有机合成中的固体酸催化剂及其催化作用机理
- 格式:doc
- 大小:45.50 KB
- 文档页数:4
固体酸催化剂和对甲苯磺酸
固体酸催化剂是一种重要的工业催化剂,具有高效、稳定、可重复使用和易于回收等优点。
它们通常由酸性组分负载在固体载体上制成,常用的固体载体包括硅胶、氧化铝、分子筛等。
固体酸催化剂可用于多种化学反应,如烷基化反应、酯化反应、水合反应和脱水反应等。
对甲苯磺酸是一种有机酸,广泛用于化学合成和工业生产中。
它具有较强的酸性,可以作为催化剂和反应物参与多种化学反应,如酯化反应、磺化反应和烷基化反应等。
对甲苯磺酸可以通过甲苯的磺化反应制备,其制备方法相对简单,成本较低,因此在工业上得到了广泛应用。
需要注意的是,对甲苯磺酸具有一定的毒性,因此在操作时应采取相应的安全措施。
同时,在使用固体酸催化剂和对甲苯磺酸进行化学反应时,应遵循相关的化学反应条件和操作规范,以确保安全和生产效率。
有机合成中的催化剂与催化反应催化剂是有机合成中不可或缺的重要角色,它们能够显著提高有机反应的速率和选择性。
本文将探讨有机合成中常见的催化剂及其在催化反应中的应用。
一、贵金属催化剂贵金属催化剂在有机合成中广泛应用。
其中,铂族金属如铂、钯、铑等是常见的催化剂。
它们具有良好的催化活性和选择性,能够催化氢化反应、氧化反应、还原反应等。
例如,钯催化的Suzuki偶联反应是有机化学中重要的反应之一,通过钯催化剂,可以将有机卤化物与有机硼酸酯反应,从而形成碳-碳键,合成复杂的有机分子。
二、催化剂的选择性在有机合成中,催化剂的选择性是一个至关重要的问题。
许多反应都需要选择性地进行,以合成目标化合物并避免副反应的发生。
金属有机配合物催化剂的研究在这方面取得了重大突破。
例如,格允斯-塞耶夫反应是一种重要的C-H键官能团化反应,通过钼催化剂可以实现对芳烃C-H键的活化,高效合成有机酮化合物。
三、有机小分子催化剂除了金属有机配合物,有机小分子催化剂在有机合成中也起到了重要的作用。
有机小分子催化剂具有较低的成本和易得性,且可以通过结构修饰来改变其催化性能。
例如,氧化钯是一种重要的有机小分子催化剂,在诸多有机反应中都能有效地催化。
其应用范围包括C-C键形成反应、氧化反应、羟化反应等。
四、手性催化剂手性催化剂在有机合成中扮演着重要的角色,能够催化手性控制的反应并合成手性化合物。
不对称合成是有机合成领域的热点之一,手性催化剂的应用使得合成手性药物和天然产物更加高效可行。
钯催化的Suzuki偶联反应中,手性配体的引入能够控制反应的对映选择性,合成手性的芳香胺化合物。
五、固体催化剂在有机合成中,固体催化剂的应用得到了越来越多的关注。
固体催化剂具有良好的机械强度、热稳定性和再生能力,能够在流动体系中高效催化反应。
例如,氧化锆、氧化铝等固体催化剂在选择氧化反应和酮化反应中得到了广泛应用。
综上所述,催化剂在有机合成中扮演着不可替代的角色。
固体酸催化剂研究进展1固体酸催化剂的历史从W alte r等人首次发现了单一金属氧化物V2O5 可以催化甲苯合成苯甲醛开始, 固体酸催化剂便开始了其发展历程。
随后一些简单的金属氧化物如A l2O3、Fe2O3、ZrO2 等已作为固体酸催化剂而被应用于反应中。
1979 年, H ino[ 1] 等人合成了首例MX OY /SO2-4 型催化剂。
