2016年考研数学三真题及详细解析
- 格式:doc
- 大小:914.71 KB
- 文档页数:12
2016 年普通高等学校招生全国统一考试理科数学一.选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .(1)设集合 S= S x P(x2)(x3)0 ,T x x 0,则 S I T=(A) [2 ,3](B) (-, 2]U [3,+)(C) [3,+ )(D) (0, 2] U[3,+ )(2)若 z=1+2i ,则4izz1(A)1(B)-1(C) i(D)-iuuv( 1uuuv(3,1),(3)已知向量BA, 2 ) , BC则 ABC=2222(A)30 0(B)450(C) 60 0(D)120 0(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C, B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于 200C 的月份有 5 个(5)若tan3,则 cos22sin 26444816(B)(C) 1(A)25(D)2525 431(6)已知a23, b44, c253,则(A )b a c( B)a b c (C) b c a (D) c a b(7)执行下图的程序框图,如果输入的a=4, b=6,那么输出的n=(A ) 3(B ) 4(C) 5(D ) 6(8)在 △ABC 中,B = πBC1cos A =,边上的高等于则43 BC ,( A )3 10( B )101010( C ) -10 ( D ) - 3 1010 10 (9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A ) 18 36 5(B ) 54 18 5(C ) 90 (D ) 81(10) 在封闭的直三棱柱 ABC-A 1B 1C 1 内有一个体积为 V 的球,若AB BC , AB=6 ,BC=8, AA 1 =3,则 V 的最大值是(A ) 4π ( B )9( C ) 6π(D )3223x 2 y 2 1(a b 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为(11)已知 O 为坐标原点, F 是椭圆 C :b 2 a 2C 上一点,且 PF ⊥ x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则C 的离心率为(A )1( B )1( C )2( D )33 2 3 4(12)定义 “规范 01 数列 ”{a n } 如下: { a n } 共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k 2m , a 1 , a 2, L , a k 中 0 的个数不少于 1 的个数 .若 m=4,则不同的“规范 01 数列”共有 (A ) 18 个( B ) 16 个(C ) 14 个(D ) 12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若 x , y 满足约束条件 错误 ! 未找到引用源。
考研数学三(微积分)历年真题试卷汇编22(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(1990年)设函数f(x)=xtanxesinx,则f(x)是( )A.偶函数.B.无界函数.C.周期函数.D.单调函数.正确答案:B解析:由于则f(x)无界.2.(2011年)已知当x→0时,函数f(x)=3sinx—sin3x与cxk是等价无穷小,则( )A.k=1,c=4.B.k=1,c=一4.C.k=3,c=4.D.k=3,c=一4.正确答案:C解析:则k=3,c=43.(2000年)设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f’(a)=0B.f(a)=0且f’(a)≠0C.f(a)>0且f’(a)>0D.f(a)<0且f’(a)<0正确答案:B解析:排除法.A选项显然不正确,f(x)=(x一a)2就是一个反例.事实上C 和D也是不正确的.因为f(x)在a点可导,则f(x)在a点连续,若f(a)>0(或f(a)<0)则存在a点某邻域在此邻域内f(x)>0(或f(x)<0),因此在a点的此邻域内|f(x)|=f(x)(或|f(x)|=一f(x)).从而可知|f(x)|与f(x)在a点可导性相同,而f(x)在点可导,从而C和D都不正确,因此,应选B.4.(2007年)设某商品的需求函数为Q=160—2p,其中Q,p分别表示需求量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是( ) A.10C.30.D.40.正确答案:D解析:由题设可知,该商品的需求弹性为由知p=40.故应选D.5.(1987年)下列广义积分收敛的是( )A.B.C.D.正确答案:C解析:由于收敛,所以.应选C.6.(2018年)设函数f(x)在[0,1]上二阶可导,且∫01 f(x)dx=0,则( ) A.B.C.D.正确答案:D解析:由泰勒公式得上式两端积分得7.(2006年)设f(x,y)与φ(x,y)均为可微函数,且φ’(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ) A.