当前位置:文档之家› 鸢尾酮的合成研究

鸢尾酮的合成研究

鸢尾酮的合成研究
鸢尾酮的合成研究

鸢尾酮的合成研究

Synthesis of Irone

Abstract:Irone was obtained through three steps reactions with citral and acetone.Citral reacted with acetone in the base catalyst to give pseudoionone.The yield wal 93.2%.After methylating,pseudoirone was prepared.The yield was 52.3%.Pseudoirone cyclized with mixed acid as cyclizing agent to give irone.The yield was 98.3%.The total yield was high to reach 47.9% and the reaction was easy to control.The product was determined by spectroscope,GC-MS,odor evaluation an so on.

Key-words:iron citral acetone synthesis

摘要:采用山苍子油提取得到的柠檬醛和丙酮等为主要原料合成鸢尾酮。合成分三步完成。先用柠檬醛与丙酮在碱的催化下生成假紫罗兰酮,收率为93.2%。假紫罗兰酮甲基化生成假鸢尾酮,收率为52.3%。假鸢尾酮环化得到鸢尾酮,收率为98.3%。合成的总收率较高达到47.9%。并对合成的鸢尾酮进行了理化性质、光谱、色-质和评香等的确证。

关键词:鸢尾酮柠檬醛丙酮合成

鸢尾酮具有柔和的甜香,香气清新纯正是国际上公认的高级香料。鸢尾酮主要用于鸢尾、紫罗兰、紫藤花、桂花等高级香精中,而这些香精广泛用于食品、化妆品、香烟、香皂、衣物、纸张和书籍等产品上。随着时间经济好转,人们生活质量的提高,目前鸢尾酮的时间需求量在日益增加,已由二十世纪80年代的2-4t,上升至4-8t。但目前全世界生产鸢尾酮仅有瑞士和日本等少数国家,其产量不能满足要求,价格大幅上扬。

生产鸢尾酮的方法较多,应根据原料来源情况选择合适的生产方法。目前制得鸢尾酮的方法有:直接从含有鸢尾酮的植物中提取、化学合成法以及生物发酵法。其中目前有工业化生产价值的是化学合成法和直接从植物中提取的方法。提取法受原料的限制应用有限。化学合成法,目前有多种合成方法和路线。选择合适的方法是关键。我国是个天然资源十分丰富的国家,其中林产品-山苍子油和松节油就是生产鸢尾酮等香料的好原料。我们选用我国资源十分丰富的山苍子为原料来合成鸢尾酮。其合成路线为:

从山苍子提取山苍子油制备柠檬醛,再由柠檬醛合成假性紫罗兰酮。本文重点讨论由假性紫罗兰酮合成鸢尾酮的有关情况。

1 实验

1.1 原料与仪器柠檬醛,其他试剂均为化学纯试剂。红外光谱用Nicolet-5DX型仪测定,液膜法;元素分析用Yanaco-MT-3型元素分析仪测定;气相色谱用岛津GC-9A气相分析仪测定;质谱用HP6890GC/5973MSD质谱仪测定;紫外光片用岛津UV-120-02光度技测定;折光率用WZS-1型折光仪测定;微波炉用华E70TF-3/J220型微波炉;温度计。

1.2 假紫罗兰酮的合成

1.3 假鸢尾酮的合成

取20g假紫罗兰酮与反应器中,加入溶剂80-100ml和催化剂适量,开启搅拌,控制温度在0-5℃,用滴液漏斗滴加甲基化剂,在46-60min滴加完毕。继续在低温下反应1.5h左右,然后升温至50℃左右回流反应2h以上。冷至室温,过滤,滤液减压至脱溶,然后减压精馏,收集温度在假鸢尾酮范围内的馏分。收率见表1。

表1,不同甲基定位剂对反应的影响

1.4 鸢尾酮的合成

在反应中加入10-15ml溶剂和混酸作为环化剂,取5.5g假鸢尾酮于滴液漏斗中,再开启微波和搅拌,控制温度在45℃左右,滴加假鸢尾酮于反应器中,控制在10-15min滴加完毕,继续反应25-30min。冷至室温,过滤,滤液减压脱溶,然后减压精馏,收集温度在鸢尾酮范围内的馏分。收率见表2,外观=、沸点、折光率和相对密度等数据见表3,IR谱见图2所示。

2 试验结果与讨论

2.1 甲基定位反应

笔者曾从合成路线上分析是先进行甲基定位反应,再进行醛酮的缩合反应,可能更为有利。因为从分子的空间结构效应来看,这样做似乎更有利于甲基化定位反应的进行。但试验荚果证明:是先进行Aldol酮醛缩合得到假紫罗兰酮后,再进行甲基定位反应更有利。这表明所选的甲基化定位剂有立体选择,同时还具有对非共轭的C=C反应的优先进攻的选择权,而对共轭的C=C,C=O反应的不敏感,而且共轭体系增大,更有降低甲基定位剂与共轭双键反应的活动性,从而有利于甲基定位剂与非共轭的C=C双键发生有效的反应。对甲基定位剂进行了筛选,初步得到如下的试验结果

2.2 环化成鸢尾酮

根据由假紫罗兰酮环化得紫罗兰酮的试验结果和经验。筛选了常用的环化催化剂,及对所有的环化剂的反应条件进行了优化。筛选后得到的三种环化剂的试验结果表明环化剂B最合适。这种环化催化剂能使环化产物主要为α、β型鸢尾酮,而γ型几乎不生成,而α、β型鸢尾酮正是香气香韵都极佳的有效成分。同时催化效率和反应时转化率都较高。采用微波辐照技术使环化反应速率显著加快,且反应进行得更彻底。其试验结果见表 2所示。

2.3 产品的质量分析测定

2.3.1 鸢尾酮的理化常数的分析测定

将合成所得鸢尾酮的理化常数分析测定结果列于表3所示。

表2 环化反应对比试验结果

表3 鸢尾酮的理化性能测定结果

2.3.2 鸢尾酮产品的结构分析

所合成的产品经元素分析得C,81.98;H,10.59;计算值为C,81.55;H,10.68。经中国科学院武汉水生生物研究所GC-MS测定分析,所合成的产品的分子离子峰(m/z)分别为206(M)、192、177、159、119、91、43等,经计算机检索该合成品为鸢尾酮。紫外光谱测得λmax为226nm,293nm。