因其具有能在较温和的条件下活化酸催化反应、易分离、副反应少、不腐蚀、可重复使用的优点, SO2-4 /T iO2、SO2-4 /ZrO2、SO2-4 /Fe2O3 等迅速代替传统酸催化剂应用于反应中。
N iO- ZrO2 - SO2-4 、Fe2O3 - ZrO2 - SO2-4 等复合型固体超强酸催化剂的出现更成为研究的热点。
2 固体酸催化剂的分类1979 年日本科学家Hino 等人首次合成出SO42- / Fe2O3固体酸, 引起了人们的广泛重视, 人们便对固体酸进行了大量研究, 并合成了一系列SO42- / WxOy 固体酸体系催化剂。
到目前为止, 开发出的固体酸大致可分为九类[ 2] ,1)固载化液体酸HF/ Al2O3 , BF3/ AI2O3, H3PO4/ 硅藻土2 )氧化物简单: Al2O3 , SiO2 , B2O3 , Nb2O5 复合: Al2O3- SiO2, Al2O3/ B2O33 )硫化物CdS , ZnS4 )金属盐磷酸盐: AlPO4 , BPO4硫酸盐: Fe2 ( SO4 ) 3 , Al2 ( SO4) 3, CuSO45 )沸石分子筛ZSM - 5 沸石, X 沸石, Y 沸石, B 沸石,丝光沸石, 非沸石分子筛: AlPO SAPO 系列6 )杂多酸H3PW12O40 , H4SiW12O40, H3PMo12O407 )阳离子交换树脂苯乙烯- 二乙烯基苯共聚物Nafion- H8 )天然粘土矿高岭土, 膨润土, 蒙脱土9 )固体超强酸SO42- / ZrO2 ,WO3/ ZrO2 , MoO3/ ZrO2 , B2O3/ ZrO23 各类固体酸催化剂的研究近况3.1 固载化液体酸硅胶固载化的烷基磺酸、芳香磺酸、部分卤代芳香磺酸、全卤代芳香磺酸等有机磺酸对乙酸和烯烃的酯化反应也具有很好的催化活性, 但其载体硅胶最好预先用酸进行处理[ 3] 。
碳基固体酸催化剂引言:碳基固体酸催化剂是一类广泛应用于化学反应中的催化剂,其具有许多优势,如高催化活性、良好的稳定性和可重复使用等。
本文将介绍碳基固体酸催化剂的概念、特性以及在不同反应中的应用。
一、碳基固体酸催化剂的概念碳基固体酸催化剂是指碳材料中具有酸性位点的固体催化剂。
与传统的酸性催化剂相比,碳基固体酸催化剂具有更高的表面积和孔隙度,从而提供更多的活性位点。
其酸性位点通常来自于碳材料中的氧、氮等功能团或杂原子,如羧基、磷酸基、硫酸基等。
碳基固体酸催化剂可以通过调控碳材料的结构和功能团的引入来实现。
二、碳基固体酸催化剂的特性1. 高催化活性:碳基固体酸催化剂具有较高的催化活性,能够有效促进化学反应的进行。
其高催化活性源于其较大的表面积和丰富的酸性位点,能够提供更多的反应活性中心。
2. 良好的稳定性:碳基固体酸催化剂具有较好的热稳定性和耐腐蚀性,能够在高温和酸碱环境中保持催化活性。
这使得碳基固体酸催化剂在许多反应中具有长期稳定的催化性能。
3. 可重复使用:碳基固体酸催化剂可通过简单的回收和再生步骤进行多次使用。
这种可重复使用的特性使得碳基固体酸催化剂在工业生产中具有更经济和环保的优势。
三、碳基固体酸催化剂在不同反应中的应用1. 碳基固体酸催化剂在酯化反应中的应用:酯化反应是一种重要的有机合成反应,常用于酯类化合物的合成。
碳基固体酸催化剂在酯化反应中表现出良好的催化性能,能够有效促进反应的进行,并且可重复使用。
