生物化学与分子生物学重点掌握内容
- 格式:doc
- 大小:122.50 KB
- 文档页数:20
生物化学与分子生物学的主要内容生物化学与分子生物学是研究生物体内分子结构、功能和相互作用的学科。
以下是该学科的主要内容:1. 生物分子的结构与功能:生物化学与分子生物学涉及研究生物体内各种分子的结构和功能,如蛋白质、核酸、碳水化合物和脂类等。
通过研究这些分子的结构,可以了解它们在生物体内的功能和相互作用。
2. 酶与代谢:生物化学与分子生物学研究酶的结构、功能和调节机制。
酶是生物体内催化化学反应的蛋白质,对维持生物体的代谢过程至关重要。
通过研究酶的特性,可以深入了解代谢途径和能量转化过程。
3. 基因表达与调控:生物化学与分子生物学研究基因的表达和调控机制。
基因表达过程包括转录和翻译,通过研究这些过程可以了解基因如何转化为蛋白质,并探究基因调控对生物体发育、功能和适应性的影响。
4. 分子信号传导:生物化学与分子生物学研究细胞内外分子信号传导的机制。
细胞通过化学信号相互作用,调节各种生物学过程,如细胞增殖、分化和凋亡等。
研究分子信号传导可以揭示细胞内各种信号通路的调控机制。
5. 分子遗传学:生物化学与分子生物学研究基因的结构和功能,以及基因在遗传传递中的作用。
通过研究基因的结构和功能,可以了解基因突变对个体遗传特征的影响,并揭示基因与表型之间的关系。
6. 分子进化:生物化学与分子生物学研究生物体进化过程中分子的变化和演化。
通过比较不同物种间的分子结构和序列,可以推断它们的进化关系和演化历史,从而深入了解生物体的起源和多样性。
这些是生物化学与分子生物学的主要内容,通过研究这些领域,可以更好地理解生物体内分子的结构与功能,以及它们在生命过程中的重要作用。
生物化学与分子生物学各章要求要点重点难点和问答题第一章蛋白质的结构与功能一、本章要求和要点1. 掌握蛋白质的元素组成特点、基本组成单位;氨基酸的数量及构型;熟悉芳香族氨基酸、酸性氨基酸、碱性氨基酸、含硫氨基酸和亚氨基酸。
2. 掌握氨基酸的理化性质(两性解离及等电点、紫外吸收性质、茚三酮反应);掌握肽键、肽单元的概念及多肽链的方向性。
3. 掌握蛋白质各级结构的含义及其稳定因素,区分模体(motif)和结构域(domain)的概念。
4. 理解蛋白质结构与功能的关系(一级结构是高级结构和功能的基础;蛋白质的功能依赖正确的空间结构)。
熟悉分子伴侣、分子病、蛋白构象疾病,肌红蛋白和血红蛋白的异同。
5. 掌握蛋白质的理化性质(两性解离、胶体性质、紫外吸收、呈色反应、蛋白质的变性与复性)。
6. 理解蛋白质分离、纯化基本方法的原理。
二、本章重点和难点1.氨基酸的分类和理化性质。
2.蛋白质的结构层次及各层次之间的关系。
3.蛋白质结构与功能的关系。
4.蛋白质的理化性质及蛋白质的变性。
5.常用蛋白质分离、纯化技术的基本原理。
三、问答题1. 蛋白质结构层次分为几级?各级结构的稳定因素分别有哪些?各级结构间有什么不同和联系?2. 组成人体蛋白质的20种氨基酸,可根据侧链的结构和理化性质分为哪几类?每类列举两种。
3. 什么是蛋白质的两性解离?利用此性质分离纯化蛋白质的方法有哪些?4. 请阐述蛋白质二级结构α-螺旋的结构特征。
5. 凝胶过滤层析和SDS-聚丙烯酰胺凝胶电泳两种方法都是根据蛋白质分子大小而对蛋白质进行分离的,并且都使用交联聚合物作为支持介质,为什么在前者是小分子比大分子更容易滞留在凝胶中,而后者恰恰相反?6. 从结构和功能两方面比较血红蛋白(Hb)和肌红蛋白(Mb)的异同。
