m (x 1)=m (x 2). 易得m' (x )= -2x 2+1x=x - 2x 2,所以函数m (x )在(0,2)上单调递减,在(2,+∞)上单调递增. 故由m (x 1)=m (x 2),可知必有0<x 1<2<x 2,所以4 - x 1>2, 而m (x 1) - m (4 - x 1)=2x 1+ln x 1 -24 - x 1- ln(4 - x 1),令h (x )=2x−24 - x +ln x - ln(4 - x )(0<x <2),则h' (x )= -2x2 −2(4 - x)2+1x+14 - x=- 2(4 - x)2 - 2x 2+x(4 - x)2+x 2(4 - x)x 2(4 - x)2= -8(x - 2)2x 2(4 - x)2<0,所以函数h (x )在(0,2)上为减函数,所以h (x )>0,所以m (x 1) - m (4 - x 1)>0,即m (x 1)>m (4 - x 1),所以m (x 2)>m (4 - x 1). 又函数m (x )在(2,+∞)上单调递增,所以x 2>4 - x 1,即x 1+x 2>4.。
第3课时导数的综合应用组基础关1.方程x3-6x2+9x-10=0的实根个数是()A.3 B.2 C.1 D.0答案 C解析设f(x)=x3-6x2+9x-10,f′(x)=3x2-12x+9=3(x-1)(x-3),由此可知函数的极大值为f(1)=-6<0,极小值为f(3)=-10<0,所以方程x3-6x2+9x -10=0的实根个数为1.2.若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是()A.(-∞,0) B.(-∞,4]C.(0,+∞) D.[4,+∞)答案 B解析因为2x ln x≥-x2+ax-3,x∈(0,+∞),则a≤2ln x+x+3x,设h(x)=2ln x+x+3x(x>0),则h′(x)=(x+3)(x-1)x2.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4,所以a≤h(x)min=4.3.某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为p元,销售量为Q件,则销售量Q(单位:件)与零售价p(单位:元)有如下关系:Q=8300-170p-p2,则最大毛利润为(毛利润=销售收入-进货支出)() A.30元B.60元C.28000元D.23000元答案 D解析设毛利润为L(p)元,则由题意知L(p)=pQ-20Q=Q(p-20)=(8300-170p -p 2)(p -20)=-p 3-150p 2+11700p -166000,所以L ′(p )=-3p 2-300p +11700.令L ′(p )=0,解得p =30或p =-130(舍去).当p ∈(0,30)时,L ′(p )>0,当p ∈(30,+∞)时,L ′(p )<0,故L (p )在p =30时取得极大值,即最大值,且最大值为L (30)=23000.4.(2020·贵阳摸底)函数f (x )=e x +a -x 3+2x 2在(0,+∞)上只有一个零点,则a 的值为( )A .4B .4ln 2-3C .2D .5ln 2-4答案 D解析 函数f (x )=ex +a-x 3+2x 2在(0,+∞)上只有一个零点,可得e a=x 3-2x 2e x在(0,+∞)上只有一个解.令g (x )=x 3-2x 2e x ,可得g ′(x )=-x 3+5x 2-4xe x =-x ·x 2-5x +4e x ,g (x )在(0,+∞)上有2个极值点,x =1和x =4;当x ∈(0,1)时函数g (x )是减函数,当x ∈(1,4)时,函数g (x )是增函数,当x ∈(4,+∞)时函数g (x )是减函数,g (0)=0.所以函数g (x )的最大值为g (4)=64-32e 4=32e 4,函数f (x )=e x +a -x 3+2x 2在(0,+∞)上只有一个零点,可得e a=32e 4,所以a =5ln 2-4.故选D.5.(2019·天津高考)已知a ∈R ,设函数f (x )=⎩⎨⎧x 2-2ax +2a ,x ≤1,x -a ln x ,x >1.若关于x 的不等式f (x )≥0在R 上恒成立,则a的取值范围为( )A .[0,1]B .[0,2]C .[0,e]D .[1,e]答案 C解析 当x ≤1时,因为f (x )=x 2-2ax +2a ≥0恒成立,而二次函数f (x )图象的对称轴为直线x =a ,所以当a ≥1时,f (x )min =f (1)=1>0恒成立,当a <1时,f (x )min =f (a )=2a -a 2≥0,所以0≤a <1.综上,a ≥0.当x >1时,由f (x )=x -a ln x ≥0恒成立,即a ≤x ln x 恒成立.设g (x )=xln x ,则g ′(x )=ln x -1(ln x )2.令g ′(x )=0,得x =e ,且当1<x <e 时,g ′(x )<0,当x >e 时,g ′(x )>0,所以g (x )min =g (e)=e ,所以a ≤e.综上,a 的取值范围是0≤a ≤e ,即[0,e ].故选C.6.已知函数f (x )=e x -ln (x +3),则下面对函数f (x )的描述正确的是( ) A .∀x ∈(-3,+∞),f (x )≥13 B .∀x ∈(-3,+∞),f (x )>-12 C .∃x 0∈(-3,+∞),f (x 0)=-1 D .f (x )min ∈(0,1) 答案 B解析 因为函数f (x )=e x -ln (x +3),定义域为(-3,+∞),所以f ′(x )=e x -1x +3,易知f (x )的导函数f ′(x )在定义域(-3,+∞)上单调递增,又f ′(-1)<0,f ′⎝ ⎛⎭⎪⎫-12>0,所以f ′(x )=0在(-3,+∞)上有唯一的实根,不妨将其设为x 0,且x 0∈⎝ ⎛⎭⎪⎫-1,-12,则x =x 0为f (x )的最小值点,且f ′(x 0)=0,即e x 0=1x 0+3,两边取以e 为底的对数,得x 0=-ln (x 0+3),故f (x )≥f (x 0)=e x 0-ln (x 0+3)=1x 0+3-ln(x 0+3)=1x 0+3+x 0,因为x 0∈⎝ ⎛⎭⎪⎫-1,-12,所以2<x 0+3<52,故f (x )≥f (x 0)=1x 0+3+(x 0+3)-3>2+12-3=-12,即∀x ∈(-3,+∞),都有f (x )>-12.7.已知方程ln |x |-ax 2+32=0有4个不同的实数根,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,e 22B.⎝ ⎛⎦⎥⎤0,e 22C.⎝ ⎛⎭⎪⎫0,e 23D.⎝ ⎛⎦⎥⎤0,e 23 答案 A解析 由于y =ln |x |-ax 2+32是偶函数,所以方程ln x -ax 2+32=0(x >0)有两个根,即a=ln x+32x2有两个根.设f(x)=ln x+32x2,则f′(x)=x-2x⎝⎛⎭⎪⎫ln x+32x4=-2(ln x+1)x3,所以当0<x<1e时,f′(x)>0,f(x)单调递增,当x>1e时,f′(x)<0,f(x)单调递减,所以当x=1e 时,f(x)取得极大值也是最大值f⎝⎛⎭⎪⎫1e=e22.又x→+0时,f(x)→-∞,x→+∞时,f(x)→0,所以要使a=ln x+32x2有两个根,则0<a<e22.8.已知函数f(x)=x|x2-a|,若存在x∈[1,2],使得f(x)<2,则实数a的取值范围是________.答案(-1,5)解析当x∈[1,2]时,f(x)=|x3-ax|,由f(x)<2可得-2<x3-ax<2,即为-x2-2x<-a<-x2+2x,设g(x)=-x2-2x ,则导数为g′(x)=-2x+2x2,当x∈[1,2]时,g′(x)≤0,即g(x)在[1,2]上单调递减,所以g(x)min=-4-1=-5,即有-a>-5,即a<5;设h(x)=-x2+2x ,则导数为h′(x)=-2x-2x2,当x∈[1,2]时,h′(x)<0,即h(x)在[1,2]上单调递减,可得h(x)max=-1+2=1.即有-a<1,即a>-1.综上可得,a的取值范围是-1<a<5.9.已知函数f(x)=x ln x+12x2,x0是函数f(x)的极值点,给出以下几个命题:①0<x0<1e ;②x0>1e;③f(x0)+x0<0;④f(x0)+x0>0.其中正确的命题是________(填出所有正确命题的序号).答案①③解析 ∵函数f (x )=x ln x +12x 2(x >0),∴f ′(x )=ln x +1+x ,易得f ′(x )=ln x +1+x 在(0,+∞)上单调递增,∴f ′⎝ ⎛⎭⎪⎫1e =1e >0,∵x →0,f ′(x )→-∞,∴0<x 0<1e ,即①正确,②不正确; ∵ln x 0+1+x 0=0,∴f (x 0)+x 0=x 0ln x 0+12x 20+x 0=x 0⎝ ⎛⎭⎪⎫ln x 0+12x 0+1=-12x 20<0,即③正确,④不正确.10.已知函数f (x )的定义域是[-1,5],部分对应值如表,f (x )的导函数y =f ′(x )的图象如图所示,x -1 0 2 4 5 f (x )121.521下列关于函数f (x 的命题: ①函数f (x )的值域为[1,2]; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[-1,t ]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y =f (x )-a 最多有4个零点. 其中所有正确命题的序号是________. 答案 ①②④解析 由f (x )的导函数f ′(x )的图象可知,当-1<x <0及2<x <4时,f ′(x )>0,函数f (x )单调递增,当0<x <2及4<x <5时,f ′(x )<0,函数f (x )单调递减,当x =0及x =4时,函数f (x )取得极大值f (0)=2,f (4)=2,当x =2时,函数f (x )取得极小值f (2)=1.5.又f (-1)=f (5)=1,所以函数f (x )的最大值为2,最小值为1,值域为[1,2],①②正确;因为当x =0及x =4时,函数f (x )取得极大值f (0)=2,f (4)=2,要使当x ∈[-1,t ]时,函数f (x )的最大值是2,则0≤t ≤5,所以t 的最大值为5,所以③不正确;因为极小值f (2)=1.5,极大值f (0)=f (4)=2,所以当1<a <2时,y =f (x )-a 最多有4个零点,所以④正确,所以正确命题的序号为①②④.