2. 碳基固体酸催化剂在糖转化反应中的应用:糖转化反应是将糖类化合物转化为其他有机化合物的重要方法。
碳基固体酸催化剂在糖转化反应中具有高催化活性和良好的选择性,能够实现糖类化合物的高效转化。
3. 碳基固体酸催化剂在酸催化裂解反应中的应用:酸催化裂解反应是将复杂有机物分解为简单有机物的重要过程。
碳基固体酸催化剂在酸催化裂解反应中表现出较高的催化活性和选择性,能够实现废弃物的高效利用。
结论:碳基固体酸催化剂作为一类重要的催化剂,在化学反应中发挥着重要作用。
第三章酸性催化剂及其催化作用本章重点内容固体表面的酸性质及其测定方式;酸中心的形成与结构;二元氧化物酸中心判定体会规那么固体酸的催化作用概述酸性催化剂是石油炼制与化学工业中利用较多的一类催化剂,如烃类的裂化、烃类的异构化、芳烃和烯烃的烷基化、烯烃的水合制醇、醇的脱水等反映都利用酸性催化剂。
(烃类裂化异构化烷基化水合脱水相应方程式)(img)初期用硫酸、氢氟酸、磷酸、等液体酸或三氯化铝等路易斯酸作为催化剂。
这些酸都具有确信的酸强度、酸类型,而且在较低温度下有相当高的催化活性(活化能低即提供较少的势能就能够够让反映继续进行,说明活性高)。
从产品分离、设备侵蚀,尤其从环保方面考虑,利用固体酸催化剂替代H2SO4、HF和AlCl3等液体酸催化剂的工艺十分重要。
本章要紧探讨固体酸催化剂及其催化作用。
B(BrÖnsted)酸和L(Lewis)酸的概念凡是能给出质子的物质称为B酸NH3 十H3O+(B酸)=NH4+十H2O凡是能同意电子对的物质称为L酸BF3(L酸)十:NH3 F3B:NH3固体酸:凡能化学吸附碱性物质的固体。
按BrÖnsted和Lewis的概念:能给出质子或同意电子对的固体称之为固体酸。
固体酸的类型1 、天然粘土类:高岭土、膨润土、蒙脱土、天然沸石等,要紧组分为氧化硅和氧化铝;二、浸润类:液体酸(H2SO4、H3PO4)负载在相应的载体(氧化硅和氧化铝)上;3、阳离子互换树脂4、金属氧化物或复合氧化物:如ZrO2, WO3 MoO3, WO3-ZrO2, MoO3-ZrO2, 杂多酸、合成份子筛等五、金属盐:NiSO4, AlPO4 ,AlCl3固体表面酸性测定方式固体表面的酸性质固体表面的酸性质包括如下几方面表面酸中心类型:有2种类型酸中心,即BrÖnsted酸中心和Lewis酸中心酸强度及强度散布酸量固体表面的酸性质表征方式非水溶液的指试剂法(Non-aqueous indicator methods)红外光谱法(Infrared spectroscopic method)(用KBr压片制成份析样品,之前要对KBr中微量水警惕处置)微量热法(Microcalorimetric methods)碱性气体吸附法(Adsorption of gas bases)程序脱附法(Temperature-programmed-desorption, TPD)模型反映法(Model reactions for determination of surface acidity)指试剂法固体表面的酸强度概念为将吸附的中性的碱转变成其共轭酸的能力:B+H+=BH+若是碱性指示剂B与其共轭酸BH+式有不同的颜色,能够选择具有不同解离常数的指示剂B ,看可否与转变成其共轭酸BH+式该方式的缺点:无法区分B酸中心和L酸中心;若是固体酸本身有颜色,该方式不能用。