第二章核酸的结构与功能一、本章要求和要点1. 掌握核酸的分类、基本组成单位、元素组成;掌握核苷酸的水解成分及单核苷酸的化学结构式;掌握DNA和RNA的组成及核苷酸之间的连接。
生物化学与分子生物学重点一、名词解释基因:基因是基因组中的一个功能性遗传单位,是贮存有功能的蛋白质多肽链或rna序列信息及表达这些信息所需的全部核苷酸序列。
基因组:基因组是一个细胞或一种生物体的整套遗传信息。
质粒:是指细菌细胞染色体意外,能独立复制并稳定遗传的共价闭合环状分子。
蛋白质组:是指一种基因所表达的全套蛋白,既包括一个细胞或一个组织或一个机体的基因所表达的全部蛋白质。
DNA重组:是指不同来源的DNA通过磷酸二酯键连接而重新组合成新的DNA分子的过程。
限制性内切酶:是指能识别和水解双链DNA分子的内特异序列的核酸水解酶。
载体:是指携带靶DNA片段进入宿主细胞进行扩曾和表达的运载工具,常用的载体有:质粒载体、噬菌体载体,病毒载体和人工染色体等。
核酸分子杂交:单链的核酸分子在适合的条件下,与具有碱基互补序列的异核酸形成双链杂交的过程。
杂交:将一种核酸单链标记成探针,再与另一核酸单链进行碱基互补配对,可以形成异源核酸分子的双链结构的过程,PCR:是一个在体外特异的复制一段已知序列的DNA片段的过程,这项技术使人们能够人们很快的从试管中获得大量拷贝的特异核酸片段。
分子生物学检验:从基因水平上解释疾病发生机制,明确疾病诊断,跟踪疾病过程,指导个体化治疗的先进技术手段。
反义核酸:是用人工合成的15-25个核苷酸片段,通过碱基互补配对选择与特定的RNA或DNA互补结合,从而能专一性的抑制基因的转录与翻译。
核酶:是一类具有酶的特异性催化功能的RNA分子,能序列特异性地剪切底物RNA或修复突变的RNA。
致病基因:能导致遗传病或遗传病发生相关的基因。
地中海贫血:也称球蛋白生成障碍性贫血。
是由于球蛋合成速率降低,引起a链和非a链缺乏称为球蛋白生成障碍性贫血。
血友病:由于基因缺陷而使其中某一凝血因子蛋白表达降低或确实造成的一种疾病。
转座因子:一类在细菌染色体,质粒或噬菌体之间自行移动并具有转位特性的独立DNA序列。
可编辑修改精选全文完整版《生物化学与分子生物学》教学大纲《生物化学与分子生物学》I 前言生物化学与分子生物学是研究生命化学的科学,它在分子水平探讨生命的本质,即研究生物体的分子结构与功能、物质代谢与调节、及其在生命活动中的作用。
由于生物化学与分子生物学越来越多地成为生命科学的共同语言,当今生物化学与分子生物学已成为生命科学领域的前沿学科。
生物化学与分子生物学的教学任务主要是介绍生物化学与分子生物学的基本知识,以及某些与医学相关的生物化学进展,包括生物大分子的结构与功能(蛋白质、核酸、酶),物质代谢及其调节(糖、脂、氨基酸、核苷酸代谢、物质代谢的联系与调节);基因信息的传递(DNA复制、RNA转录、蛋白质生物合成、基因表达调控、重组DNA与基因工程);相关的专题知识(细胞信息转导,血液的生物化学,肝的生物化学,维生素与微量元素,常用分子生物学技术的原理及其应用,基因组学与医学)。
本大纲适合于五年制临床医学、口腔、医学检验、影像、麻醉等专业使用,现将大纲使用中有关问题说明如下:一本大纲配套使用的教材为全国高等医学院校规划教材《生物化学》(案例版)第1版(刘新光主编)。
二本大纲内容按“掌握、熟悉、了解”三级要求学习及掌握。
其中,考试内容中“掌握”占70%左右;“熟悉、了解”的内容占30%左右。