2.3.3 鸢尾酮的气相色谱测定分析

鸢尾酮的气相色脯测定分析结果见图1所示。

2.3.4 鸢尾酮香气评定

经国家香料香精化妆品质量监督检验中心检验,所合成的鸢尾酮有柔和甜的花香,有紫罗兰、鸢尾、规划的甜香,香气纯正,合格。

2.3.5 鸢尾酮调香测定

经江西省两家香料产进行调香实验,结果表明鸢尾酮以其柔甜亲和的香气,飘逸幽雅的香韵,在香精中分别起着基香、矫香、修饰等的作用,有明显增强香气力度的功效,可以用于众多的花香与非花香的高档香精中。

2.3.6 鸢尾酮的含量测定

经江西省农副加工产品质量检验中心用毛细管气相色谱内标法测定,所合成的产品鸢尾酮的含量为99.1%。

3 结束语

综上所述,我们所选定的鸢尾酮合成路线是可行的。突破了合成中关键的难点-甲基定位反应,实现了甲基定位反应的收率达52.3%的良好效果,使合成的总收率达到47.9%,为鸢尾酮的中试、生产提供了试验基础。

参考文献:

1.刘晓庚,陈学恒,桂衍胜等,鸢尾酮的合成路线研究,江西农业大学学报,1999,21,(1):124~127

2.刘晓庚,陈梅梅,谢宝平等,从山苍子中提取柠檬醛及柠檬醛的测定研究

3.刘晓庚,黄喜根,陈学恒等,用微波辐照相转移催化法由山苍子油合成假性紫罗兰酮,精细化工,1999,16(增刊):318~320

4.孙宁川,林军,刘复初等,鸢尾酮的合成进展,云南化工,1996,(2):13~19

判别分析案例(鸢尾花)

Wilks 的 Lambda 卡方df Sig. 函数检验Wilks 的 Lambda 1 到 2 .025 538.950 8 .000 2 .774 37.351 3 .000 标准化的典型判别式函数系数 函数 1 2 花萼长-.346 .039 花萼宽-.525 .742 花瓣长.846 -.386 花瓣宽.613 .555 - =0.613 ? ? 0.846 - 1 + 346 0.525 .0 花萼长z 花萼宽 花瓣长 ? z 花瓣宽 z D? + z =0.555 ? + 0.386 0.742 ? 2 0.039 - ? 花萼宽 花瓣长 花瓣宽花萼长z z D? + z z 结构矩阵 函数 1 2 花瓣长.726*.165 花萼宽-.121 .879* 花瓣宽.651 .718* 花萼长.221 .340* 判别变量和标准化典型判别式函数 之间的汇聚组间相关性 按函数内相关性的绝对大小排序 的变量。 *. 每个变量和任意判别式函数间 最大的绝对相关性

0.155 0.196 - - =0.299 .0 花瓣宽.2 526 - 063 1 z z 花萼长z 花萼宽 ? z 花瓣长 ? D? + ? + 0.089 - + - =0.271 978 ? 2 .6 0.007 0.218 z 花萼长z 花萼宽 花瓣长 花瓣宽 z z ? ? + D? +

区域图 典则判别 函数 2 -16.0 -12.0 -8.0 -4.0 .0 4.0 8.0 12.0 16.0 +---------+---------+---------+---------+---------+---------+---------+---------+ 16.0 + 13 + I 13 I I 13 I I 123 I I 123 I I 12 23 I 12.0 + + + + 12 23 + + + + I 12 23 I I 12 23 I I 12 23 I I 12 23 I I 12 23 I 8.0 + + + + 12 + 23 + + + + I 12 23 I I 12 23 I I 12 23 I I 12 23 I I 12 23 I 4.0 + + + + 12 + 23 + + + + I 12 23 I I 12 23 I I 12 23 I I 12 23 I I 12 23 * I .0 + + + * + 12 + 23 + + + I 12 * 23 I I 12 23 I I 12 23 I I 12 23 I I 12 23 I -4.0 + + + + 12 + + 23 + + + I 12 23 I I 12 23 I I 12 23 I I 12 23 I I 12 23 I -8.0 + + + +12 + + 23 + + + I 12 23 I I 12 23 I I 12 23 I I 12 23 I I 12 23 I -12.0 + + + 12 + + 23 + + I 12 23 I I 12 23 I I 12 23 I I 12 23 I I 12 23 I -16.0 + 12 23 + +---------+---------+---------+---------+---------+---------+---------+---------+ -16.0 -12.0 -8.0 -4.0 .0 4.0 8.0 12.0 16.0 典则判别函数 1 区域图中使用的符号 符号组标签 ---- -- -------------- 1 1 刚毛鸢尾花 2 2 变色鸢尾花 3 3 佛吉尼亚鸢尾花 * 表示一个组质心

浅析聚醚醚酮的发展概况

浅谈聚醚醚酮的研究进展 摘要:本文介绍了特种工程塑料聚醚醚酮的性质、制备、应用以及对其应用前景的展望。 关键词:特种工程塑料;聚醚醚酮;聚醚醚酮性质;聚醚醚酮制备;聚醚醚酮应用; 1.认识聚醚醚酮 1.1聚醚醚酮介绍 特种工程塑料聚醚醚酮(PEEK)是20世纪70年代末研究开发成功的一种新型半晶态芳香族热塑性工程塑料,与其他特种工程塑料相比,具有耐高温、机械性能优异、自润滑性好、易加工、耐化学品腐蚀、阻燃、耐剥离性、耐辐照性、绝缘性稳定、耐水解和易加工等优异性能,在航空航天、汽车、电子电气、医疗和食品加工等领域被广泛应用,开发利用前景广阔。 1.2聚醚醚酮性能 1.2.1耐高温 PEEK 树脂具有较高的玻璃化转变温度(143℃)和熔点(334℃),这是它可在有耐热性要求的用途中可靠应用的理由之一。其负载热变型温度高达316℃(30%GF或CF增强牌号),连续使用温度为260℃。 1.2.2机械特性 PEEK树脂是韧性和刚性兼备并取得平衡的塑料。特别是它对交变应力的优良耐疲劳性是所有塑料中最出众的,可与合金材料媲美。 1.2.3自润滑性(耐腐蚀性) PEEK树脂在所有塑料中具有出众的滑动特性,适合于严格要求低摩擦系数