催化剂的种类与作用机理催化剂是一种能够促进或改变化学反应速率的物质,而自身在反应过程中不发生永久性改变。
催化剂在化学工业、生物学和环境保护等领域起着重要作用。
本文将介绍催化剂的种类以及其作用机理。
一、催化剂的种类1. 酸催化剂酸催化剂是一种常见的催化剂类型,其通过产生或吸收质子来促进化学反应。
其中,固体酸催化剂如过渡金属氧化物、氧化铝等具有高酸性的表面,可以催化酯化、醇缩合等反应。
液体酸催化剂如硫酸、盐酸等通常用于酯化、酰化、脱水反应等。
2. 碱催化剂碱催化剂是通过释放氢氧根离子(OH-)或吸收质子(H+)来加速反应的物质。
碱催化剂常见的例子是氢氧化钠、氢氧化钾等,它们能够催化酯水解、加成反应等。
3. 过渡金属催化剂过渡金属催化剂是指利用过渡金属元素(如铂、钯、铑等)的化合物或离子参与反应的催化剂。
它们通常能够催化氧化还原、羰基化还原等反应。
例如,钯催化剂在氢化反应中发挥重要作用,催化合成醇、醛等。
4. 酶催化剂酶是一种特殊的生物催化剂,它可以催化生物体内的各种化学反应。
酶催化剂具有高效、高选择性和温和的反应条件等特点,被广泛应用于生物工艺、制药和食品工业等领域。
例如,淀粉酶能够催化淀粉的水解,将其转化为糖类。
二、催化剂的作用机理催化剂的作用机理主要包括活化吸附和中间物理和化学反应两个阶段。
1. 活化吸附在活化吸附阶段,反应物与催化剂之间发生物理吸附或化学吸附。
物理吸附通常是通过范德华力或氢键等弱相互作用力进行,并且在吸附后的反应物可以很容易地脱附。
化学吸附则是指反应物与催化剂之间发生化学键的形成。
这些吸附过程有助于破坏反应物中的化学键并使其整体或局部发生结构改变,从而提高反应活性。
2. 中间物理和化学反应在中间物理和化学反应阶段,吸附到催化剂表面的反应物会与催化剂相互作用,形成中间体或活性物种。
这些中间体在反应过程中会发生进一步的化学变化,生成产物。
催化剂通过提供反应物之间的合适环境、调整能量屏障和改变反应路径等方式,加速了中间物的生成和转化,从而提高了反应速率。
绿色化学论文论固体酸催化剂的应用进展专业:应用化学班级:2009级应化(2)班学生学号:FNS32010004学生姓名:张和完成时间:2011年10月10日目录 (1)引言 (2)关键词: (2)摘要: (2)1 固体酸催化剂的定义与分类 (2)1.1定义 (2)1.2分类 (3)2 固体酸催化剂在缩醛(酮)合成中的应用 (3)2.1 固体酸催化合成缩醛(酮)类化合物的意义 (3)2.2缩醛(酮)化的固体催化剂研究进展 (3)3 不同类型的固体酸在合成缩醛(酮)中的应用 (4)3.1硅铝酸盐类 (4)3.2 固体超强酸类 (4)3.3 杂多酸类 (5)3.4离子交换树脂 (5)4 固体酸催化剂的发展前景 (5)5 固体催化剂应用遇到的主要问题 (5)参考文献 (6)长期以来工业上酯化反应多采用硫酸催化剂,由于其强氧化性和腐蚀性,造成副产物多,聚合现象严重,而且严重腐蚀设备,反应结束后催化剂硫酸与反应产物难分离,产物要经过中和,水洗,干燥等,后处理工艺复杂,对环境污染严重等缺点。
为了克服上述弊病,目前国内外正在研制非酸催化剂或固体酸催化剂用于酯化反应,实现均相反应多相化,反应结束后,催化剂和产物分为两相,实现催化剂回收和循环使用,达到了既有利于充分利用资源又有利于环境友好的目的。