组 能力关1.已知f (x )=1-xe x ,过点(k,0)与f (x )相切的直线有且仅有3条,则k 的取值范围是( )A .(-∞,2-e 2)B .(-∞,2-e 2]C .(-∞,4-e 2)D .(-∞,4-e 2]答案 C解析 设切点为⎝ ⎛⎭⎪⎫x 0,1-x 0e x 0,f ′(x )=x -1e x ,则切线为y -1+x 0e x 0=x 0-1e x 0(x -x 0),代入点(k,0)得k =x 0+x 0x 0-1-e x 0x 0-1,令g (x )=x +x x -1-e xx -1,则g ′(x )=(2-x )(e x -x )(x -1)2,当x <2时,g ′(x )>0,g (x )单调递增,注意到x ≠1,故g (x )的递增区间为(-∞,1),(1,2),当x >2时,g (x )单调递减,要使g (x )=k 有三个根,由图象可得,k <g (2)=4-e 2,故k 的取值范围为(-∞,4-e 2).2.(多选)关于函数f (x )=2x +ln x ,下列选项正确的是( ) A .x =2是f (x )的极大值点B .函数y =f (x )-x 有且只有1个零点C .存在正实数k ,使得f (x )>kx 恒成立D .对任意两个正实数x 1,x 2,且x 1>x 2,若f (x 1)=f (x 2),则x 1+x 2>4答案BD解析f′(x)=x-2x2,当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增,x=2是f(x)的极小值点,故A错误.根据函数f(x)的单调性及极值点,作出函数f(x)的大致图象,如图所示,作出直线y =x,易知直线y=x与f(x)的图象有且只有1个交点,即函数y=f(x)-x有且只有1个零点,故B正确.若f(x)>kx,则k<2x2+ln xx,令g(x)=2x2+ln xx,则g′(x)=-4+x-x ln xx3,令F(x)=-4+x-x ln x,则F′(x)=-ln x,所以F(x)在(0,1)上单调递增,在(1,+∞)上单调递减,F(x)≤F(1)<0,所以g(x)在(0,+∞)上单调递减,g(x)无最小值,不存在正实数k,使得f(x)>kx恒成立,故C错误.由x1>x2,f(x1)=f(x2)可知x1>2,0<x2<2,要证x1+x2>4,即证x1>4-x2,且x1>4-x2>2,f(x)在(2,+∞)上单调递增,即证f(x1)>f(4-x2),又f(x1)=f(x2),所以证f(x2)>f(4-x2),即证f(x)>f(4-x),x∈(0,2).令h(x)=f(x)-f(4-x)=ln x-ln (4-x)+2x-24-x,x∈(0,2),则h′(x)=-8(x-2)2x2(4-x)2<0,所以h(x)在(0,2)上单调递减,所以h(x)>0,所以x1+x2>4,故D正确.故选BD.3.(多选)对于定义在R上的函数f(x),若存在非零实数x0,使函数f(x)在(-∞,x0)和(x0,+∞)上均有零点,则称x0为函数f(x)的一个“折点”.下列四个函数存在“折点”的是()A.f(x)=3|x-1|+2B.f(x)=lg |x+2019|C.f(x)=x33-x-1D.f(x)=x2+2mx-1(m∈R)答案BD解析因为f(x)=3|x-1|+2>2,所以函数f(x)不存在零点,所以函数f(x)不存在“折点”;对于函数f(x)=lg |x+2019|,取x0=-2019,则函数f(x)在(-∞,-2019)上有零点x=-2020,在(-2019,+∞)上有零点x=-2018,所以x0=-2019是函数f(x)=lg |x+2019|的一个“折点”;对于函数f(x)=x3-x-1,3则f′(x)=x2-1=(x+1)(x-1).令f′(x)>0,得x>1或x<-1;令f′(x)<0,得-1<x<1,所以函数f(x)在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减.又f(-1)=-13<0,所以函数f(x)只有一个零点,-x-1不存在“折点”;所以函数f(x)=x33对于函数f(x)=x2+2mx-1=(x+m)2-m2-1,由于f(-m)=-m2-1≤-1,结合图象(图略)可知该函数一定有“折点”.故选BD.4.(2019·武汉模拟)设函数f(x)=x e kx(k≠0).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)讨论函数f(x)的单调性;(3)设g(x)=x2-2bx+4,当k=1时,若对任意的x1∈R,存在x2∈[1,2],使得f(x1)≥g(x2),求实数b的取值范围.解(1)f′(x)=(1+kx)e kx,因为f(0)=0且f′(0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =x . (2)函数f (x )的定义域为R ,令f ′(x )=(1+kx )e kx >0,由e kx >0,知1+kx >0.讨论:①当k >0时,x >-1k ,此时f (x )在⎝ ⎛⎭⎪⎫-∞,-1k 上单调递减,在⎝ ⎛⎭⎪⎫-1k ,+∞上单调递增.②当k <0时,x <-1k ,此时f (x )在⎝ ⎛⎭⎪⎫-∞,-1k 上单调递增,在⎝ ⎛⎭⎪⎫-1k ,+∞上单调递减.(3)由(2)知,当k =1时,f (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增.则对任意的x 1∈R ,有f (x 1)≥f (-1)=-1e , 即f (x 1)min =-1e ,又已知存在x 2∈[1,2],使得f (x 1)≥g (x 2),所以-1e ≥g (x 2),x 2∈[1,2],即存在x ∈[1,2],使得g (x )=x 2-2bx +4≤-1e ,即2b ≥x +4+e -1x ,因为x ∈[1,2]时,x +4+e -1x ∈⎣⎢⎡⎦⎥⎤4+12e ,5+1e ,所以2b ≥4+12e ,即b ≥2+14e ,所以实数b 的取值范围是⎣⎢⎡⎭⎪⎫2+14e ,+∞.组 素养关1.已知函数f (x )=x -12sin x -m2ln x +1,f ′(x )是f (x )的导函数. (1)证明:当m =2时,f ′(x )在(0,+∞)上有唯一零点;(2)若存在x 1,x 2∈(0,+∞),且x 1≠x 2时,f (x 1)=f (x 2),证明:x 1x 2<m 2. 证明 (1)当m =2时,f (x )=x -12sin x -ln x +1,f ′(x )=1-12cos x -1x . 当x ∈(0,π)时,f ′(x )为增函数,且f ′⎝ ⎛⎭⎪⎫π3=1-14-3π=34-3π<0,f ′(π)=32-1π>0,∴f ′(x )在(0,π)上有唯一零点. 当x ∈[π,+∞)时,f ′(x )=1-12cos x -1x ≥1-12-1x ≥12-1π>0, ∴f ′(x )在[π,+∞)上没有零点. 综上知,f ′(x )在(0,+∞)上有唯一零点. (2)不妨设0<x 1<x 2,由f (x 1)=f (x 2)得x 1-12sin x 1-m 2ln x 1+1=x 2-12sin x 2-m2ln x 2+1, ∴m 2(ln x 2-ln x 1)=x 2-x 1-12(sin x 2-sin x 1).设g (x )=x -sin x ,则g ′(x )=1-cos x ≥0,故g (x )在(0,+∞)上为增函数, ∴x 2-sin x 2>x 1-sin x 1,从而x 2-x 1>sin x 2-sin x 1,∴m 2(ln x 2-ln x 1)=x 2-x 1-12(sin x 2-sin x 1)>12(x 2-x 1),∴m >x 2-x 1ln x 2-ln x 1.下面证明:x 2-x 1ln x 2-ln x 1>x 1x 2.令t =x 2x 1,则t >1,即证明t -1ln t >t ,只需证明ln t -t -1t <0.(*)设h (t )=ln t -t -1t ,则当t >1时,h ′(t )=-(t -1)22t t <0,∴h (t )在(1,+∞)上单调递减.∴当t >1时,h (t )<h (1)=0,从而(*)得证, 即x 2-x 1ln x 2-ln x 1>x 1x 2. ∴m >x 1x 2,即x 1x 2<m 2.2.(2019·华中师范大学第一附中模拟)已知函数f (x )=(x +1)e x +12ax 2+2ax ,a∈R.(1)讨论f(x)极值点的个数;(2)若x0(x0≠-2)是f(x)的一个极值点,且f(-2)>e-2,证明:f(x0)≤1.解(1)f(x)的定义域为R,f′(x)=(x+2)(e x+a).若a≥0,则e x+a>0,所以当x∈(-∞,-2)时,f′(x)<0;当x∈(-2,+∞)时,f′(x)>0.所以f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增.所以x=-2为f(x)唯一的极小值点,无极大值点,故此时f(x)有1个极值点.若a<0,令f′(x)=(x+2)(e x+a)=0,则x1=-2,x2=ln (-a),当a<-e-2时,x1<x2,则当x∈(-∞,x1)时,f′(x)>0;当x∈(x1,x2)时,f′(x)<0;当x∈(x2,+∞)时,f′(x)>0.所以x1,x2分别为f(x)的极大值点和极小值点,故此时f(x)有2个极值点.当a=-e-2时,x1=x2,f′(x)=(x+2)(e x+a)≥0且不恒为0,此时f(x)在R 上单调递增,无极值点.当-e-2<a<0时,x1>x2.则当x∈(-∞,x2)时,f′(x)>0;当x∈(x2,x1)时,f′(x)<0;当x∈(x1,+∞)时,f′(x)>0.同理,x1,x2分别为f(x)的极小值点和极大值点,故此时f(x)有2个极值点.综上,当a=-e-2时,f(x)无极值点;当a≥0时,f(x)有1个极值点;当a<-e-2或-e-2<a<0时,f(x)有2个极值点.(2)证明:若x0(x0≠-2)是f(x)的一个极值点,由(1)可知a∈(-∞,-e-2)∪(-e-2,0),又f(-2)=-e-2-2a>e-2,所以a∈(-∞,-e-2),且x0≠-2.则x0=ln (-a),所以f(x0)=f(ln (-a))=12+2ln (-a)-2].2a[(ln (-a))令t=ln (-a)∈(-2,+∞),则a=-e t,所以g(t)=f(ln (-a))=-1t(t2+2t-2).2e故g′(t)=-1t.2t(t+4)e又因为t∈(-2,+∞),所以t+4>0,令g′(t)=0,得t=0.当t∈(-2,0)时,g′(t)>0,g(t)单调递增;当t∈(0,+∞),g′(t)<0,g(t)单调递减.所以t=0是g(t)唯一的极大值点也是最大值点,即g(t)≤g(0)=1.故f(ln (-a))≤1,即f(x0)≤1.。