和耐摩耗用途使用。特别是碳纤、石墨、聚四氟乙烯各占10%比例混合改性的滑动牌号或30%CF增强牌号等均为具有优异滑动特性的牌号。 1.2.4 耐化学药品性 PEEK树脂具有优异的耐化学药品性,在通常的化学药品中,能溶解或者破坏它的只有浓硫酸,它的耐腐蚀性与镍钢相近。 1.2.5阻燃性 PEEK树脂是非常稳定的聚合物,1.45mm厚的样品,不加任何阻燃剂就可达到最高阻燃标准。 1.2.6耐剥离性 PEEK 树脂的耐剥离性很好,因此可制成包覆很薄的电线或电磁线,并可在苛刻条件下使用。 1.2.7耐辐照性 耐γ辐照的能力很强,超过了通用树脂中耐辐照性最好的聚苯乙烯。可以作成γ辐照剂量达1100Mrad时仍能保持良好的绝缘能力的高性能电线。 1.2.8耐水解性 PEEK树脂及其复合材料不受水和高压水蒸气的化学影响,用这种材料作成的制品在高温高压水中连续使用仍可保持优异特性。 1.2.9易加工性 PEEK 树脂虽然是超耐热性树脂,但由于它具有高温流动性好和热分解温度很高等特点,可采用如下加工方式:注射成型、挤出成型、模压成型、吹塑成型、熔融纺丝、旋转成型、粉末喷涂等。 1.2.10绝缘性稳定性

二ˊ苯基3ˊ甲基5ˊ氧代吡唑4ˊ基丁二酮的合成研究毕业教学教材

1,4-二(仁苯基-3 -甲基-5 -氧代吡唑-4匕基) 丁二酮的合成研究 Studies of 1,4-bis (methyl-1 -phe nyl5 -oxo-pyrazol曲-yl) butanedione's synthesis 目录 摘要................................................................. I 引言 (1) 第 1 章绪论 (2) 1.1课题来源 ................................................................. 2... 1.2 课题目的及意义........................................................... 2... 1.3研究状况 ................................................................. 2... 1.3.1 4-酰基吡唑啉酮的合成及研究现状......................................... 2. 1.3.2 4- 酰基吡唑啉酮的性质及应用............................................ 5.. 第 2 章实验内容.. (10) 2.1 方案论证................................................................ 1..0. 2.1.1 合成依据.............................................................. 1..0. 2.1.2 合成路线.............................................................. 1..0.

聚醚醚酮(PEEK)材料介绍和应用、发展(精编)

聚醚醚酮(PEEK)材料介绍和应用、发展 聚醚醚酮英文名是POLYETHERETHERKETONE(缩写PEEK),作为一种线性芳族半结晶的热塑性塑料,是公认的全世界性能最高的热塑性材料之一。 聚醚醚酮(PEEK)是一种线性芳香高分子化合物。其大分子主链上含有大量的芳环和极性酮基,赋予聚合物以耐热性和力学强度;另外,大分子中含有大量的醚键,又赋予聚合物以韧性,醚键越多,其韧性越好。它具有以下性能特征:耐高温,其负载热变型温度高达316℃(30%GF或CF增强牌号),连续使用温度为260℃;优良的耐疲劳性,可与合金材料媲美;耐化学药品性,它的耐腐蚀性与镍钢相近;自润滑性;阻燃性,不加任何阻燃剂就可达到最高阻燃标准;易加工性,由于它具有高温流动性好和热分解温度很高等特点,可采用注射、挤出、模压和吹塑成型,及熔融纺丝、旋转成型、粉末喷涂;耐水解性;耐磨性;耐疲劳性;耐辐照性;耐剥离性;良好的电绝缘性能。 1977年英国ICI公司首先成功合成聚醚醚酮PEEK,1978年开始在市场上销售,1982年以VICTREX?(威格斯)牌号销售至今。经过近30年的发展,VICTREX?已成为牌号最齐全的聚醚醚酮品牌,包括VICTREX?PEEK聚合物、VICOTE?涂料和APTIV?薄膜。其主要合成方法有:英国Victrex公司以4,4'-二氯二苯酮和对苯二酚为原料的合成工艺;日本三菱化成以二苯醚和光气为原料的合成工艺;印度Gharda?Chemicals开发了只使用一种单体原料的生产工艺,且生产成本要比Victrex公司低。我国吉林大学特种工程塑料研究中心开发出了PEEK合成专利技术,并在长春建成了产业化工业装置。 威格斯公司与复合应用领域的多个领先专业伙伴合作,提供由碳、玻璃或聚芳族酰胺连续纤维组成的VICTREX PEEK热塑性塑料复合材料。这些不同形式的复合材料设计,可以提供最佳的增强纤维浸渍与纤维基材界面,包括干织物、多向织物 (无卷曲纤维) (Non-Crimp Fiber, NCF)、编织物、缆索、单取向带、单取向板材及加固织物或 UD 板等。 VICTREX 的PEEK具有四种不同的粘度:标准粘度(VICTREX 450)、中等

覆盆子酮的合成研究

覆盆子酮的合成研究 摘要:概述了覆盆子酮的性质、特征、应用和生产情况, 回顾了覆盆子酮的合成工艺路线,研究综述了采用不同起始原料的覆盆子酮合成四条工艺路线。重点用正交实验法专门研究了对羟基苯甲醛与丙酮的缩合反应条件,并对覆盆子酮合成技术的发展提出了建议。 关键词:覆盆子酮;合成;:对羟基苯甲醛;香料;Claisen—Schmidt缩合;氢化反应;重结晶 覆盆子酮,又名复盆子酮、悬钩子酮(raspberry ketone),化学名为4一对羟基苯基一2一丁酮,商品名称有Frambinon、Oxypheny2lone、Oxanone 等, 是公认的较为安全的合成香料(FEMA No. 2588) 。它的化学结构式如下: 覆盆子酮是覆盆子果的主要香气成分,具有覆盆子果的特征性甜果香香气和香味, 它在覆盆子汁中的含量约为011 ×10 - 6~012 ×10 - 6 。具有光泽的颗粒或针状白色结晶,熔点82 ℃,沸点161 ℃/0167 kPa ,可溶于醇类和油类,几乎不溶于水。是国内外大量使用的一种幽雅果香的香料[1~3],广泛应用于化妆品和食品中,而且还用于合成医药[4-6] 、染料[7] ,此外在农业上是一种诱虫剂[8] 。。由于香气优良、用量较大,价格较高,所以各国对覆盆子酮及其类似物的研究都非常重视。由于它在复盆子中的含量极低,这就决定了难以从复盆子果中单离出复盆子酮,因此现在未能商业化的大量生产天然复盆子酮[9]。 一、覆盆子酮的制备路线的回顾 目前,关于覆盆子酮的制备路线国内外有不少报道,主要有4种。如采用苯酚与甲基乙烯基酮的合成方法[10] 、苯酚与丁醇酮的合成方法[11]等。 (1)苯酚与甲基乙烯基酮的合成路线[l0] Albertus JohanMulder[12]等人是以苯酚和甲基乙烯基酮为原料来合成覆翁子酮。在O~3℃,在强酸催化下进行烷基化反应,反应大约2小时。用碱中和至