与液体酸催化剂相比,固体酸催化反应具有明显的优势,固体酸催化在工艺上容易实现连续生产,不存在产物与催化剂的分离及对设备的腐蚀等问题。
并且固体酸催化剂的活性高,可在高温下反应,能大大提高生产效率。
还可扩大酸催化剂的应用领域,易于与其他单元过程耦合形成集成过程,节约能源和资源。
关键词:固体酸催化剂;固体超强酸;杂多酸;缩醛(酮)摘要:通过固体孙催化剂在有机合成反应中的应用,说明固体酸催化剂的优越性,介绍了固体酸催化剂技术应用的进展,指出了固体酸催化剂应用存在的主要问题1 固体酸催化剂的定义与分类1.1定义一般而言,固体酸可理解为凡能碱性指示剂改变颜色的固体,或是凡能化学吸附碱性物质的固体。
有机合成中的固体酸催化剂及其催化作用机理 甘贻迪 2008302037 安徽理工大学 化学工程学院 应化二班 摘要:在有机合成中硫酸等液态催化剂存在不能循环使用,后处理工序复杂,环境污染大等缺点。因而具有高活性、高选择性、绿色环保等优点的固体酸催化剂在有机合成中越来越受到人们的亲睐,成为有机合成中能够代替硫酸的良好催化剂[1]。本文将对固体酸催化剂作性质种类作简单介绍,并介绍其在酯的合成、酮的合成、O-酰化反应等具体应用的原理。 关键词:固体酸催化剂、有机合成、酯、醛(酮)、喹啉 1固体酸催化剂简述 1.1固体酸催化剂的定义及特点 一般而言,固体酸可以理解为凡能使碱性指示剂改变颜色的固体,或者凡能化学吸附碱性物质的固体[1] ,它们是酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位。固体酸催化剂多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。它与液体酸催化剂相比,固体酸催化剂具有容易处理和储存、对设备无腐蚀作用、易实现生产过程的连续化、稳定性高、可消除废酸的污染等优点。因此固体酸催化剂在实验室和工业上都得到了越来越广泛的应用。特别是随着人们环境保护意识的加强以及环境保护要求的严格,有关固体酸催化剂的研究更是得到了长足的发展。当然,固体酸催化剂除了具有许多优势的同时,也还存在一些急需解决的不足地方,诸如固体酸的活性还远不及硫酸等液体酸、固体酸的酸强度高低不一、不能适应不同反应需要、固体酸价格较贵、单位酸量相对较少,故其用量较大,生产成本较高等 1.2固体酸催化剂可以分类: 按作用机理分为:B酸和L酸和超强酸 Bromated酸:能够给出质子的物质称为Bromated酸。 Lewis酸:能够接受电子对的物质称为Lewis酸1。 固体超强酸:固态表面酸强度大于100%硫酸的固体酸。由于100%硫酸的酸强度Hammett酸函数Ho=-11.9,所以Ho<-11.9的固体酸是固体超强酸5。 按其组成不同可大致分为以下几类:无机酸盐(AlP04、BPO4、FeSO4等)、金属氧化物(简单:Al2O3、SiO2复合:AL2O3SIO2等)及其复合物、杂多酸(H3PW12O40
等)、沸石分子筛、阳离子交换树脂(苯乙烯、二乙烯基苯共聚物)、负载金属
氧化物、天然粘土矿负载化液体酸等[2]。