“掌握”部分要求理解透彻,包括有关概念及其研究进展等内容细节,并能运用其理论及概念于相关学科的学习及今后的临床及科研工作;“熟悉”部分要求能熟知其相关内容的概念及有关理论,并能适当应用;“了解”部分要求能对其中的概念有一定认识,对相关内容有所了解。
三总教学参考学时为125学时,理论与实验比值约为2:1,即讲授理论学时为85学时(第一部分为生物化学部分,48学时;第二部分为分子生物学部分,37学时),实验学时为40学时。
II 正文第一部分生物化学第1章绪论熟悉“生物化学”的概念及其与“分子生物学”的关系。
了解生物化学的发展简史、当代生物化学研究的主要内容及生物化学与医学的紧密联系。
可编辑修改精选全文完整版《生物化学与分子生物学》教学大纲一、课程的性质和任务生物化学与分子生物学是研究生命化学的科学,它在分子水平探讨生命的本质,即研究生物体的分子结构与功能、物质代谢及其在生命活动中的作用。
生物化学与分子生物学是高等医学院校全科医学专业的必修课之一。
本课程主要向学生传授生物大分子的化学组成、结构及功能;物质代谢;遗传信息的贮存、传递与表达;血液、肝的生物化学;分子生物学基本概念、原理和技术等生命科学内容,为医学生深入学习其他医学基础课、临床医学课程乃至毕业后的继续教育、医学各学科的研究工作中在分子水平上探讨疾病的病因、发病机理及疾病诊断、预防、治疗奠定理论与实验基础。
二、课程教学的基本要求通过本课程的学习,使学生知道及理解生物分子的结构与生理功能,以及两者之间的关系。
理解生物体重要物质代谢的基本途径,主要生理意义、以及代谢异常与疾病的关系。
理解基因信息传递的基本过程,理解各组织器官的代谢特点及它们在医学上的意义,了解分子生物学基本概念、原理和技术。
本课程教材适用于医学高等专科教育三年制全科医学专业,在第一学期开设,理论课55学时、实验课12学时,总学时为67学时。
四、教学内容与要求绪论【教学内容】第一节生物化学发展简史第二节当代生物化学研究的主要内容第三节生物化学与医学【教学要求】掌握:生物化学和分子生物学的概念.熟悉:生物化学和分子生物学研究的主要内容及其与医学的关系。
了解:生物化学的发展史。
第一章蛋白质的结构与功能【教学内容】第一节蛋白质的分子组成一、组成蛋白质的主要元素,氮的含量及应用。
组成蛋白质的氨基酸种类、结构通式;氨基酸的分类及结构特点;氨基酸的两性电离、紫外吸收性质及茚三酮反应。
二、肽和肽键,多肽链及N、C末端,主链骨架的概念。
第二节蛋白质的分子结构一、蛋白质的一级结构:肽键二、蛋白质的二级结构:维持蛋白质构象的化学键、肽单元、α-螺旋、β-折叠、β-转角和无规卷曲。
生物化学与分子生物学知识点总结本文将对生物化学与分子生物学的主要知识点进行总结。
生物化学是研究生物大分子的组成、结构、性质、合成和解体等方面的学科,而分子生物学则是研究生命活动的基本单位——分子的结构、功能和相互作用等方面的学科。
以下将按照某些主要知识点来系统概述这两个学科的重要内容。
1. 生物大分子的结构与功能生物大分子主要包括蛋白质、核酸、碳水化合物和脂类等。
蛋白质是生物体内最为重要的大分子之一,它们是由氨基酸组成的,具备结构和功能多样性。
核酸包括DNA和RNA,是遗传信息的储存和传递分子。
碳水化合物是生物体内能量的主要来源,也参与细胞黏附和信号传导等重要功能。
脂类则是生物体内膜结构的重要组成部分,同时也是能量存储的主要形式。
2. 酶的结构与催化机制酶是生物体内的催化剂,能够加快化学反应速率。
酶的活性主要依赖于其特定的三维构象,并且可以通过底物-酶的亲和力来实现底物的选择性识别。
酶催化主要有两种机制:酸碱催化和亲和力叠加催化。