2024届全国高考数学一轮复习好题专项(导数的综合应用)练习一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3eB .31e +C .4eD .41e +2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞⎪⎝⎭3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ] B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 二、提升练习1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2B .3C .ln 2D .52.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +.(1)求a 的值; (2)证明:()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<.9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>. 三、真题练习1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围.2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 4.(2020·山东海南省高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.5.(2020·浙江省高考真题)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点;(Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.6.(2019·全国高考真题(理))已知函数.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线的切线.()11ln x f x x x -=-+e x y =参考答案一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3e B .31e +C .4eD .41e +【答案】C 【答案解析】不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立,化为不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,必然有0a >.令1=x e,化为:31b a e +….令4a e =,1b =.利用导数研究函数的单调性极值最值即可得出结论. 【答案详解】解:不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立, 则不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立, 则0a >. 令1=x e,则131a b e -+--…,化为:31b a e +…. 令4a e =,1b =.不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,即不等式20lnx ex -+…对任意(0,)x ∈+∞恒成立, 令()2f x lnx ex =-+,则1()1()e x e f x e x x --'=-=,可得:1=x e 时,函数()f x 取得极大值即最大值,1(1120f e=--+=, 满足题意.可以验证其他值不成立. 故选:C .2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞ ⎪⎝⎭【答案】C 【答案解析】函数零点即方程ax e =的解,2ax e x =(0x >),取对数得2ln ax x =,此方程有两个解,引入函数()ln 2g x x ax =-,利用导数求得函数的单调性,函数的变化趋势,然后由零点存在定理可得结论.【答案详解】显然(0)1f =,()e ax f x =有两个零点,即方程ax e =,2ax e x =在(0,)+∞上有两个解,两边取对数得到2ln ax x =,令()ln 2g x x ax =-,1()2g x a x '=-,()g x 在10,2a ⎛⎫ ⎪⎝⎭单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭单调递减,又当0x →时,()g x →-∞,当x →+∞时,()g x →-∞, 因为()g x 有两个零点,则11ln 1022g a a ⎛⎫=->⎪⎝⎭, 解得12e a <.所以正数a 的取值范围是10,2e ⎛⎫⎪⎝⎭. 故选:C .3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e【答案】A 【答案解析】首先根据()0h x ≥求出2x ≥,进而参变分离解决恒成立的问题即可. 【答案详解】因为()()2xh x x e =-,所以()0h x ≥,即2x ≥,所以当2x ≥时,()()h x g x ≥恒成立,即()2122xa a x e x x -≥-, 即()()1222xx e x ax -≥-, 当2x =时,()()1222xx e x ax -≥-恒成立,符合题意;当()2,x ∈+∞时,有12xe ax ≥,即2xe xa ≥,令()2x e m x x =,则()()2210x e x m x x-'=>,所以()m x 在()2,x ∈+∞上单调递增,而()22m e =,所以2e a ≥,故选:A.4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ]B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}【答案】D 【答案解析】利用导数研究函数在定义域上的单调性,得出1()f x e≤;结合题意得出()f x 在[]02,有且仅有1个解,计算(0)(2)f f 、的值即可. 【答案详解】当[]02x ∈,时()xxf x e =, 则1()x xf x e-'=令()=0f x ',解得1x =,所以当[]01x ∈,时()0f x '>,()f x 单调递增; 当[]12x ∈,时()0f x '<,()f x 单调递减, 所以max 1()(1)f x f e==,故1()f x e≤在定义域上恒成立,由22()(21)()0f x a f x a +--=有且只有2个实数根, 得方程[]12()()02f x a f x ⎡⎤+-=⎢⎥⎣⎦有2个解,又1()f x e≤,所以111()022f x e -≤-<,则()f x 在[]02,有且仅有1个解, 因为22(0)0(2)f f e ==,,则220a e <-<或1a e-=, 所以220a e-<<或1a e =-,即实数的取值范围是2210e e ⎛⎫⎧⎫--⎨⎬ ⎪⎝⎭⎩⎭,, 故选:D5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e【答案】D 【答案解析】画出函数图像,数形结合构造函数,利用导数判断函数单调性并求函数最值即可. 【答案详解】根据题意,画出()f x 的图象如下所示:令()f x t =,(0)t >,故可得lnx t =,解得t x e =;e t x -=,解得e x t=-.故可得(),,,te A e t B t t ⎛⎫- ⎪⎝⎭,(0)t >, 故()teAB g t e t==+,(0)t >, 故可得()2te g t e t ='-,()30te g t e t'=+>'恒成立, 故()g t '是单调递增函数,且()10g '=,关于()0g t '<在()0,1成立,()0g t '>在()1,+∞成立, 故()g t 在()0,1单调递减,在()1,+∞单调递增, 故()()12min g t g e e e ==+=. 即||AB 的最小值为2e . 故选:D6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞ B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞【答案】D 【答案解析】参变分离可得222e x mx x n +-<,研究函数()222exmx xf x +-=,根据导函数()()22e x m x x m f x ⎛⎫--- ⎪⎝⎭'=以及2m <-,可得函数()f x 的极大值为22222e 0e m m f m -⎛⎫==> ⎪⎝⎭,当2x >,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,根据()f x 的最大值的范围即可得解. 【答案详解】由22e 2xmx n x +<+,得222exmx x n +-<, 令()222exmx xf x +-=,则()()22e xm x x m f x ⎛⎫--- ⎪⎝⎭'=,当2m <-时,210m-<<, 函数()f x 在2,m ⎛⎫-∞ ⎪⎝⎭,()2,+∞上单调递增,在2,2m ⎛⎫⎪⎝⎭上单调递减,故函数()f x 的极大值为22222e 0e mm f m -⎛⎫==> ⎪⎝⎭,极小值为()24220e m f -=<, 且2x >时,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,由2m <-, 得22e 2e m -<,由()f x n <恒成立,得2e n ≥, 故选:D .7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点 【答案】ACD 【答案解析】由定义法确定函数的奇偶性,再求导数判断函数的单调性与切线斜率,以及零点情况. 【答案详解】因为对于任意x ∈R ,都有()()()()3e e x x x x a xf x f -=-+---=--, 所以()f x 为奇函数,其图象关于原点对称,故A 正确.