2固体酸催化剂在有机合成中的应用 自20世纪30年代法国胡德利首次研制与开发出第一个固体酸催化剂——硅酸铝以来,固体酸催化剂的研究已经历了大约一个世纪。固体酸催化剂在化学工业中的应用成了一个十分重要的领域,已广泛用于石油化工行业的催化裂化、加氢裂化、催化重整、齐聚和聚合、脱氢、异构化、烷基化、酰基化、烯烃水合、脱水反应、消除反应、酯化反应、缩合反应、水解反应、氧化.还原反应等。 2.1固体酸催化下酯的合成 2.1.1固体酸催化合成乳酸丁酯 乳酸正丁酯是重要的a一羟基酯类化合物,主要用作合成香料和工业溶剂, 并用于树脂、油漆、涂料和粘接剂等领域[3]。而用金属掺杂的磷酸铝固体酸、杂多磷钨酸及其负载催化剂合成乳酸正丁酯,产量高、环境污染小。 具体合成方法是在三颈瓶中加入一定量的催化剂、乳酸、正丁醇、环己烷和分子筛,加热回流两小时,反应混合物依次用水、饱和碳酸钠溶液、水以及饱和氯化钠溶液洗至中性,无水氯化钙干燥。 从其实验数据中我们可以看出随着磷酸铝中铜和铁含量的增加,酯收率有所增加,特别地铁离子掺杂的磷酸铝酯收率增加明显,表明铜离子和铁离子的掺杂增加磷酸铝的酸性。而随着磷酸铝中镍离子含量的增加,酯收率降低,掺杂镍离子可能减少了磷酸铝的酸性。 2.1.2固体酸催化合成丁二酸二丁酯 丁二酸二丁酯是一种无色透明液体,常用作工业增塑剂昆虫(如蟑螂、蚂蚁)驱避剂有机合成中间体食品添加剂和气相色谱固定液等。工业上的常规合成方法是在硫酸催化下由丁二酸和正丁醇酯化而成。在新的环境形势下,人们开始用环境友好型催化剂,如:甲苯磺酸、氨基磺酸、强酸性阳离子交换树脂、六水三氯化铁、五水四氯化锡、十二水合硫酸铁铵、硫酸钛、一水硫酸氢钠和固体超强酸等固体酸催化剂催化合成丁二酸二丁酯。 对甲苯磺酸(P-CH3C6H4SO3H•H2O)是一种固体有机酸,保管、运输、使用方便、安全,腐蚀性和引起副反应方面比硫酸小。在该催化合成反映中具有用量少 反应时间短、酯收率高等特点 强酸性阳离子交换树脂是一种高分子磺酸,具有价廉易得,对设备不存在腐蚀,不污染环境,不会引起副反应,不溶于反应体系,可以回收再生并重复使用,操作方便,产品收率高等特点,是工业生产上有利的环境友好催化剂。在丁二酸二丁酯的合成时产品收率在90%以上,且催化剂可以重复使用4次[4]。 无极固体酸催化剂,例如,结晶三氯化铁、硫酸铜、铁铵矾等Lewis酸,因其金属原子具有能与羧酸中羰基氧配位的空轨道 因而具有催化酯化作用,故可以用于合成酯,它们的特点是的酸性较弱、对设备的腐蚀小、环境污染低、副反应少。结晶四氯化锡跟结晶三氯化铁一样,结晶四氯化锡(SnCl4•5H2O)也是一种具有外层空轨道,锡(Ⅳ)具有高电负性的Lewis酸 ,也能够催化合成丁二酸二丁酯。 超强酸是酸强度比100%硫酸更强的酸。固体超强酸具有不腐蚀反应设备,不污染环境,不怕水,耐高温反应活性高,选择性好,易于制备,在反应体系中易分离不易中毒和能够重复使用等优点。可在该合成中可重复使用10次,酯的收率仍可达到88%[4] 另外微波化学与技术是一门新兴的交叉性学科,它是在人们对微波场中物质的特性及其相互作用的深入研究基础上,利用现代微波技术来研究物质在微波场作用下的化学行为的一门科学。在微波辐射H2S04/AC催化合成草酸二丁酯的研究[2]中发现其具有有显著的节能、提高反应速率和产率、缩短反应时间、减少污染