鸢尾酮的合成研究

鸢尾酮的合成研究 Synthesis of Irone Abstract:Irone was obtained through three steps reactions with citral and acetone.Citral reacted with acetone in the base catalyst to give pseudoionone.The yield wal 93.2%.After methylating,pseudoirone was prepared.The yield was 52.3%.Pseudoirone cyclized with mixed acid as cyclizing agent to give irone.The yield was 98.3%.The total yield was high to reach 47.9% and the reaction was easy to control.The product was determined by spectroscope,GC-MS,odor evaluation an so on. Key-words:iron citral acetone synthesis 摘要:采用山苍子油提取得到的柠檬醛和丙酮等为主要原料合成鸢尾酮。合成分三步完成。先用柠檬醛与丙酮在碱的催化下生成假紫罗兰酮,收率为93.2%。假紫罗兰酮甲基化生成假鸢尾酮,收率为52.3%。假鸢尾酮环化得到鸢尾酮,收率为98.3%。合成的总收率较高达到47.9%。并对合成的鸢尾酮进行了理化性质、光谱、色-质和评香等的确证。 关键词:鸢尾酮柠檬醛丙酮合成 鸢尾酮具有柔和的甜香,香气清新纯正是国际上公认的高级香料。鸢尾酮主要用于鸢尾、紫罗兰、紫藤花、桂花等高级香精中,而这些香精广泛用于食品、化妆品、香烟、香皂、衣物、纸张和书籍等产品上。随着时间经济好转,人们生活质量的提高,目前鸢尾酮的时间需求量在日益增加,已由二十世纪80年代的2-4t,上升至4-8t。但目前全世界生产鸢尾酮仅有瑞士和日本等少数国家,其产量不能满足要求,价格大幅上扬。 生产鸢尾酮的方法较多,应根据原料来源情况选择合适的生产方法。目前制得鸢尾酮的方法有:直接从含有鸢尾酮的植物中提取、化学合成法以及生物发酵法。其中目前有工业化生产价值的是化学合成法和直接从植物中提取的方法。提取法受原料的限制应用有限。化学合成法,目前有多种合成方法和路线。选择合适的方法是关键。我国是个天然资源十分丰富的国家,其中林产品-山苍子油和松节油就是生产鸢尾酮等香料的好原料。我们选用我国资源十分丰富的山苍子为原料来合成鸢尾酮。其合成路线为: 从山苍子提取山苍子油制备柠檬醛,再由柠檬醛合成假性紫罗兰酮。本文重点讨论由假性紫罗兰酮合成鸢尾酮的有关情况。 1 实验 1.1 原料与仪器柠檬醛,其他试剂均为化学纯试剂。红外光谱用Nicolet-5DX型仪测定,液膜法;元素分析用Yanaco-MT-3型元素分析仪测定;气相色谱用岛津GC-9A气相分析仪测定;质谱用HP6890GC/5973MSD质谱仪测定;紫外光片用岛津UV-120-02光度技测定;折光率用WZS-1型折光仪测定;微波炉用华E70TF-3/J220型微波炉;温度计。 1.2 假紫罗兰酮的合成 1.3 假鸢尾酮的合成 取20g假紫罗兰酮与反应器中,加入溶剂80-100ml和催化剂适量,开启搅拌,控制温度在0-5℃,用滴液漏斗滴加甲基化剂,在46-60min滴加完毕。继续在低温下反应1.5h左右,然后升温至50℃左右回流反应2h以上。冷至室温,过滤,滤液减压至脱溶,然后减压精馏,收集温度在假鸢尾酮范围内的馏分。收率见表1。 表1,不同甲基定位剂对反应的影响

鸢尾花分析

何晓群《多元统计分析》第三版(2012)数据下载 第2章 [例2-1] 1999年财政部、国家经贸委、人事部和国家计委联合发布了《国有资本金效绩评价规则》。其中,对竞争性工商企业的评价指标体系包括下面八大基本指标:净资产收益率、总资产报酬率、总资产周转率、流动资产周转率、资产负债率、已获利息倍数、销售增长率和资本积累率。下面我们借助于这一指标体系对我国上市公司的运营情况进行分析,以下数据为35家上市公司2008年年报数据,这35家上市公司分别来自于电力、煤气及水的生产和供应业,房地行业,信息技术业,在后面各章中也经常以该数据为例进行分析。

习题3.今选取内蒙古、广西、贵州、云南、西藏、宁夏、新疆、甘肃和青海等9个内陆边远省份。选取人均GDP、第三产业比重、人均消费支出、人口自然增长率及文盲半文盲人口占15岁以上人口的比例等五项能够较好的说明各地区社会经济发展水平的指标。验证一下边远及少数民族聚居区的社会经济水平与全国平均水平有无显著差异。

数据来源:《中国统计年鉴》(1998)。 5项指标的全国平均水平 μ0=(6212.01 32.87 2972 9.5 15.78)/ 第3章 例3-1 若我们需要将下列11户城镇居民按户主个人的收入进行分类,对每户作了如下的统计,结果列于表3-1。在表中,“标准工资收入”、“职工奖金”、“职工津贴”、“性别”、“就业身份”等称为指标,每户称为样品。若对户主进行分类,还可以采用其他指标,如“子女个数”、“政治面貌”等,指标如何选择取决于聚类的目的。 表3-1 某市2001年城镇居民户主个人收入数据 X1 职工标准工资收入 X5 单位得到的其他收入 X2 职工奖金收入 X6 其他收入 X3 职工津贴收入 X7 性别 X4 其他工资性收入 X8 就业身份 X1 X2 X3 X4 X5 X6 X7 X8 540.00 0.0 0.0 0.0 0.0 6.00 男国有1137.00 125.00 96.00 0.0 109.00 812.00 女集体1236.00 300.00 270.00 0.0 102.00 318.00 女国有1008.00 0.0 96.00 0.0 86.0 246.00 男集体1723.00 419.00 400.00 0.0 122.00 312.00 男国有1080.00 569.00 147.00 156.00 210.00 318.00 男集体1326.00 0.0 300.00 0.0 148.00 312.00 女国有1110.00 110.00 96.00 0.0 80.00 193.00 女集体1012.00 88.00 298.00 0.0 79.00 278.00 女国有1209.00 102.00 179.00 67.00 198.00 514.00 男集体1101.00 215.00 201.00 39.00 146.00 477.00 男集体 例3-3 English Norwegian Danish Dutch German French One En en een ein un Two To to twee zwei deux Three Tre tre drie drei trois Four Fire fire vier vier quatre Five Fem fem vijf funf einq Six Seks seks zes sechs six seven Sju syv zeven siebcn sept