又()2e e 3xxx a f x =++-',令()f x a '=-,得2e e 30x x x -++=(*),因为e 0x >,e 0x ->,所以方程(*)无实数解,即曲线()y f x =的所有切线的斜率都不可能为a -,故B 错误.若()f x 为增函数,则()f x ¢大于等于0,即2e e 3x x a x -≤++,2e e 32x x x -++≥, 当且仅当0x =时等号成立,所以2a ≤,故C 正确.令()0f x =,得0x =或2e e x x x a x --+=(0x ≠).设()2e e x x g x x x--=+,则()()()21e 1e 2x x x x x x g x -'=-+++,令()()()1e 1e x xx x t x -=-++,则()()e exxx x t -='-.当0x >时,()0t x '>,当0x =时,()0t x '=,当0x <时,()0t x '>,所以函数()t x 为增函数,且()00t =,所以当0x >时,()0t x >,从而()0g x ¢>,()g x 单调递增.又因为对于任意0x ≠,都有()()g x g x -=,所以()g x 为偶函数,其图象关于y 轴对称. 综上,()g x 在(),0-?上单调递减,在()0,+?上单调递增,则直线y a =与()y g x =最多有2个交点,所以()f x 在R 上最多有3个零点,故D 正确. 故选ACD .8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 【答案】916. 【答案解析】设长方体的底面边长为,a b ,高为h ,由题可得3217244V b b b =--+,求出函数导数,判断单调性,即可求出最值. 【答案详解】设长方体的底面边长为,a b ,高为h ,则由题可得1a b =+,()411a b h ++=,则可得784b h -=,则708b <<, 则该容器容积()32781712444b V abh b b b b b -==+⋅⋅=--+,217176624212V b b b b ⎛⎫⎛⎫'=--+=--+ ⎪⎪⎝⎭⎝⎭,当10,2b ⎛⎫∈ ⎪⎝⎭时,0V '>,V 单调递增;当17,28b ⎛⎫∈ ⎪⎝⎭时,0V '<,V 单调递减, ∴当12b =时,max 916V =,即该容器容积的最大值为916. 故答案为:916.9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.【答案】8 c m 2π+ ()32128 c m 2ππ+ 【答案解析】设圆柱的底面半径为r ,圆柱的高为h ,根据已知条件可得出262h r π+=-,根据柱体的体积公式可得()23262V r r πππ+=-,利用导数可求得V 的最大值及其对应的r 的值,即为所求.【答案详解】设圆柱的底面半径为r ,圆柱的高为h . 则由题意可得2212r h r π++=,所以()1222622r h r ππ-++==-.由0h >,得122r π<+. 故容器的容积()22232212660222V r h r r r r r πππππππ++⎛⎫⎛⎫==-=-<< ⎪ ⎪+⎝⎭⎝⎭,容易忽略上半球是容器的盖子,化妆水储存在圆柱中.()232122V r r πππ+'=-,令0V '=,解得0r =(舍)或82r π=+. 显然当80,2r π⎛⎫∈ ⎪+⎝⎭时,0V '>,函数()23262V r r πππ+=-单调递增; 当812,22r ππ⎛⎫∈⎪++⎝⎭时,0V '<,函数()23262V r r πππ+=-单调递减. 所以当8cm 2r π=+时,V 取得最大值, 此时2862cm 22h ππ+=-⨯=+,()23281282cm 22V ππππ⎛⎫=⨯= ⎪+⎝⎭+. 故答案为:8 c m 2π+;()32128 c m 2ππ+. 10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 【答案】0a ≤或1a e= 【答案解析】将函数的零点转化为方程ln (0)x x x a x xe +=>的根,令ln ()xx xg x xe +=,利用导数研究函数的图象特征,即可得到答案; 【答案详解】ln ln 10(0)x x x x xae a x x xe +--=⇔=>, 令ln ()xx x g x xe+=,则'2()(1ln )()x x x x g x x e +--=, ''()01ln 0,()01ln 0,g x x x g x x x >⇔--><⇔--<令()1ln u x x x =--,则'1()10u x x=--<在0x >恒成立, ∴()1ln u x x x =--在(0,)+∞单调递减,且(1)0u =, ∴''()001,()01g x x g x x >⇒<<<⇒>,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且1(1)g e=,当x →+∞时,()0g x →, 如图所示,可得当0a ≤或1a e =时,直线y a =与ln xx x y xe +=有且仅有一个交点, 故答案为:0a ≤或1a e=1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2 B .3C .ln 2D .5【答案】C 【答案解析】构造函数()ln f x ax x b =-+,根据函数的单调性及最值可得ln 1b a ≥--,故22ln 1a b a a +≥--,再构造()2ln 1g x x x =--,求得函数()g x 的最小值即可. 【答案详解】由ln x ax b ≤+恒成立,得ln 0ax x b -+≥, 设()ln f x ax x b =-+,()1f x a x'=-, 当0a ≤时,()0f x ¢<,()f x 在()0,+?上单调递减,不成立;当0a >时,令()0f x ¢=,解得1x a=,故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增, 故()10f x f a ⎛⎫≥≥⎪⎝⎭,即11ln 0a b a a ⎛⎫⋅-+≥ ⎪⎝⎭,ln 1b a ≥--,练提升22ln 1a b a a +≥--,设()2ln 1g x x x =--,()12g x x'=-, 令()0g x ¢=,12x =, 故()g x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 故()1112ln 1ln 2222g x g ⎛⎫⎛⎫≥=⨯--=⎪ ⎪⎝⎭⎝⎭, 即2ln 2a b +≥, 故选:C.2.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______. 【答案】①②④ 【答案解析】由()0f x =可得出lg 2x kx =+,考查直线2y kx =+与曲线()lg g x x =的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误. 【答案详解】对于①,当0k =时,由()lg 20f x x =-=,可得1100x =或100x =,①正确; 对于②,考查直线2y kx =+与曲线()lg 01y x x =-<<相切于点(),lg P t t -,对函数lg y x =-求导得1ln10y x '=-,由题意可得2lg 1ln10kt t k t +=-⎧⎪⎨=-⎪⎩,解得100100lg e t k e e ⎧=⎪⎪⎨⎪=-⎪⎩, 所以,存在100lg 0k e e=-<,使得()f x 只有一个零点,②正确; 对于③,当直线2y kx =+过点()1,0时,20k +=,解得2k =-,所以,当100lg 2e k e-<<-时,直线2y kx =+与曲线()lg 01y x x =-<<有两个交点, 若函数()f x 有三个零点,则直线2y kx =+与曲线()lg 01y x x =-<<有两个交点,直线2y kx =+与曲线()lg 1y x x =>有一个交点,所以,100lg 220e k ek ⎧-<<-⎪⎨⎪+>⎩,此不等式无解, 因此,不存在0k <,使得函数()f x 有三个零点,③错误;对于④,考查直线2y kx =+与曲线()lg 1y x x =>相切于点(),lg P t t ,对函数lg y x =求导得1ln10y x '=,由题意可得2lg 1ln10kt t k t +=⎧⎪⎨=⎪⎩,解得100lg 100t ee k e =⎧⎪⎨=⎪⎩,所以,当lg 0100ek e<<时,函数()f x 有三个零点,④正确.故答案为:①②④.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +. (1)求a 的值; (2)证明:()0f x >.【答案】(1)2a =;(2)证明见答案解析. 【答案解析】(1)求出函数的导函数,再代入计算可得;(2)依题意即证()()2222ln 0xf x x x e ex e x =-+->,即()12ln 2x x x e e x--+>,构造函数()()222x g x x e e-=-+,()ln xh x x =,利用导数说明其单调性与最值,即可得到()()>g x h x ,从而得证; 【答案详解】解:(1)因为()()222ln xf x x x e aex e x =-+-,所以()()222xef x x e ae x'=-+-,()22332222e ef ae e =+=+',解得2a =.(2)由(1)可得()()2222ln xf x x x e ex e x =-+-即证()()()2212ln 22ln 02x x x f x x x e ex e x x e e x-=-+->⇔-+>. 令()()222x g x x e e-=-+,()()21x g x x e -=-',于是()g x 在()0,1上是减函数,在()1,+∞上是增函数,所以()()11g x g e≥=(1x =取等号). 又令()ln x h x x =,则()21ln xh x x -'=,于是()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以()()1h x h e e≤=(x e =时取等号).所以()()>g x h x ,即()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.