酸碱催化通过转移质子来加速反应进程,而亲和力叠加催化则通过调节底物与酶的结合来实现催化。
3. 代谢途径与能量转换代谢途径是生物体内各种化学反应的有序组合。
主要包括糖代谢、脂代谢和蛋白质代谢等。
其中最重要的代谢途径是三酸甘油酯循环和三羧酸循环,它们在细胞中产生大量的ATP,提供能量供生命活动所需。
此外,糖酵解、无氧和有氧呼吸等代谢途径也是能量转换的关键过程。
4. DNA复制、转录与翻译DNA复制是遗传信息传递的基础,它是通过DNA双链的解旋与合成来实现的。
转录是将DNA模板上的基因序列转化为RNA分子的过程,主要分为原核生物和真核生物两种类型。
翻译是利用mRNA的信息合成蛋白质的过程,其中涉及到核糖体、tRNA和氨基酸等多个要素的参与。
5. 基因调控与表达基因调控是指在细胞内对特定基因的活性进行控制,从而实现基因表达的调节。
主要通过转录因子与启动子之间的结合、染色质的改变和非编码RNA的介入等方式来实现。
生物化学与分子生物学的主要内容1. 引言生物化学与分子生物学是研究生命现象在分子水平上的化学过程与机制的科学。
本文档将概述这两个领域的主要内容,以帮助读者更好地理解其研究对象、内容与意义。
2. 生物化学的主要内容生物化学主要研究生物体内各种化学反应的规律、过程及其作用机制。
其主要内容包括:2.1 蛋白质与核酸蛋白质与核酸是生命活动的基本执行者和遗传信息的载体。
本部分内容将介绍蛋白质的结构、功能、合成与降解,以及核酸的结构、功能、复制、转录和翻译等。
2.2 酶学酶是生物体内重要的催化剂,能够加速生物化学反应的进行。
本部分内容将介绍酶的性质、作用机制、分类、测定以及酶工程等。
2.3 碳水化合物与脂质碳水化合物与脂质是生物体内重要的能量来源和结构材料。
本部分内容将介绍碳水化合物的分类、功能、代谢,以及脂质的结构、功能、分类与代谢等。
2.4 代谢途径与调控代谢途径是生物体内各种生化反应相互联系、协同作用的网络。
本部分内容将介绍糖代谢、脂质代谢、蛋白质代谢等主要代谢途径及其调控机制。
2.5 信号传导与细胞通信信号传导与细胞通信是生物体内各种生物化学过程正常进行的重要保证。
本部分内容将介绍信号分子的种类、信号传导途径、细胞通信机制及其调控等。
3. 分子生物学的主要内容分子生物学主要研究生物体内各种生物大分子(如核酸、蛋白质)的结构、功能、相互作用及其在生命活动中的作用。
其主要内容包括:3.1 分子生物学基本技术分子生物学基本技术是研究生物大分子的基本工具。
本部分内容将介绍DNA提取、PCR扩增、DNA测序、基因克隆、蛋白质表达与纯化等技术。
3.2 基因组学与遗传学基因组学研究生物体的全部遗传信息及其结构、功能与调控。
本部分内容将介绍基因组结构、基因组编辑、遗传变异、遗传病等。
3.3 蛋白质组学蛋白质组学研究生物体内所有蛋白质的结构、功能、相互作用及其动态变化。
本部分内容将介绍蛋白质组学技术、蛋白质组数据分析、蛋白质功能预测等。
《生物化学与分子生物学》课程教学大纲(Biochemistry and Molecular Biology)一、课程基本信息课程编号:14232051课程性质:学科专业基础课适用专业:中西医学分:4学分总学时:72学时其中:讲授56学时,实验16学时先修课程:解剖学、组织胚胎、有机化学、医学生物学后续课程:生理学、病理生理学、药理学等临床专业课程授课学期:第2学期选用教材:生物化学与分子生物学[M].北京:科学出版社,2016生物化学实验指导 2016年( 自编教材)必读书目:[1] 周爱儒,生物化学(第八版)[M]. 