Part
03
线性回归模型建立与求解
一元线性回归模型建立步骤
绘制散点图
以自变量为横坐标,因变量为纵 坐标,绘制散点图,观察变量之 间的关系。
建立一元线性回归模型
如果散点图呈现出线性趋势,则 可以建立一元线性回归模型,即 y=β0+β1x+ε,其中β0和β1为待 估参数,ε为随机误差项。
参数估计
采用最小二乘法对模型参数进行 估计,得到β0和β1的估计值。
03
04
2. 构造检验统计量;
3. 根据显著性水平确定临界值;
05
06
4. 计算检验统计量的值并与临界值比较, 得出结论。
残差分析在模型诊断中应用
残差图
通过绘制残差与预测值或 解释变量的散点图,观察 是否存在非线性关系、异 方差性等问题。
残差自相关检验
通过检验残差是否存在自 相关性,判断模型是否违 反独立性假设。
数据转换
对连续型特征进行离散化(如分 箱处理),对类别型特征进行编 码(如独热编码)。
特征选择与提取技巧
单变量选择
基于模型的选择
计算每个特征与输出变量之间的统计量( 如相关系数、卡方值等),选择统计量较 高的特征。
使用逐步回归、LASSO回归等方法,在模 型训练过程中自动选择重要特征。
特征变换
特征交互
利用线性回归模型建立房价与影响因素之间的关 系,并通过统计指标(如R方值、均方误差等) 评估模型的拟合优度。
参数估计
采用最小二乘法对模型参数进行估计,得到β0, β1, ..., βk的 估计值。
模型检验
对模型进行统计检验,包括拟合优度检验、回归系数显著 性检验、多重共线性检验等,以判断模型是否有效。