【答案】(1)1m =;(2)证明见答案解析;(3)有一个零点. 【答案解析】(1)利用导数的几何意义求解即可(2)利用导数,得到()f x 在()0,∞+上单调递增,由()00f =,即可证明()0f x >在()0,∞+上恒成立 (3)由(2)可知当1m >且0x >时,()()ln 1e0xf x x x ->+->,即()f x 在()0,∞+上没有零点,再根据,0x m +>,得到x m >-, 对(),0x m ∈-进行讨论,即可求解 【答案详解】解:(1)因为()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,所以()112f '=, 因为()()11e x f x x x m -+-'=+, 所以()11112f m ='=+,解得1m =. (2)由(1)得当1m =时,()()()21e 11e 11ex xx x f x x x x -+-=+-=++', 当0x >时,因为()0f x '>,所以()f x 在()0,∞+上单调递增, 因为()00f =,所以()0f x >在()0,∞+上恒成立. (3)由(2)可知当1m >且0x >时,()()ln 1e 0xf x x x ->+->,即()f x 在()0,∞+上没有零点,当(),0x m ∈-时,()()()()2e 111e e x xxx m x m f x x x m x m -++--=+-=++',令()()2e 1xg x x m x m =++--,(),0x m ∈-,则()e 21xg x x m =++-'单调递增,且()e21e 10mm g m m m m ---=-+-=--<',()00g m '=>,所以()g x '在(),0m -上存在唯一零点,记为0x ,且()0,x m x ∈-时,()0g x '<,()0,0x x ∈时,()0g x '>, 所以()g x 在()0,m x -上单调递减,在()0,0x 上单调递增, 因为1m >, 所以()e0mg m --=>,()010g m =-<,因为()()00g x g <,所以()00g x <,所以()g x 在()0,m x -上存在唯一零点1x ,且在()0,0x 上恒小于零, 故()1,x m x ∈-时,()0g x >;()1,0x x ∈时,()0g x <,所以()f x 在()1,m x -上单调递增,在()1,0x 上单调递减,且()0ln 0f m =>, 所以()f x 在(),0m -上至多有一个零点, 取()e 2e ,0mm x m m -=-+∈-, 则有()()22ln e 0mf x x m m <++=,所以由零点存在定理可知()f x 在(),0m -上只有一个零点, 又f (0)不为0,所以()f x 在(),m -+∞上只有一个零点.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.【答案】(1)答案见答案解析;(2)01a <<+或a e >.【答案解析】 (1)求得()'fx ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论,结合函数的极值以及零点个数,求得a 的取值范围. 【答案详解】 (1)()()()'1x x a f x x--=,当01a <<时,由()'00f x x a >⇒<<或1x >,所以()f x 在()0,a ,()1,+∞单调递增,由()'01fx a x <⇒<<,所以()f x 在(),1a 单调递减;当1a >时,由()'001fx x >⇒<<或x a >,所以()f x 在()0,1,(),a +∞单调递增,由()'01f x x a <⇒<<,所以()f x 在()1,a 单调递减;当1a =时,()()2'10x f x x-=≥⇒()f x 在()0,∞+单调递增.(2)1(1)(1(12f a a ⎡⎤⎡⎤=--⎣⎦⎣⎦,()(ln 1)f a a a =-, 由(1)知当01a <<时,()f x 在x a =处,有极大值,且()0f a <,此时函数有一个零点; 当1a =时,()f x 在()0,∞+单调递增,且()10f <,此时函数有一个零点;当1a >时,()0,1,(),a +∞单调递增,()1,a 单调递减,()f x 在x a =处,有极小值,()f x 在1x =处,有极大值,则当()10f <,或()0f a >时函数有一个零点,有11a <<或a e >.综上:01a <<+或a e >.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.【答案】(1)证明过程见解答;(2)当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 【答案解析】(1)将0k =代入,对()f x 求导,得到其单调性,判断其最值,即可得证;(2)令t lnx =,则()0f x =即为2102t k t t e ++=,显然0t ≠,进一步转化为212t k t t e +-=,令21()(0)t t h t t t e+=≠,利用导数作出()h t 的大致图象,进而图象判断方程解的情况,进而得到函数()f x 零点情况. 【答案详解】(1)证明:当0k =时,1()(0)lnx f x x x +=>,则2()lnxf x x'=-, ∴当(0,1)x ∈时,()0f x '>,()f x 单增,当(1,)x ∈+∞时,()0f x '<,()f x 单减,()f x f ∴…(1)1=,即得证;(2)令t lnx =,则()0f x =即为2102t k t t e++=,当0t =,即1x =时,该方程不成立,故1x =不是()f x 的零点; 接下来讨论0t ≠时的情况,当0t ≠时,方程可化为212tk t t e +-=, 令21()(0)t t h t t t e +=≠,则222()tt th t t e++'=-,当0t <时,22220t t ++-=-<…,当且仅当t =当0t >时,22220t t +++=+>…,当且仅当t =时取等号,∴当0t <时,()0h t '>,()h t 单增,当0t >时,()0h t '<,()h t 单减,且当0t →时,()h t →+∞,(1)0h -=,当1t <-时,()0h t <,当0t >时,()0h t >, 函数()h t 的大致图象如下:由图象可知,当02k -<,即0k >时,212t k t t e +-=只有一个解,则()f x 有一个零点,当02k ->,即0k <时,212tk t t e +-=有两个解,则()f x 有两个零点. 综上,当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 【答案】(1)1a =;(2)证明见答案解析. 【答案解析】(1)作差,设()()()1x h x f x g x e ax =-=--,利用导数求出()h x 的最小值为(ln )ln 10h a a a a =--≥,只需1ln 10a a +-≤;设1()ln 1a a aϕ=+-,利用导数求出min ()(1)0a ϕϕ==,解出1a =; (2)利用1x e x >+把原不等式转化为证明1ln 111x x x x -+-<+,即证:21ln 10x x x-++>, 设21()ln 1F x x x x=-++,利用导数求出最小值,即可证明.【答案详解】(1)设()()()1x h x f x g x e ax =-=--,()x h x e a '=-,当0a ≤时,()0x h x e a '=->,()h x 单增,当,()x h x →-∞→-∞,不满足恒成立 当0a >,()h x 在(,ln )x a ∈-∞单减,()h x 在(ln ,)x a ∈+∞单增, 所以()h x 的最小值为(ln )ln 10h a a a a =--≥,即11ln 0a a --≥,即1ln 10a a+-≤ 设1()ln 1a a a ϕ=+-,21()a a aϕ-'=,所以()ϕx 在(0,1)x ∈单减,()ϕx 在(1,)+∞单增, 即min()(1)0a ϕϕ==,故1ln 10a a+-≤的解只有1a =,综上1a =(2)先证当(0,1)x ∈时,1x e x >+恒成立.令()1x h x e x =--,求导()10x h x e '=->,所以()h x 在(0,1)x ∈上单调递增,()(0)0h x h >=,所以1x e x >+所以要证1ln 11x x x e x -+-<,即证1ln 111x x x x-+-<+, 即证211ln 1x x x x x x +-++-<+,即证:21ln 10x x x -++>, 设21()ln 1F x x x x=-++,求导22111()2(1)20F x x x x x x x '=--=--<,所以()F x 在(0,1)上单调递减,所以()(1)10F x F >=>,即原不等式成立.所以当(0,1)x ∈时,如1ln 11()x x f x x-+-<成立. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<. 【答案】(1)当()0,x e ∈时,()f x 单调递增;当(),x e ∈+∞时,()f x 单调递减;(2)证明见答案解析. 【答案解析】(1)将0a =代入函数,并求导即可分析单调性;(2)求导函数,讨论当0a =,01a <<与1a ≥时分析单调性,并判断是否有极大值,再求解极大值,即可证明.【答案详解】(1)()f x 的定义域是()0,∞+ 当0a =时,()ln x f x x =,()21ln xf x x -'=, 令()0f x '=,得x e =,所以当()0,x e ∈时,()0f x '>,()f x 单调递增; 当(),x e ∈+∞时,()0f x '<,()f x 单调递减;(2)()()()()()22ln ln xx a x x a x ax a f x x x x a -+-+++'==+, 令()()()()ln ,0,g x x x a x a x =-++∈+∞, 则()()ln g x x a '=-+,由()f x 的定义域是()0,∞+,易得0a ≥,当0a =时,由(1)知,()f x 在x e =处取得极大值,所以()1==M f e e. 当1a ≥时,()0g x '<在()0,x ∈+∞上恒成立,所以()g x 在()0,∞+上单调递减,()ln 0g x a a <-<,所以()0f x '<,故()f x 没有极值. 