配位化合物合成方法以及应用的研究

配位化合物合成方法以及应用的研究 摘要:近年来,配位化合物已成为化学的一个研究热点,主要在于其在好多方面能够体现 出不同的结构性质,广泛应用于日常生活、工业生产及生命科学中。它不仅与无机化合物、有机金属化合物相关连,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。本文就其的结构、合成方法进行总结以及提出现代合成技术,对其在相关领域应用进行了论述以及发展前景进行了展望。 关键词:配合物;构型;合成方法;催化性能 0前言 配位化合物简称配合物,又称络合物,是一类非常广泛和重要的化合物. 随着科学技术的发展,它在科学研究和生产实践中显示出越来越重要的意义,配合物不仅在化学领域里得到广泛的应用,并且对生命现象也具有重要的意义.[1]显然, 配位化合物研究的对象已不再局限于传统的配体和中心原子之间形成的配位化合物。形成了主客体化学和超分子化学, 大大地拓展了配位化合物的研究范围。一些有重要应用价值的配合物将会实现工业化生产, 配合物的应用会更加广泛, 特别是在开发多功能的绿色催化剂方面, 配合物的进展前景十分美好。配位化合物的合成成为了目前最大的研究课题,目前各种新型配合物不断涌现,它既包括一些经典配合物,同时也出现一些特殊配合物,要想用统一的模式总结各类配合物的制备和分离方法是不可能的,只能通过各种配合物结构的不同特点针对性地归纳出某些配合物的制备方法,为同类型的配合物合成提供方法鉴见.[2] 1 配合物结构和性质[3] 配位化合物的构型由配位数所决定,也就是化合物中心原子周围的配位原子个数。配位数与金属离子和配体的半径、电荷数和电子构型有关,一般在2-9之间,镧系元素和锕系元素的配合物中常会出现10以上的配位数。五配位中,常常涉及到三角双锥和四方锥两种构型的互变,因此,很大一部分五配位化合物的结构是介于这两个结构之间的一种中间结构。更高配位数的化合物中,八配位的可以是四方反棱柱体、十二面体、立方体、双帽三角棱柱体或六角双锥结构;九配位的可以是三帽三角棱柱体或单帽四方反棱柱体结构;十配位的可以是双帽四方反棱柱体或双帽十二面体结构;十一配位的化合物很少,可能是单帽五角棱柱体或单帽五角反棱柱体。异构现象和结构异构是配合物具有的重要性质。它不仅影响配合物的物理和化学性质,而且与其稳定性、反应性和生物活性也有密切关系。

炔诺酮的合成研究

炔诺酮的合成研究 摘要:炔诺酮是女性口服避孕药的一种,1954年首次开发合成成功,1963年在我国试制成功,并随后在临床中作为避孕药试用。至今仍然作为短效口服避孕药,探亲避孕药在临床上广泛使用。 合成炔诺酮的关键,是合成关键中间体4-雄甾烯-19-去甲基-3,17-二酮(19-去甲基二酮)。文献报道合成4-雄甾烯-19-去甲基-3,17-二酮(19-去甲基二酮)是以5,16-孕甾二烯-3β-醇-20-酮-3-醋酸酯(醋酸妊娠双烯醇酮)为起始原料,经过肟化,重排,水解,加成,环氧,水解,氧化,消除,还原,开环,氧化,消除等步骤得到4-雄甾烯-19-去甲基-3,17-二酮(19-去甲基二酮),然后再乙炔化得到产物炔诺酮,总收率23.5%。在工艺中,多次使用到溶剂苯,铬酐等溶剂或试剂,并且操作步骤较多,比较麻烦。改进新路线后,实现了绿色合成,去除了一类溶剂苯,用其他氧化剂替代了琼斯试剂,改进了反应时间,反应温度,提高总收率达到28.3%。 关键词:避孕药炔诺酮19-去甲基二酮一类溶剂络离子绿色化工 ABSTRACT: Norethindrone is a kind of female oral contraceptives developed in 1954 .The product produced successfully in china in 1963 and subsequently in clinical trials as a contraceptive . Up to today ,Norethisterone is still widely used in clinical as a short-acting oral contraceptives and visiting pills. Key synthesis of norethindrone, male steroid is a synthesis of the key intermediate of 4-methyl -3,17-Ene -19-Dione (19-methyl-Dione).Reported male steroid synthesis of 4-methyl -3,17-Ene -19-Dione (19-methyl-Dione) is based on 5,16-progesterone steroid diene-3 β-OL -3- -20-ketone acetate (acetic acid pregnancy alcohol ketone of diene) as starting material, After oximation, rearrangement, hydrolysis, bonus, epoxy, hydrolysis, oxidation, removed, restored, open-loop, oxidation, steps such as eliminating male steroid Ene 4- -19-methyl -3,17-Dione (19-methyl-Dione) and acetylene-be norethindrone, total yield of 23.5%.In the process, used more than once to the solvent benzene, solvent or reagents such as chromic anhydride, and action steps are more cumbersome.Enhancement of the new alignments, achieved green synthesis without a solvent benzene, other oxidizing agents replace the Jones reagent, improved response time, reaction temperature,

西瓜酮生产技术及市场行情研究报告

西瓜酮生产技术及市场行情研究报告 出版日期:2013-9-5 目录 第一部分:有机化工行业概述 (1) 第一节:有机化工行业范围、基本原料和用途介绍 (1) 第二节:化工市场跌宕起伏,有机化工产品表现上佳 (2)

第三节:生物基有机化工产业正在兴起 (3) 第二部分:西瓜酮生产技术及市场行情研究报告目录 (5) 第三部分:研究方法、数据来源和编写资质 (9) 第一部分:有机化工行业概述 第一节:有机化工行业范围、基本原料和用途介绍 有机化工是有机化学工业的简称,又称有机合成工业。是以石油、天然气、煤等为基础原料,主要生产各种有机原料的工业。 基本有机化工的直接原料包括氢气、一氧化碳、甲烷、乙烯、乙炔、丙烯、碳四以上脂肪烃、苯、西瓜酮、西瓜酮、乙苯等。从原油、石油馏分或低碳烷烃的裂解气、炼厂气以及煤气,经过分离处理,可以制成用于不同目的的脂肪烃原料;从催化重整的重整汽油、烃类裂解的裂解汽油以及煤干馏的煤焦油中,可以分离出芳烃原料;适当的石油馏分也可直接用作某些产品的原料;由湿性天然气可以分离出甲烷以外的其他低碳烷烃;从煤气化和天然气、炼厂气、石油馏分或原油的蒸气转化或部分氧化可以制成合成气;由焦炭制得的碳化钙,或由天然气、石脑油裂解均能制得乙炔。此外,还可从农林副产品获得原料。 基本有机化工产品的品种繁多,按化学组成可分类如表。这种划分具有一定的灵活性,因很多物质含有两种以上的特定元素或两种以上的基团,它们常又按其主要特点划入某一类。 基本有机化工产品也可按所用原料分类: ①合成气系产品(见合成气)。 ②甲烷系产品(见甲烷)。 ③乙烯系产品(见乙烯)。 ④丙烯系产品(见丙烯)。 ⑤C4以上脂肪烃系产品(见碳四馏分;碳五馏分)。 ⑥乙炔系产品(见乙炔)。

