误差越小。
第21页/共29页
SS总
(Y Y )2
Y 2 ( Y)2 n
SS回
blXY
l
2 XY
l XX
SS剩= SS总 - SS回
F SS回 /回 MS回 SS剩 / 剩 MS剩
υ总=υ回+υ剩 υ总= n-1, υ回= 1,
υ剩= n-2
第22页/共29页
二、直线回归
(五)直线回归方程的假设检验 2. t检验:作b与ß的比较判断回归方程是否成立。 ➢ 实际应用中,由于相关系数的检验简单并与之等价,故一般用相关系数r的检验来
1.作直线相关和回归分析要有实际意义;
2.在进行分析之前,应先绘制散点图,当其分布 有直线趋势时,才适宜作直线相关回归分析。 散点图还能提示资料有无异常点。
3.两变量间存在直线相关关系,并不一定是因果 关系,可能是伴随关系;
4.直线回归方程的适用范围一般以自变量的取值
范围为限,在此范围内求出的估计值称内插;
方和中可以用X解释的部分。SS回越大,说明回归效 果越好,即SS总中可用X与Y线性关系解释的变异越多。
➢S S 剩 为 剩 余 平 方 和 , 它 反 映 X 对 Y 的 线 性 影 响 之 外 的 一切因素对Y的变异的作用,也就是在总平方和SS总 中无法用X解释的部分。在散点图中,各实测点离回
归直线越近, SS剩也就越小,说明直线回归的估计
第19页/共29页
任一点P的纵坐标被回归直线与均数 Y 截成三段
((YYˆ YYˆ))即表Y示估实计测值点PYˆ与与回
Y
P(X,Y)
归均直数线之的Y差纵向,距它离与,回即归实系
(Y Y)
(Y Yˆ)
际数的值大Y与小估有计关值。|Ybˆ|值之越差大,,