当01a <<时,令()0g x '=,得1x a =-,所以当()0,1x a ∈-时,()0g x '>,()g x 单调递增;当()1,x a ∈-+∞时,()0g x '<,()g x 单调递减. 所以当()0,1x a ∈-时,()ln 0g x a a >->,又()110g a a -=->,()0-=-<g e a a ,且1-<-e a a ,所以存在唯一()01,∈--x a e a ,使得()()()0000ln g x x x a x a =-+⋅+,当()00,x x ∈时,()0g x >,即()0f x '>,()f x 单调递增;当()0,x x ∈+∞时,()0g x <,即()0f x '<,()f x 单调递减.所以当0x x =时,()f x 取得极大值,所以()()000ln x a M f x a x +==+,所以()()()()000000011ln M x a x x a x a x a x a x a=++-=++-+⋅+++. 令0x a t +=,则()1,t e ∈,设()1ln h t t t t t=+-,()1,t e ∈, 则()21ln 0h t t t'=--<, 所以()h t 在()1,e 上单调递减, 所以()12<<h t e ,所以12<<M e. 综上,若函数()f x 存在极大值M ,则12M e≤<. 9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 【答案】(1)211b e -≤;(2)证明见答案解析. 【答案解析】(1)由条件求出a ,然后由()1f x bx ≤-可得1ln 1+x b x x≤-,然后用导数求出右边对应函数的最小值即可;(2)11()(1)e 1(1)(xx g x x x e x x'=--+=--,令()1e x h x x =-,然后可得存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-,然后可得0max 000000000012()()(2)ln (2)12x m g x g x x e x x x x x x x x ===--+=---=--,然后判断出函数2()12G x x x=--的单调性即可. 【答案详解】 (1)∵1()f x a x'=+,(1)10f a '=+=,∴1a =-,由已知()1f x bx ≤-,即ln 1x x bx -≤-,即1ln 1+x b x x≤-对()0,x ∀∈+∞恒成立, 令1ln ()1x t x x x =+-,则22211ln ln 2()x x t x x x x --'=--=,易得()t x 在2(0,)e 上单调递减,在2(,)e +∞上单调递增, ∴2min 21()()1t x t e e==-,即211b e -≤. (2)()()(2)e (2)e ln x x g x f x x x x x =+-=--+,则11()(1)e 1(1)(xx g x x x e x x'=--+=--. 当114x <<时,10x -<,令()1e xh x x=-, 则21()e 0xh x x'=+>,所以()h x 在1[,1]4上单调递增.∵121(()e 202h h x ==-<,(1)10h e =->,∴存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-. ∴当01(,)4x x ∈时,()0h x <,此时()0g x '>; 当0(,1)x x ∈时,()0h x >,此时()0g x '<; 即()g x 在01(,)4x 上单调递增,在0(),1x 上单调递减,则0max 000000000012()()(2)ln (2)12xm g x g x x e x x x x x x x x ===--+=---=--. 令2()12G x x x =--,1(,1)2x ∈,则22222(1)()20x G x x x '-=-=>,∴()G x 在1(,1)2x ∈上单调递增,则1()(42G x G >=-,()(1)3G x G <=-, ∴43m -<<-.∴()()430m m ++<.10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>.【答案】(1)答案见答案解析;(2)证明见答案解析. 【答案解析】(1)求函数的导数,分类讨论,解不等式即可求解;(2)根据极值点可转化为1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可得12x >且1x ≠,要证122x x +>,只要证212x x >-,利用构造函数的单调性证明即可. 【答案详解】(1)由题意得()21212ax ax x f x x x-+=+='-(0x >). 令()0f x '>,则2210ax x -+>.①当()2240a ∆=--≤,即1a ≥时,2210ax x -+>在()0,∞+上恒成立,即()f x 的增区间为()0,∞+;②当()2240a ∆=-->,即01a <<时,10x a -<<或1x a+>,即()f x 的增区间为10,a ⎛⎫ ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭.综上,当1a ≥时,()f x 的增区间为()0,∞+;当01a <<时,()f x 的增区间为10,a ⎛⎫- ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭. (2)因为()221x x ax xf -+'=(0x >),()f x 有两个极值点1x ,2x , 所以1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可求出 从而()2240a ∆=-->,0a >,解得01a <<. 由2210-+=ax x 得221x a x -=. 因为01a <<,所以12x >且1x ≠.令()221x g x x -=,12x >且1x ≠,则()()321x g x x-'=,所以当112x <<时,()0g x '>,从而()g x 单调递增;当1x >时,()0g x '<,从而()g x 单调递减, 于是1222122121x x a x x --==(12112x x <<<). 要证122x x +>,只要证212x x >-,只要证明()()212g x g x <-. 因为()()12g x g x =,所以只要证()()112g x g x <-. 令()()()()()1111122112212122x x F x g x g x x x ---=--=-- 则()()()()1113311212212x x F x xx --⎡⎤-⎣⎦'=+-()()()11331121212x x x x --=+- ()()1331111212x x x ⎡⎤=--⎢⎥-⎢⎥⎣⎦()()()()22211111331141222x x x x x x x ⎡⎤--+-+⎣⎦=-.因为1112x <<, 所以()10F x '>,即()1F x 在1,12⎛⎫⎪⎝⎭上单调递增,所以()()110F x F <=,即()()112g x g x <-, 所以212x x >-,即122x x +>.1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围. 【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >. 练真题(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【答案详解】(1)函数的定义域为()0,∞+,又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a <<时,()0f x '<;当1x a>时,()0f x '>; 所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点, 所以()y f x =的图象在x 轴的上方, 由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭, 故33ln 0a +>即1a e>. 2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】1;证明见答案详解 【答案解析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠,当 ()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-< , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <-> , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞ ,1x t =-, 令()1ln g t t t t =-+,()'1ln 1ln g t t t =-++=,当()0,1t ∈时,()'0g x <,()g x 单减,假设()1g 能取到,则()10g =,故()()10g t g >=; 当()1,t ∈+∞时,()'0g x >,()g x 单增,假设()1g 能取到,则()10g =,故()()10g t g >=; 综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞ 恒成立3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见答案解析. 【答案解析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可。
高考备考数学专项训练:导数的综合应用下面就是查字典数学网为大家整理的2021年高考备考数学专项训练:导数的综合运用供大家参考,不时提高,学习更上一层楼。