聚芳醚酮和聚醚醚酮简介

聚芳醚酮(PAEK)简介 聚芳醚酮(英文名称polyetherketoneketone)简称PAEK。是一类亚苯基环通过氧桥(醚键)和羰基(酮)连接而成的一类结晶型聚合物。按分子链中醚键、酮基与苯环连接次序和比例的不同,可形成许多不同的聚合物。 主要有聚醚醚酮(PEEK)、聚醚酮(PEK)、聚醚酮酮(PEKK)、聚醚醚酮酮(PEEKK)和聚醚酮醚酮酮(PEKEKK)等品种。 聚芳醚酮分子结构中含有刚性的苯环,因此具有优良的高温性能、力学性能、电绝缘性、耐辐射和耐化学品性等特点。聚芳醚酮分子结构中的醚键又使其具有柔性,因此可以用热塑性工程塑料的加工方法进行成型加工。聚芳醚酮系列品种中,分子链中的醚键与酮基的比例(E/K)越低,其熔点和玻璃化温度就越高。 聚芳醚酮可用来制造耐高冲击齿轮、轴承、电熨斗零件、微波炉转盘传动件、汽车齿轮密封件、齿轮支撑座、轴衬、粉末涂料和超纯介质输送管道、航空航天结构材料等。 一、聚芳醚酮的发展 聚芳醚酮的研究开发始于20世纪60年代。1962年美国Du pont公司和1964年英国ICI公司分别报道了在

Friedel-Crafts催化剂存在下,通过亲电取代可以合成聚芳醚酮。后来,陆续有人对这一技术进行研究和作出重大贡献。1979年,英国ICI制得了高分子量的PEK,奠定了合成聚芳醚酮的基础。 在聚芳醚酮主要品种中,以PEEK最为重要,于1977年由英国ICI公司研究开发成功,1980年投产。到二十世纪80年代末,世界上有5大公司生产聚芳醚酮,分别是英国ICI、美国Du pont和Amoco、德国BASF 和Hoechst。 国内于20世纪80年代中期开始研制聚芳醚酮。1990年吉林大学发表了制造专利并有少量生产。 二、聚芳醚酮的用途 由于聚芳醚酮优越的各种性能及易加工性能,几乎可用于每一个工业领域。 (1)航空航天领域:用碳纤维、玻璃纤维增强的聚芳醚酮可用于飞机和飞船的机舱、门把手、操纵杆、发动机零件、直升机旋翼等; (2)电子工业:电线电缆包覆、高温接线柱、电机绝缘材料等; (3)汽车工业:汽车齿轮秘封片、吃路边你支撑座、轴承粉末涂料、轮胎内压传感器壳等; (4)机械设备:轴承座、超离心机、复印机上分离爪、化工用滤材、叶轮等。

丙酮酸合成工艺研究进展

丙酮酸合成工艺的研究进展 王飞娟,张爽,王燕(陕西国际商贸学院,陕西咸阳712046) 摘要:丙酮酸是药物合成与有机合成的重要中间体。本文本要阐述其化学合成法和生物技术法合成的现状、研究进展及其发展前景,并将各种方法进行对比,目的为以后的生产、研究提供参考。 关键词:丙酮酸;化学合成;生物技术;酶催化法;生物工程;微生物发酵法; 丙酮酸[1],又称a-氧代丙酸,结构为CH3COCOOH,是所有生物细胞糖代谢及体内多种物质相互转化的重要中间体,因分子中包含活化酮和羧基基团,所以作为一种基本化工原料广泛应用于化学、制药、食品、农业及环保等各个领域中[2]。丙酮酸可通过化学合成和生物技术多种方法制备。 1 化学合成法 1.1酒石酸脱水脱羧法此法工艺简单易行:将酒石酸与硫酸氢钾混合物在220℃下蒸馏,馏出物再经真空精馏即得丙酮酸。此法的特点是加入导热油之后,在一个均匀体系中进行反应,降低了反应温度,减少氧化程度,可操作性大幅度提高,适合继续反应生成丙酮酸系列产品。其缺点是丙酮酸产率较底,得1g丙酮酸需消耗5g硫酸氢钾。仅原料成本就达8万元每吨,因成本过高而无法为大多数厂家所接受。 1.2乳酸氧化法以乳酸为原料,氧化脱氢一步法生产丙酮酸[3]。但乳酸直接制取丙酮酸非常困难,根据工艺不同必须选用合适的催化剂。可以选择的催化剂有磷酸铁、钼酸碲盐、银、钒等[4]。此法酒石酸的氧化脱羧法相比,具有能耗低、污染小、产率高等优点,适合工业化生产。其缺点是成本也较高,约6万元每吨。 2 生物技术法 生物技术法生产丙酮酸,由于成本较低、产品质量较高、对环境污染小而得到发展,主要有酶催化法和微生物发酵法。 2.1 酶催化法用酶或微生物细胞作催化剂,使葡萄糖或三羧酸循环的某些中间代谢产物,在一定条件下,转化为丙酮酸的技术,称为酶催化法。其主要过程是先进行小规模的微生物培养,菌体收集,直接转化或用载体包埋成固定化酶,然后转化生成丙酮酸[5]。酶催化法设备投资小,能耗低,转化率高,但底物来源较窄、成本比较高约5万元每吨,因此其进一步推广受到限制。 2.2 基因工程技术利用基因重组技术构建高表达乙醇酸氧化酶、过氧化氢酶等的基因工程菌,用于生产丙酮酸的技术。这些酶能催化乳酸与氧反应生成丙酮酸。其技术是先将乙醇酸氧化酶基因和过氧化氢酶基因分别与DNA载体重组,构成重组子,并分别转入宿主细胞,分别获得两种酶高表达的基因工程酵母,按0.713mol/LL-乳酸钠溶液每100ml加湿重转化体5g,同时加一定量渗透剂,在5个大气压下,以70psig氧压通入氧气,5℃搅拌转化4小时,丙酮酸产率大97.7%[6]。本技术底物转化率高,但技术难度大。 2.3微生物发酵法微生物代谢过程中,利用葡萄糖积累丙酮酸的过程称为微生物发酵法。微生物发酵法生产丙酮酸研究已有50年历史,但因丙酮酸高产菌株选育十分困难,虽有一些微生物能够积累丙酮酸,但其产量无法达到工业化要求[7]。该法生产丙酮酸真正取得突破,是在1988年时,日本东丽工业株式会社的研究人员宫田令子和米原辙选育出一系列丙酮酸产量超过50g/L的球拟酵母菌株,使微生物发酵法生产丙酮酸的工业化成为可能。1992年,日本开始采用微生物发酵法生产丙酮酸[8]。产量为400吨每年,成本约为2-3万元每吨。 与化学合成法和酶转化法相比,微生物发酵法因原料来源广,能耗低,污染少,成本低而更具有优越性[9]。但微生物发酵法缺点是转化率比较低,这是因为丙酮酸是糖酵解途径的关