北京:人民卫生出版社,2013年[2] 陈诗书,医学生物化学(第八版)[M].北京:科学出版社,2009[3] 药立波,医学分子生物学(第八版)[M]. 北京:人民卫生出版社,2014年二、课程教学目标:通过本课程的学习,使学生获得生物大分子的化学组成、结构及其功能等相关知识,在此基础上进一步掌握其代谢过程及其调节规律等生化及分子生物学的基本理论和基本技能,为学习其它后继基础医学和临床医学课程,在分子水平上探讨疾病发生机理,为中西医结合诊断疾病、制定预防和治疗措施等奠定基础。
作为一名医学院校的学生,只有具备扎实的以生物化学为立足点的医学基础知识,才能学好医学相关的专业技能和知识,才能更深入理解生理学、病理学等学科的内容。
总之,通过本门课程的学习,学生应能全面、系统地领会和掌握生物化学与分子生物学的基础理论、基本知识和基本技能,为学习其它基础医学课程和临床医学课程奠定基础。
三、理论教学课时安排、课程内容与基本要求教学内容与学时安排第一章绪论1、教学目的与基本要求(1)掌握:生物化学与分子生物学的概念。
(2)熟悉:生物化学与分子生物学研究的主要内容及其与医药学的关系。
(3)了解:生物化学与分子生物学的发展史。
2、教学内容(1学时)(1)生物化学与分子生物学发展简史(2)当代生物化学与分子生物学研究的主要内容:重点阐述当代生物化学的概念,生物化学与分子生物学研究的主要内容。
生物化学与分子生物学复习要素总结本文档旨在总结生物化学与分子生物学的复要点,帮助您系统地复这两门学科。
下面是一些重要的复要素:1. 基本概念:了解生物化学和分子生物学的基本概念,包括生物大分子(蛋白质、核酸、多糖等)、代谢途径、酶的作用等。
基本概念:了解生物化学和分子生物学的基本概念,包括生物大分子(蛋白质、核酸、多糖等)、代谢途径、酶的作用等。
2. 分子结构与功能:掌握生物分子的结构和功能关系,了解蛋白质折叠、核酸双螺旋结构等重要概念。
分子结构与功能:掌握生物分子的结构和功能关系,了解蛋白质折叠、核酸双螺旋结构等重要概念。
3. 酶的动力学:了解酶的动力学及其在代谢途径中的作用,包括酶的底物、产物等。
酶的动力学:了解酶的动力学及其在代谢途径中的作用,包括酶的底物、产物等。
4. 代谢途径:熟悉主要的代谢途径,如糖代谢、脂肪代谢、氨基酸代谢等,了解代谢途径中的关键酶和调控机制。
代谢途径:熟悉主要的代谢途径,如糖代谢、脂肪代谢、氨基酸代谢等,了解代谢途径中的关键酶和调控机制。
5. 遗传信息:理解DNA、RNA的结构和功能,熟悉基因表达、DNA复制、转录和翻译等过程。
遗传信息:理解DNA、RNA的结构和功能,熟悉基因表达、DNA复制、转录和翻译等过程。
6. 信号转导:了解细胞内外的信号转导机制,如蛋白激酶信号转导、G蛋白偶联受体信号转导等。
信号转导:了解细胞内外的信号转导机制,如蛋白激酶信号转导、G蛋白偶联受体信号转导等。
7. 免疫系统:掌握免疫系统的基本原理,包括免疫细胞、抗体、抗原结构等。
免疫系统:掌握免疫系统的基本原理,包括免疫细胞、抗体、抗原结构等。
8. 分子生物学技术:了解常用的分子生物学技术,如PCR、电泳、基因克隆等,理解其原理和应用。
分子生物学技术:了解常用的分子生物学技术,如PCR、电泳、基因克隆等,理解其原理和应用。
以上仅为生物化学与分子生物学的复要素总结的一部分,希望能帮助您进行有针对性的复。
第一章蛋白质的结构与功能1、蛋白质的基本组成单位和平均含氮量。
基本组成单位为氨基酸。
组成蛋白质的元素:主要有C、H、O、N和S。