一、选择题1.以下各坐标系中是一个函数与其导函数的图象,其中一定错误的选项是()答案:C 命题立意:此题考察导数在研讨函数单调性上的运用,难度中等.解题思绪:依次判别各个选项,易知选项C中两图象在第一象限局部,不论哪一个作为导函数的图象,其值均为正值,故相应函数应为增函数,但相反另一函数图象不契合单调性,即C选项一定不正确.2.函数f(x)的导函数为f(x),且满足f(x)=2xf(e)+ln x,那么f(e)=()A.1B.-1C.-e-1D.-e答案:C 命题立意:此题考察函数的导数的求法与赋值法,难度中等.解题思绪:依题意得,f(x)=2f(e)+,取x=e得f(e)=2f(e)+,由此解得f(e)=-=-e-1,应选C.3.函数y=f(x)的图象如下图,那么其导函数y=f(x)的图象能够是()ABCD答案:A 命题立意:此题考察函数的性质,难度较小.解题思绪:函数f(x)的图象自左向右看,在y轴左侧,依次是增、减、增;在(0,+)上是减函数.因此,f(x)的值在y轴左侧,依次是正、负、正,在(0,+)上的取值恒非正,应选A.4.f(x)是定义在R上的函数f(x)的导函数,且f(x)=f(5-x),f(x)0.假定x1A.f(x1)f(x2)C.f(x1)+f(x2)0D.f(x1)+f(x2)0答案:B 命题立意:此题主要考察函数的性质,意在考察考生的逻辑思想才干.解题思绪:依题意得,当x时,f(x)0,那么函数f(x)在上是减函数.当x1f(x2);假定x2,那么由x1+x25得x1,此时有f(x1)f(5-x2)=f(x2).综上所述,f(x1)f(x2),应选B.5.f(x)=x2+2xf(1),那么f(0)等于()A.0B.-4C.-2D.2答案:B 解题思绪:此题考察导数知识的运用.由题意f(x)=2x+2f(1), f(1)=2+2f(1),即f(1)=-2,f(x)=2x-4, f(0)=-4.技巧点拨:处置此题的关键是应用导数求出f(1)的值.6.函数f(x)的导数为f(x)=4x3-4x,且f(x)的图象过点(0,-5),当函数f(x)取得极大值-5时,x的值应为()A.-1B.0C.1D.1答案:B 解题思绪:可以求出f(x)=x4-2x2+c,其中c为常数.由于f(x)过(0,-5),所以c=-5,又由f(x)=0,得极值点为x=0和x=1.又x=0时,f(x)=-5,故x的值为0.7.函数f(x)=x3-2ax2-3x(aR),假定函数f(x)的图象上点P(1,m)处的切线方程为3x-y+b=0,那么m的值为()A.-B.-C.D.答案:A 命题立意:此题主要考察导数的几何意义及切线方程的求法.求解时,先对函数f(x)求导,令x=1求出点P(1,m)处切线的斜率,进而求出a的值,再依据点P在函数f(x)的图象上即可求出m的值.解题思绪: f(x)=x3-2ax2-3x, f(x)=2x2-4ax-3,过点P(1,m)的切线斜率为k=f(1)=-1-4a.又点P(1,m)处的切线方程为3x-y+b=0,-1-4a=3, a=-1, f(x)=x3+2x2-3x.又点P在函数f(x)的图象上, m=-.8.函数y=f(x)是定义在实数集R上的奇函数,且当x0,f(x)+xf(x)0(其中f(x)是f(x)的导函数).设a=(log4)f(log4),b=f(),c=f,那么a,b,c的大小关系是()A.cbB.caC.acD.ab答案:C 思绪点拨:令函数F(x)=xf(x),那么函数F(x)=xf(x)为偶函数.当x0时,F(x)=f(x)+xf(x)0,此时函数F(x)在(0,+)上单调递增,那么a=F(log4)=F(-log24)=F(-2)=F(2),b=F(),c=F=F(-lg 5)=F(lg 5),由于0bc,应选C.9.在平面直角坐标系xOy中,P是函数f(x)=ex(x0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P 作l的垂线交y轴于点N.设线段MN的中点的纵坐标为t,那么t的最大值是()A. B.C.e+D.e-答案:A 解题思绪:二、填空题10.函数f(x)=ex-ae-x,假定f(x)2恒成立,那么实数a的取值范围是________.答案:[3,+) 命题立意:此题考察导数的运算及不等式恒成立一类效果的解答方法,正确地分别变量是解答此题的关键,难度中等.解题思绪:据题意有f(x)=ex+ae-x2,分别变量得a(2-ex)ex=-(ex-)2+3,由于(2-ex)ex=-(ex-)2+33,故假定使不等式恒成立,只需a3即可.11.aR,函数f(x)=x3+ax2+(a-3)x的导函数是偶函数,那么曲线y=f(x)在原点处的切线方程为________.答案:3x+y=0 命题立意:此题主要考察导数的求法、奇偶性的定义、导数的几何意义与直线的方程等基础知识,意在考察考生的基本运算才干.解题思绪:依题意得,f(x)=3x2+2ax+(a-3)是偶函数,那么2a=0,即a=0,f(x)=3x2-3,f(0)=-3,因此曲线y=f(x)在原点处的切线方程是y=-3x,即3x+y=0.12.函数f(x)=axsin x-(aR),假定对x,f(x)的最大值为,那么(1)a的值为________;(2)函数f(x)在(0,)内的零点个数为________.答案:(1)1 (2)2 命题立意:此题考察导数的运用以及函数零点,难度中等.解题思绪:应用导数确定函数单调性,再应用数形结合求零点个数.由于f(x)=a(sin x+xcos x),当a0时,f(x)在x上单调递减,最大值f(0)=-,不适宜题意,所以a0,此时f(x)在x上单调递增,最大值f=a-=,解得a=1,契合题意,故a=1.f(x)=xsin x-在x(0,)上的零点个数即为函数y=sin x,y=的图象在x(0,)上的交点个数,又x=时,sin =10,所以两图象在x(0,)内有2个交点,即f(x)=xsin x-在x(0,)上的零点个数是2.13.{an}是正数组成的数列,a1=1,且点(,an+1)(nN*)在函数y=x3+x的导函数的图象上.数列{bn}满足bn=(nN*).那么数列{bn}的前n项和Sn为________.答案:命题立意:此题主要考察多项式函数的求导方法,等差数列的概念、通项公式以及数列求和方法等基础知识,考察先生的运算才干和综合运用知识剖析、处置效果的才干.解题思绪:由得an+1=an+1,数列{an}是首项为1,公差为1的等差数列, an=n,bn===-(nN*),Sn=1-+-++-=1-=(nN*). B组一、选择题1.曲线f(x)=ln x在点(x0,f(x0))处的切线经过点(0,-1),那么x0的值为()A. B.1 C.e D.10答案:B 命题立意:此题主要考察导数的几何意义、直线的方程等基础知识,意在考察考生的基本运算才干.解题思绪:依题意得,题中的切线方程是y-ln x0=(x-x0);又该切线经过点(0,-1),于是有-1-ln x0=(-x0),由此得ln x0=0,x0=1,应选B.2.函数f(x)=+1,g(x)=aln x,假定在x=处函数f(x)与g(x)的图象的切线平行,那么实数a的值为()A. B.C.1D.4答案:A 命题立意:此题主要考察导数的概念与曲线切线的求解,考察思想的严谨性,应留意检验.解题思绪:由题意可知f(x)=x,g(x)=,由f=g,得=,可得a=,经检验,a=满足题意.3.假定函数f(x)=-x2+bln(x+2)在[-1,+)上是减函数,那么b的取值范围是()A.[-1,+)B.(-1,+)C.(-,-1]D.(-,-1)答案:C 解题思绪:函数f(x)的导数f(x)=-x+,要使函数f(x)在[-1,+)上是减函数,那么f(x)=-x+0在[-1,+)上恒成立,即x在[-1,+)上恒成立,由于x-1,所以x+20,即bx(x+2)在[-1,+)上恒成立.设y=x(x+2),那么y=x2+2x=(x+1)2-1,由于x-1,所以y-1,所以要使bx(x+2)在[-1,+)上恒成立,那么有b-1,应选C.4.如图是函数f(x)=x2+ax+b的局部图象,函数g(x)=ex-f(x)的零点所在的区间是(k,k+1)(kZ),那么k的值为()A.-1或0B.0C.-1或1D.0或1答案:C 解题思绪:由二次函数f(x)的图象及函数f(x)两个零点的位置可知其对称轴x=-,解得10,g(0)=1-a0,g(1)=e-2-a0,g(2)=e2-4-a0,函数g(x)的两个零点x1(-1,0)和x2(1,2),故k=-1或1.5.函数f(x)的定义域为开区间(a,b),其导函数f(x)在(a,b)内的图象如下图,那么函数f(x)在开区间(a,b)内的极大值点有()A.1个B.2个C.3个D.4个答案:B 命题立意:此题主要考察函数的导数与极值间的关系,意在考察考生的推理才干.解题思绪:依题意,记函数y=f(x)的图象与x轴的交点的横坐标自左向右依次为x1,x2,x3,x4,当a0;当x1本文由查字典数学网为您提供供广阔考生参考学习,希望对大家有所协助,高考频道引荐。
2021年高考数学二轮复习导数的综合应用专题检测(含解析)1.已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0,现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是________.答案②③解析f(x)=x3-6x2+9x-abc,a<b<c,f′(x)=3x2-12x+9=3(x2-4x+3)=3(x-1)(x-3),函数f(x)和导函数f′(x)的大致图象如图所示:由图得f(1)=1-6+9-abc=4-abc>0,f(3)=27-54+27-abc=-abc<0,且f(0)=-abc=f(3)<0,所以f(0)f(1)<0,f(0)f(3)>0.2.若函数y=f(x)的导函数y=f′(x)的图象如图所示,则y=f(x)的图象可能为________.答案③解析根据f′(x)的符号,f(x)图象应该是先下降后上升,最后下降,排除①④;从适合f′(x )=0的点可以排除②.3.已知a ≤1-x x +ln x 对任意x ∈[12,2]恒成立,则a 的最大值为________.答案 0解析 设f (x )=1-x x +ln x ,则f ′(x )=-x +x -1x 2+1x =x -1x 2.当x ∈[12,1)时,f ′(x )<0,故函数f (x )在[12,1)上单调递减;当x ∈(1,2]时,f ′(x )>0,故函数f (x )在(1,2]上单调递增,∴f (x )min =f (1)=0,∴a ≤0,即a 的最大值为0.4.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x+1的解集为________. 答案 (0,+∞)解析 构造函数g (x )=e x ·f (x )-e x, 因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x=e x [f (x )+f ′(x )]-e x >e x -e x=0,所以g (x )=e x ·f (x )-e x为R 上的增函数. 