等优点。 2.2固体酸催化下醛(酮)的合成 缩醛(酮)是一类重要的化合物,广泛应用于日用香精和食用香精中。此外,缩醛(酮)也常用于甾族和糖类物质的合成、有机合成的羰基保护、油漆和制药工业等的中间体和目标产物,甚至用作特殊的反应溶剂。缩醛(酮)的传统的合成方法是在无机强酸(硫酸、盐酸、磷酸等)催化下,将醛(酮)与醇直接反应,生成缩醛(酮),但强酸对设备腐蚀严重,且反应时间长、后处理复杂、环境污染严重。 近20多年来国内化学工作者在缩醛(酮)合成工艺的改进及新型催化剂的探讨方面做了大量工作,主要类型有固体酸催化剂、金属无机盐类、高分子负载型Lewis酸、有机锡化合物、室温离子液体、碘单质等固体酸催化剂[1]。 2.3 固体酸催化下O-酰化反应 H2S04/AC催化合成乙酰水杨酸 乙酰水杨酸(阿司匹林,Aspirin)是一种常见的非处方药,也是疗效可靠、应用最早的解热镇痛、抗炎、抗风湿、抗血栓和软化血管等药物,用于临床已有100年的历史。其经典制备方法是用乙酸酐或乙酰氯在浓硫酸催化下对水杨酸进行O-酰化制得,反应虽然工艺成熟,但浓硫酸对设备的腐蚀性较大,产率比较低,同时产生的废液对环境污染大,且易发生副反应而使产品色泽深,不利于提纯。(H2S04/AC)为催化剂催化合成乙酰水杨酸,结果表明该催化剂具有良好的催化活性[2]。 具体操作为:在装有冷凝管的50mL干燥圆底烧瓶中,加入2.0g水杨酸、新蒸乙酸酐和催化剂,恒温水浴控温,电磁搅拌反应一定时间,趁热抽滤,滤出催化剂,滤液加入约20mL冰水,充分冷却使其结晶,抽滤,洗涤晶体,自然晾干得白色晶体。粗晶重结晶(乙醇和水混合溶剂,体积比1:2.5),干燥得纯品[2]。 2.4杂多酸在弗里德兰登合成喹啉中应用 喹啉是众所周知的一个很宽范围的药用作为抗疟药、平喘药、降压药、抗菌和酪氨酸激酶抑制剂等[6]。在合成中传统的路易斯酸,如SnCl2、ZnCl2、Bi(OTf)3、AuCl3、CeCl3·7H2O以及离子液体也利用这种合成。然而,这些方法存在一些缺点,如恶劣条件下,反应时间长,极低的产量和耗时的工作,同时回收催化剂也是一个问题。而使用固体杂多酸催化剂,包括NaHSO4-SiO2、Amberlyst-15、H2SO4-SiO2等在弗里德兰登合成喹啉的应用合成中具有传统催化剂不具有的优点。 2.5a-氨基腈化合物合成 a-氨基腈的传统合成可以使用很多种固体酸催化剂,例如,LiClO4、Sc(OTf)3、NiCl2等,而这些试剂都十分昂贵,催化的反应时间也很长,且条件苛刻程序复杂。而新的a-氨基腈的合成方法是一个三组分混合催化反应,三种组分为醛或酮、胺及三甲基氰硅烷。其中催化剂为黄原胶支撑的硫酸催化剂,它在室温下催化反应能在很短的时间里得到高产量的产品[7]。
3固体酸催化剂的研究意义 酸催化反应和酸催化剂是烃类裂解、重整、异构以及包括烯烃水合、芳烃烷基化、醇酸酯化等化工工业的基础。因而传统的酸消耗量巨大,且造成了环境的污染。比如氢氟酸、浓硫酸等液态酸催化剂的具有毒性高、对设备腐蚀严重,原料和产物不易分离,但随着人们对安全、健康、环境的进一步关注,化工生产中许多传统液态酸催化工艺在逐步被淘汰。同时固体酸催化剂不仅能在液相反应中回收重复多次使用,而且还可以将均相催化反应多相化,使生产工艺大大简化,因而获得了更广泛的应用。因此,固体酸催化剂的问世成了酸催化研究史上的一大转折,在一定程度上缓解或解决了均相反应带来的不可避免的问题,是真正意义上的环境友好型催化剂。所以对新型固体酸催化剂的研制与开发,无论对现有工业生产,还是从保护环境、促进健康等方面考虑,都有着重要的现实意义和广泛的应用前景。 参考文献: [1] 章爱华.几种典型缩酮和有机酸酯的催化合成研究[D].湖南:湖南师范大