有些蛋白质还含有少量的P、Fe、Cu、Mn、Zn、Se、I等。
各种蛋白质的含氮量很接近,平均为16%2、20种氨基酸的结构及三字母英文缩写。
(P9)含羟基的氨基酸:Ser、Tyr、Thr,其易被磷酸化。
含硫的氨基酸:半胱氨酸(-SH)、胱氨酸、蛋氨酸(-SCH3,又叫甲硫氨酸)。
芳香族氨基酸: Tyr、Trp、Phe天冬酰胺、谷氨酰胺:酰胺基团(-CONH2)脯氨酸:属于亚氨基酸(-NH-)酸性氨基酸:Asp、Glu碱性氨基酸:Arg、Lys、His3、氨基酸的理化性质。
①氨基酸具有两性解离的性质:等电点(isoelectric point, pI)在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
②含共轭双键的氨基酸具有紫外线吸收性质:测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。
③氨基酸与茚三酮反应生成蓝紫色化合物,最大吸收峰在570nm处。
4、蛋白质一级、二级、三级和四级结构的概念及维系其稳定的化学键。
①氨基酸的排列顺序决定蛋白质的一级结构(primary structure of protein):指蛋白质多肽链从N-端至C-端的氨基酸残基排列顺序, 即氨基酸的线性序列。
在基因编码的蛋白质中,这种序列是由mRNA中的核苷酸序列决定的。
一级结构主要的化学键:肽键②多肽链的局部主链构象为蛋白质二级结构(secondary structure of protein):蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,不涉及氨基酸残基侧链的构象。
维系二级结构的化学键:氢键③三级结构是指整条肽链中全部氨基酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置。
主要的化学键——次级键。
疏水作用、离子键、氢键、Van der Waals 力。
④含有二条以上多肽链的蛋白质才可能具有四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
亚基之间的结合力主要是氢键和离子键-非共价键5、肽单元和蛋白质二级结构的主要类型。
肽单元:参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,此同一平面上的6个原子构成了所谓的肽单元(peptide unit)。
这一平面又被称为肽平面(peptide plane)或酰胺平面(amide plane) 。
肽单元是肽链折叠盘曲的基本单位。
二级结构的类型:α-螺旋、β-折叠、β -转角、无规卷曲6、蛋白质超二级结构、模体、结构域、亚基、蛋白质等电点的概念。
超二级结构:在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个有规则的二级结构组合,被称为超二级结构。
模体:是蛋白质分子中具有特定空间构象和特定功能的结构成分,其中一类就是具有特殊功能的超二级结构。
一个模体总有其特征性的氨基酸序列,并发挥特殊的功能。
结构域:分子量较大的蛋白质常可折叠成多个结构较为紧密且稳定的区域,并各行其功能,称为结构域亚基 (subunit):有些蛋白质分子含有二条或多条多肽链,每一条多肽链都有完整的三级结构,称为蛋白质的亚基。
单独的亚基一般没有生物学功能。
蛋白质等电点:在某一pH值溶液中,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH值称为蛋白质的等电点(isoelectric point,pI)。