鸢尾花花语的含义是什么

鸢尾花花语的含义是什么 在这个世界上基本上每一种花都有属于它自己的花语,那么莺尾花的花语是什么呢?接下来就来告诉你鸢尾花的含义有什么寓意,欢迎参考借鉴。 花语解读:鸢尾花虽然具有粗大的根,宽阔如刀的叶,非常强韧的生命力,但是由于它是制造香水的原料,因此相当受尊重,也广被使用,所以它的花语是“优美”。 受到这种花祝福而生的人,具有柔美娇媚的气质,擅于社交,但却不是游戏人间的人。 他对于鱼来有一番规画;会玩、会读书、会工作,可以说是这种人的生活形态,这样的人生不是很优美吗? 鸢尾花的简介多年生草本。根状茎长条形或块状,横走或斜伸,纤细或肥厚。叶多基生,相互套迭,排成2列,叶剑形,条形或丝状,叶脉平行,中脉明显或无,基部鞘状,顶端渐尖。 大多数的种类只有花茎而无明显的地上茎,花茎自叶丛中抽出,多数种类伸出地面,少数短缩而不伸出,顶端分枝或不分枝;花序生于分枝的顶端或仅在花茎顶端生1朵花;花及花序基部着生数枚苞片,膜质或草质;花较大,蓝紫色、紫色、红紫色、黄色、白色; 花被管喇叭形、丝状或甚短而不明显,花被裂片6枚,2轮排列,外轮花被裂片3枚,常较内轮的大,上部常反折下垂,基部爪状,多

数呈沟状,平滑,无附属物或具有鸡冠状及须毛状的附属物,内轮花被裂片3枚,直立或向外倾斜;雄蕊3,着生于外轮花被裂片的基部,花药外向开裂,花二丝与花柱基部离生; 雌蕊的花柱单一,上部3分枝,分枝扁平,拱形弯曲,有鲜艳的色彩,呈花瓣状,顶端再2裂,裂片半圆形、三角形或狭披针形,柱头生于花柱顶端裂片的基部,多为半圆形,舌状,子房下位,3室,中轴胎座,胚珠多数。 蒴果椭圆形、卵圆形或圆球形,顶端有喙或无,成熟时室背开裂;种子梨形、扁平半圆形或为不规则的多面体,有附属物或无。 鸢尾花的形态特征多年生草本。根状茎长条形或块状,横走或斜伸,纤细或肥厚。 叶多基生,相互套迭,排成2列,叶剑形,条形或丝状,叶脉平行,中脉明显或无,基部鞘状,顶端渐尖。 大多数的种类只有花茎而无明显的地上茎,花茎自叶丛中抽出,多数种类伸出地面,少数短缩而不伸出,顶端分枝或不分枝;花序生于分枝的顶端或仅在花茎顶端生1朵花; 花及花序基部着生数枚苞片,膜质或草质;花较大,蓝紫色、紫色、红紫色、黄色、白色;花被管喇叭形、丝状或甚短而不明显,花被裂片6枚,2轮排列,外轮花被裂片3枚,常较内轮的大,上部常反折下垂,基部爪状,多数呈沟状,平滑,无附属物或具有鸡冠状及须毛状的附属物,内轮花被裂片3枚,直立或向外倾斜;雄蕊3,着生于外轮花被裂片的基部,花药外向开裂,花二丝与花柱基部离生;

聚醚醚酮综述论文

聚醚醚酮的研究进展和发展趋势 聚醚醚酮( Polyetheretherketone,简称PEEK)是一种半结晶性芳香族热塑性工程塑料。由于大分子链上含有刚性的苯环、柔性的醚键及提高分子间作用力的羰基,结构规整,因而具有耐高温、耐化学腐蚀、耐辐射、高强度、高断裂韧性、易加工等优异性能及线胀系数较小、自身阻燃、摩擦学性能突出、耐磨性高、绝缘、耐水解等特点,在汽车零部件、半导体、航天、石化、机械、医疗、电子电器等领域得到广泛的应用。 一、聚醚醚酮简介 聚醚醚酮(Polyether ether ketone,PEEK),是在主链结构中含有一个酮键和两个醚键的重复单元所构成的高聚物,属特种高分子材料。 PEEK 其重复单元有19个碳原子12个氢原子和三个氧原子链段结构由苯环、醚键、羟基三者按3:2:1构成,具有耐高温、耐化学药品腐蚀等物理化学性能,是一类结晶高分子材料,熔点334℃,软化点168℃,拉伸强度132~148MPa,可用作耐高温结构材料和电绝缘材料,可与玻璃纤维或碳纤维复合制备增强材料。一般采用与芳香族二元酚缩合而得的一类聚芳醚类高聚物。 二、聚醚醚酮的性能特点 PEEK(聚醚醚酮的简称)塑胶原料是芳香族结晶型热塑性高分子材料,其熔点为334℃,具有机械强度高、耐高温、耐冲击、阻燃、耐酸碱、耐水解、耐磨、耐疲劳、耐辐照及良好的电性能。 (1)耐高温:PEEK树脂具有较高的熔点(334℃)和玻璃化转变温度(143℃),连续使用温度为260℃,其30%GF或CF增强牌号的负载热变型温度高达316℃。 (2)机械特性:PEEK塑胶原料树脂具有良好的韧性和刚性,它具备与合金材料媲美的对交变应力的优良耐疲劳性。 (3)阻燃性:材料的易燃性即从氧、氮混合剂获得高能量点燃后维持燃烧的能力。测量易燃性的公认标准为UL94,方法是先点燃预定形状的垂直样品,然后测得该材料自动熄灭所用的时间。PEEK检测结果为V-0,这是阻燃性的最优等级。 (4) 发烟性: 测量由塑料燃烧所产生烟尘的标准为ASTME662,此标准是采用美国国家标准局(NBS)的烟尘实验室,以比光学密度为单位,测量由标准形状样