又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.5.关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是________. 答案 (-4,0)解析 由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可, 又f ′(x )=3x 2-6x =3x (x -2), 令f ′(x )=0,得x 1=0,x 2=2. 当x <0或x >2时,f ′(x )>0; 当0<x <2时,f ′(x )<0.所以当x =0时,f (x )取得极大值, 即f (0)=-a ,当x =2时,f (x )取得极小值,即f (2)=-4-a .所以⎩⎪⎨⎪⎧-a >0,-4-a <0,解得-4<a <0.6.已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =f ′(x )的图象如图,下列关于函数f (x )的四个命题:①函数y =f (x )是周期函数; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[-1,t ]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y =f (x )-a 有4个零点. 其中真命题的个数是________. 答案 1解析 首先排除①,不能确定周期性;f (x )在[0,2]上时,f ′(x )<0,故②正确;当x ∈[-1,t ]时,f (x )的最大值是2,结合原函数的单调性知0≤t ≤5,所以排除③;不能确定在x =2时函数值和a 的大小,故不能确定几个零点,故④错误. 7.已知函数f (x )=e x-2x +a 有零点,则a 的取值范围是________. 答案 (-∞,2ln 2-2]解析 函数f (x )=e x-2x +a 有零点,即方程e x-2x +a =0有实根,即函数g (x )=2x -e x,y =a 有交点,而g ′(x )=2-e x ,易知函数g (x )=2x -e x 在(-∞,ln 2)上递增,在(ln 2,+∞)上递减,因而g (x )=2x -e x的值域为(-∞,2ln 2-2],所以要使函数g (x )=2x -e x,y =a 有交点,只需a ≤2ln 2-2即可.8.某名牌电动自行车的耗电量y 与速度x 之间有如下关系:y =13x 3-392x 2-40x (x >0),为使耗电量最小,则速度应定为________. 答案 40解析 ∵y ′=x 2-39x -40,令y ′=0. 即x 2-39x -40=0,解得x =40或x =-1(舍). 当x >40时,y ′>0,当0<x <40时,y ′<0, 所以当x =40时,y 最小.9.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为________. 答案 2∶1解析 设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π⎝ ⎛⎭⎪⎫6-x 2π2x =14π(x 3-12x 2V ′=34π(x -2)(x -6).当x =2时,V 最大.此时底面周长为6-x =4,4∶2=2∶1.10.(xx·重庆)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)因为蓄水池侧面的总成本为100·2πrh =200πrh 元,底面的总成本为160πr 2元. 所以蓄水池的总成本为(200πrh +160πr 2)元. 又根据题意得200πrh +160πr 2=12 000π,所以h =15r(300-4r 2),从而V (r )=πr 2h =π5(300r -4r 3).因为r >0,又由h >0可得r <53, 故函数V (r )的定义域为(0,53).(2)因为V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(因为r 2=-5不在定义域内,舍去). 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数; 当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数. 由此可知,V (r )在r =5处取得最大值,此时h =8. 即当r =5,h =8时,该蓄水池的体积最大.11.(xx·江苏)已知函数f (x )=e x +e -x,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围; (3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较ea -1与ae-1的大小,并证明你的结论.(1)证明 因为对任意x ∈R ,都有f (-x )=e -x+e-(-x )所以f (x )是R 上的偶函数.(2)解 由条件知m (e x +e -x -1)≤e -x-1在(0,+∞)上恒成立. 令t =e x(x >0),则t >1,所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立.因为t -1+1t -1+1≥2(t -1)·1t -1+1=3, 所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立.因此实数m 的取值范围是⎝⎛⎦⎥⎤-∞,-13. (3)解 令函数g (x )=e x +1ex -a (-x 3+3x ),则g ′(x )=e x -1e x +3a (x 2-1).当x ≥1时,e x -1e x >0,x 2-1≥0,又a >0,故g ′(x )>0.所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a . 由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立, 当且仅当最小值g (1)<0.故e +e -1-2a <0,即a >e +e -12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x.令h ′(x )=0,得x =e -1. 当x ∈(0,e -1)时,h ′(x )<0, 故h (x )是(0,e -1)上的单调减函数; 当x ∈(e -1,+∞)时,h ′(x )>0, 故h (x )是(e -1,+∞)上的单调增函数,所以h (x )在(0,+∞)上的最小值是h (e -1). 注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0;当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0. 所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时, h (a )<0,即a -1>(e -1)ln a ,从而ea -1<ae -1;②当a =e 时,e a -1=ae -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故ea -1>ae -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,ea -1=ae -1;当a ∈(e ,+∞)时,e a -1>ae -1.12.(xx·陕西)已知函数f (x )=e x,x ∈R .(1)求f (x )的反函数的图象在点(1,0)处的切线方程;(2)证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一公共点;(3)设a <b ,比较f ⎝ ⎛⎭⎪⎫a +b 2与f (b )-f (a )b -a 的大小,并说明理由.(1)解 f (x )的反函数为g (x )=ln x ,设所求切线的斜率为k ,∵g ′(x )=1x,∴k =g ′(1)=1.于是在点(1,0)处的切线方程为y =x -1.(2)证明 方法一 曲线y =e x 与y =12x 2+x +1公共点的个数等于函数φ(x )=e x-12x 2-x -1零点的个数.∵φ(0)=1-1=0,∴φ(x )存在零点x =0.又φ′(x )=e x-x -1,令h (x )=φ′(x )=e x-x -1, 则h ′(x )=e x -1,当x <0时,h ′(x )<0,∴φ′(x )在(-∞,0)上单调递减; 当x >0时,h ′(x )>0,∴φ′(x )在(0,+∞)上单调递增. ∴φ′(x )在x =0处有唯一的极小值φ′(0)=0, 即φ′(x )在R 上的最小值为φ′(0)=0. ∴φ′(x )≥0(仅当x =0时等号成立), ∴φ(x )在R 上是单调递增的,∴φ(x )在R 上有唯一的零点,故曲线y =f (x )与y =12x 2+x +1有唯一的公共点.方法二 ∵e x>0,12x 2+x +1>0,∴曲线y =e x与y =12x 2+x +1公共点的个数等于曲线y =12x 2+x +1ex与y =1公共点的个数, 设φ(x )=12x 2+x +1ex,则φ(0)=1,即x =0时,两曲线有公共点. 又φ′(x )=(x +1)e x -(12x 2+x +1)e xe 2x =-12x2e x ≤0(仅当x =0时等号成立),∴φ(x )在R 上单调递减,∴φ(x )与y =1有唯一的公共点, 故曲线y =f (x )与y =12x 2+x +1有唯一的公共点.(3)解 f (b )-f (a )b -a -f ⎝ ⎛⎭⎪⎫a +b 2=e b -e ab -a-e =e b -e a-b e +a e b -a =e b -a[e -e -(b -a )].设函数u (x )=e x-1e x -2x (x ≥0),则u ′(x )=e x+1ex -2≥2e x·1ex -2=0,∴u ′(x )≥0(仅当x =0时等号成立), ∴u (x )单调递增.当x >0时,u (x )>u (0)=0.令x =b -a 2,则e -e -(b -a )>0,∴f (b )-f (a )b -a >f ⎝ ⎛⎭⎪⎫a +b 2.26799 68AF 梯36006 8CA6 貦 32603 7F5B 罛<d^r29839 748F 璏#?27969 6D41 流>31179 79CB 秋37876 93F4 鏴。