7、蛋白质变性的概念及影响因素。
概念:在某些物理和化学因素作用下,蛋白质特定的空间构象被破坏,即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。
本质:空间构象破坏,次级键(非共价键和二硫键)断裂;一级结构不变,肽键不断裂。
影响因素:物理因素:高温、高压、紫外线、剧烈振荡。
化学因素:强酸、强碱、有机溶剂、生物碱、尿素及重金属离子等。
8、蛋白质沉淀及维持蛋白质胶体溶液的稳定因素。
蛋白质沉淀:在一定条件下,蛋白质的水化层被破坏,使蛋白疏水侧链暴露在外,肽链融会相互缠绕继而聚集,因而从溶液中析出。
变性的蛋白质易于沉淀,有时蛋白质发生沉淀,但并不变性。
维持蛋白质胶体溶液的稳定因素:水化膜、蛋白质胶体颗粒表面电荷。
[熟悉] 氨基酸的分类(P8),肽的概念和基本结构(P11),生物活性肽(P11),蛋白质一级结构和空间结构与蛋白质功能之间的关系(P13)。
氨基酸和蛋白质的紫外吸收作用(280nm)。
第二章核酸的结构与功能1、核酸的基本组成单位和核酸的水解产物:核酸是以核苷酸(nucleotide)为基本组成单位的生物大分子,携带和传递遗传信息。
核酸的水解产物是磷酸、戊糖和碱基。
2、核酸分子中核苷酸的连接方式:核苷酸之间通过3',5'-磷酸二酯键相连,构成多聚核苷酸链。
3、D N A和R N A的一级结构和基本组成单位:核酸的一级结构是核苷酸的排列顺序。
DNA 的基本组成单位是脱氧核糖核苷酸,RNA的基本组成单位是核糖核苷酸4、D N A二级结构——双螺旋结构的特点:1.DNA由两条多聚脱氧核苷酸链组成2. 脱氧核糖与磷酸位于外侧3. DNA双链之间形成了互补碱基对4. 碱基对的疏水作用力和氢键共同维持着DNA双螺旋结构的稳定5、基因和基因组的概念:基因(gene):指携带遗传信息的DNA区段,其中的核苷酸排列顺序决定了基因的功能。
基因组(genome):指生物体的所有编码RNA和蛋白质的序列及所有的非编码序列,即DNA的全部核苷酸序列。
6、m R N A、t R N A、r R N A的结构特点及功能:m R N A:1. 真核生物mRNA的5'-端有特殊帽结构2. 真核生物mRNA的3'-末端有多聚腺苷酸尾3. mRNA碱基序列决定蛋白质的氨基酸序列mRNA:1、3′末端为—CCA-OH 2、含10~20% 稀有碱基3、其二级结构呈“三叶草形”4. tRNA 的反密码子能够识别mRNA密码子rRNA:rRNA的结构为花状,rRNA与核糖体蛋白结合组成核糖体(ribosome),为蛋白质的合成提供场所。
rRNA单独存在不执行其功能。
7、核酶的概念:催化性小RNA亦被称为核酶(ribozyme),是细胞内具有催化功能的一类小分子RNA,具有催化特定RNA降解的活性,在RNA的剪接修饰中具有重要作用。
8、核酸的紫外吸收作用:紫外吸收A260nm,单核苷酸> ssDNA > dsDNA。
DNA纯品: A260/A280 = 1.8RNA纯品: A260/A280 = 2.09、D N A的变性与复性:DNA变性(denaturation)是指在某些理化因素(温度、pH、离子强度等)作用下,DNA双链的互补碱基对之间的氢键断裂,解开成两条单链的现象。
DNA变性的本质是双链间氢键的断裂,只改变其二级结构,不改变其核苷酸排列顺序。
在去除变性因素,并在适当条件下,变性DNA的两条互补单链可恢复天然的双螺旋构象,这一现象称为复性(renaturation)。