芳香酮类化合物的合成研究进展

第39卷第3期2009年6月 精细化工中间体 FINE CHEMICAL INTERMEDIATES Vol.39No.3June 2009 基金项目:国家自然科学基金资助项目(20806018),河北省自然科学基金资助项目(B2007000156)。作者简介:白国义(1975-),男,河北沧州人,教授,博士,主要从事精细化工和催化领域的研究。(E-mail :baiguoyi@https://www.doczj.com/doc/9a15158710.html, ) 收稿日期:2009-05-19 芳香酮类化合物的合成研究进展 白国义,窦海洋,李新娟,樊欣欣 (河北大学化学与环境科学学院,河北保定071002)摘 要:介绍了由芳香族化合物的Friedel-Crafts 酰基化反应和芳香醇的氧化脱氢反应等合成芳香酮类化合物的研究进展,比较了各种方法的优缺点,指出以固体酸为催化剂的Friedel-Crafts 酰基化反应和以双氧水或氧为氧化剂的芳香醇的氧化反应是今后芳香酮类化合物合成的发展方向。关键词:芳香酮;Friedel-Crafts 酰基化反应;固体酸;芳香醇;氧化中图分类号:TQ244.2 文献标识码:A 文章编号:1009-9212(2009)03-0001-06 Progress on the Synthesis of Aromatic Ketones BAI Guo-yi ,DOU Hai-yang ,LI Xin-juan ,FAN Xin-xin (College of Chemistry and Environmental Science ,Hebei University ,Baoding 071002,China ) Abstract :Synthesis of aromatic ketones from aromatic compounds via Friedel-Crafts acylation or from aromatic alcohols via oxidation or dehydrogenation are reviewed.Solid acids are the main catalysts for the Friedel-Crafts reactions.Hydrogen peroxide or oxygen are prospective oxidants for the conversion of aromatic alcohols.Key words :aromatic ketone;Friedel-Crafts acylation;solid acid;aromatic alcohols;oxidation !!!!!!!!! !! !!!!!!!!! !! 综述与专论 1 前言众所周知,芳香酮类化合物作为重要的化工 产品及中间体,在医药、农药、染料等领域有着广泛的应用。例如,2-酰基-6-甲氧基萘是制备消炎镇痛药萘普生的重要中间体[1];4,4′-二氟二苯甲酮主要用于合成新型强效脑血管扩张药物“氟苯桂嗪”及治疗老年神经性痴呆症药物“都可喜”等药物;多羟基二苯甲酮广泛应用于塑料、树脂、涂料、合成橡胶、感光材料及化妆品行业[2]。 根据文献报道,芳香族化合物的Friedel-Crafts 酰基化(F-C 酰基化反应)[3~5]和芳香醇的氧化脱氢是目前芳香酮类化合物的主要合成方法。其中, F-C 酰基化反应通常以酰氯、酸酐、羧酸作为酰基 化试剂,而催化剂的选择是此类反应的核心问题,文献报道的催化剂包括传统的Lewis 酸催化剂、质子酸催化剂和固体酸催化剂等。芳香醇的氧化脱 氢是制备芳香酮的另一个重要合成方法[6~8],这类反应传统上采用铬盐[9]、高锰酸盐[10]、Pd 基催化剂等[11],而这些催化体系经常需要一种或是多种相对昂贵的金属,同时会产生大量的金属废弃物。随着人们环保意识的日益增强,发展绿色、经济、高效的催化剂体系已成为当前发展的趋势,而以空气、双氧水或氧为氧源,同时将反应转移到离子液体、超临界二氧化碳、水相条件下进行,已成此领域的研究热点之一。 2Friedel-Crafts 酰基化反应 2.1 传统的Lewis 酸催化剂 传统的Lewis 酸催化剂包括无水氯化铝、无水 氯化锌、无水三氯化铁、无水四氯化锡等,催化剂的作用是增强酰基碳原子上的正电荷,提高进攻试剂的亲电反应能力。此类催化剂作用下的F-C 酰基化反应工艺具有酰化产物收率高、反应条件

特种功能塑料聚醚醚酮的合成与性能研究已修改

特种功能塑料聚醚醚酮的合成与性能研究 一、实验目的 1、了解文献检索的方法;掌握氮气保护下单体的合成方法;掌握单体反应的跟踪方法;掌握单体的熔点测定方法。 2、学会氮气保护或氩气保护下,进行高分子合成的操作;掌握特种功能塑料聚醚醚酮的合成方法;了解特种功能塑料的表征手段和仪器使用方法;了解聚合物的纯化方法。 二、基本原理 本实验拟制备一种玻璃化温度高,溶解性好的特种工程塑料,其结构是如下: CF 3 CF 3 HO OH O F F CF 3 CF 3O O O n 从常见的有机单体含芴双酚和二氟酮出发,通过逐步聚合,在氮气或者氩气保护下合成高分子量的聚芳醚酮。通过红外、核磁等表征聚合物的结构,通过GPC 测聚合物分子量,DSC 测试聚合物的玻璃化温度, TGA 测定热失重,表面亲水仪测材料的憎水性。 三、仪器和试剂 仪器:磁力搅拌器,旋转蒸发仪,DSC ,TGA ,GPC ,表面亲水仪等 试剂:双酚F ,二氟酮,碳酸钾,DMAc ,甲苯,9-芴酮,2,6-二甲氧基苯酚,3-疏基丙酸,98wt%H 2SO 4,无水乙醇,甲醇等 四、实验步骤 1.单体的合成 向装有冷凝管,分液漏斗的100 mL 三口圆底烧瓶中加入9-芴酮(3.604 g ,0.02 mol )、2,6-二甲氧基苯酚(7.7085 g ,0.05 mol )、3-巯基丙酸(MPA ,0.1 mL ,6滴)、甲苯 5 mL 。在氮气保护下,搅拌到固体都全部溶解,在30 min 内逐滴加入2.0 mL 的98wt%H 2SO 4到三口圆底烧瓶中,升温到55-60 ℃,搅拌6-8 h ,直到反应物变成固体。冷却后,将固体倒入装有100 mL 的蒸馏水的烧杯中磁力搅拌10-15 min ,过滤,取固体,加到有50 mL 无水乙醇的单口带有冷凝管的圆底烧瓶中磁力搅拌,温度是90 ℃,搅拌30 min ,直到固体全部溶解,趁热过滤,取滤液,静置一晚重结晶析出黄色晶体,过滤(可以用1-2 mL 无水乙醇洗涤),取固体,在真空80 ℃时干燥,得白色粉末。反应式见图1:

相关主题
文本预览
相关文档 最新文档