10、D N A的增色效应和解链温度的概念:增色效应(hyperchromic effect):在DNA解链过程中,由于有更多的共轭双键得以暴露,DNA在260nm处的吸光度随之增加。
在解链过程中,紫外吸光度的变化ΔA260达到最大变化值的一半时所对应的温度称为DNA的解链温度(融解温度),又称Tm。
其大小与G+C含量成正比。
熟悉: DNA的超螺旋结构(P43)。
核酸的分子杂交(P53)。
第三章酶1、酶:酶是由活细胞产生的、对其底物具有高度特异性和高度催化效能的蛋白质,是机体内催化代谢反应最主要的催化剂。
2、单纯酶:有些酶其分子结构仅由氨基酸残基组成,没有辅助因子。
这类酶称为单纯酶(simple enzyme)。
3、结合酶:结合酶(conjugated enzyme)是除了在其组成中含有由氨基酸组成的蛋白质部分外,还含有非蛋白质部分。
酶的分子组成,酶蛋白和辅因子的作用。
4、必需基团:必需基团(essential group)酶分子氨基酸残基侧链的化学基团中,一些与酶活性密切相关的化学基团。
5、酶活性中心的概念:酶的活性中心或活性部位(activesite)是酶分子中能与底物特异地结合并催化底物转变为产物的具有特定三维结构的区域。
6、同工酶的概念:同工酶(isoenzyme /ֽ aisəu'enzaim/)是指催化相同的化学反应,但酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。
7、酶促反应的特点:1、酶促反应具有极高的效率:2、酶促反应具有高度的特异性3、酶促反应具有可调节性4、酶促反应高度的不稳定性8、酶促反应特异性的类型:绝对特异性(absolute specificity):只能作用于特定结构的底物,进行一种专一的反应,生成一种特定结构的产物。
相对特异性(relative specificity):作用于一类化合物或一种化学键。
9、影响酶促反应速度的因素:酶浓度、底物浓度、pH、温度、抑制剂、激活剂等。
10、米氏方程及Km的意义:v=vmax[s]/(km+[s])[S]:底物浓度v:不同[S]时的反应速度V max:最大反应速度(maximum velocity)K m:米氏常数(Michaelis constant)1.K m值等于酶促反应速率为最大反应速率一半时的底物浓度2.K m值是酶的特征性常数3.K m在一定条件下可表示酶对底物的亲和力.K m越大,表示酶对底物的亲和力越小;K m 越小,表示酶对底物的亲和力越大。
4.V max是酶被底物完全饱和时的反应速率11、不可逆抑制作用:抑制剂以共价键与酶活性中心的必需基团相结合,使酶失活。
12、可逆性抑制作用:①竞争性抑制作用:抑制剂与底物的结构相似,能与底物竞争结合酶的活性中心,从而阻碍酶底物复合物的形成,使酶活性受到抑制,称为竞争性抑制作用。
抑制程度取决于抑制剂与酶的相对亲和力和与底物浓度的相对比例。
②非竞争性抑制作用有些抑制剂与酶活性中心外的必需基团相结合,不影响酶与底物的结合,酶和底物的结合也不影响酶与抑制剂的结合。
底物和抑制剂之间无竞争关系。
但酶-底物-抑制剂复合物(ESI)不能进一步释放出产物。
这种抑制作用称作非竞争性抑制作用。
③反竞争性抑制作用:抑制剂仅与酶和底物形成的中间产物(ES)结合,使中间产物ES的量下降。
这样,既减少从中间产物转化为产物的量,也同时减少从中间产物解离出游离酶和底物的量。
这种抑制作用称为反竞争性抑制作用。