若fx’(x0,y0)=0,则fy’(x0,y0)=0.B.若fx’(x0,y0)=0,则fy’(x0,y0)≠0.C.若fx’(x0,y0)≠0,则fy’(x0,y0)=0.D.若fx’(x0,y0)≠0,则fy’(x0,y0)≠0.正确答案:D解析:由拉格朗日乘数法知,若(x0,y0)是f(x,y)在条件φ(x,y)=0下的极值点,则必有若fx’(x0,y0)≠0,由①式知λ≠0,由原题设知φy’ (x0,y0)≠0,由②式可知fy’ (x0,y0)≠0,故应选8.(2016年)级数(k为常数)( )A.绝对收敛.B.条件收敛.C.发散.D.收敛性与k有关.正确答案:A解析:由于收敛,则原级数绝对收敛.填空题9.(2007年) =______.正确答案:应填0.解析:由于sinx+cosx为有界变量,则10.(1990年)设f(x)有连续的导数,f(0)=0且f’(0)=b,若函数在x=0处连续,则常数A=______.正确答案:应填a+b.解析:由于F(x)在x=0连续,则11.(2003年)已知曲线y=x3一3a2x+b与x轴相切,则b2可以通过a表示为b2=______.正确答案:应填4a6.解析:设曲线y=x3一3a2x+b在x=x0处与x轴相切,则3x02—3a2=0 且x03—3a2x0+b=0即x02=a2 且x0(x02—3a2)=一b从而可得b2=4a612.(2018年)设函数f(x)满足f(x+△x)一f(x)=2xf(x)△x+o(△x)(△x→0),且f(0)=2,则f(1)=______.正确答案:应填2e.解析:由f(x+△x)一f(x)=2xf(x)△x+o(△x)(△x→0)知上式中令△x→0得f’(x)=2xf(x)解方程得f(x)=Cex2又f(0)=2,则C=2,f(x)=2ex2,f(1)=2e.13.(2010年)设可导函数y=y(x)由方程∫0x+ye-t2dt=∫0xxsint2dt确定,则=______.正确答案:应填一1.解析:由∫0x+ye-t2dt=x∫0xsintdt知,x=0时y=0,且e-(x+y)2(1+y’)=∫0xsintdt+xsinx将x=0和y=0代入上式得1+y’(0)=0y’(0)=-114.(2000年)设其中f,g均可微,则=______.正确答案:应填解析:15.(2014年)二次积分=______.正确答案:应填解析:积分中的第二项适合先对x后对y积分,但第一项适合先对y后对x 积分.解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三(概率论与数理统计)历年真题试卷汇编5(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(03年)将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件【】A.A1,A2,A3相互独立.B.A2,A3,A4相互独立.C.A1,A2,A3两两独立.D.A2,A3,A4两两独立.正确答案:C 涉及知识点:概率论与数理统计2.(07年)某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<P<1),则此人第4次射击恰好第2次命中目标的概率为【】A.3p(1-p)2.B.6p(1-p)2.C.3p2(1-p)2.D.6p2(1-p)2.正确答案:C解析:P{第4次射击恰好第2次命中目标}=P{前3次射击恰中1枪,第4次射击命中目标} =P{前3次射击恰中1枪}.P{第4次射击命中目标}=C31p(1-p)2.P=3p2(1-p)2 知识模块:概率论与数理统计3.(09年)设事件A与事件B互不相容,则【】A.P()=0.B.P(AB)=P(A)P(B).C.P(A)=1-P(B).D.P()-1.正确答案:D 涉及知识点:概率论与数理统计4.(14年)设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3,则P(B-A)=【】A.0.1B.0.2C.0.3D.0.4正确答案:B解析:∵A与B独立,∴P(AB)=P(A)P(B).故0.3=P(A-B)=P(A)-P(AB)=P(A)-P(A)P(B) =P(A)[1-P(B)]=P(A)(1-0.5)=0.5(P(A) 得P(A)==06,P(B-A)=P(B)-P(AB)=P(B)-P(A)P(B)=0.5-0.6×0.5=0.2.知识模块:概率论与数理统计5.(15年)若A,B为任意两个随机事件,则【】A.P(AB)≤P(A)P(B).B.P(AB)≥P(A)P(B).C.P(AB)≤.D.P(AB)≥.正确答案:C解析:由ABA,ABB得P(AB)≤P(A),P(AB)≤P(B),两式相加即得:P(AB)≤.知识模块:概率论与数理统计6.(16年)设A,B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则【】A.P()=1.B.P(A|)=0.C.P(A∪B)=1.D.P(B|A)=1.正确答案:A解析:由1=P(A|B)=,有P(B)=P(AB) 于是知识模块:概率论与数理统计7.(90年)设随机变量X和Y相互独立,其概率分布为则下列式子正确的是:【】A.X-YB.P{X-Y}=0C.P{X-Y}=D.P{X=Y}=1正确答案:C解析:P(X=Y)=P(X=-1,Y=-1)+P(X=1,Y=1) =P(X=-1)P(Y =-1)+P(X=1)P(Y=1) =知识模块:概率论与数理统计8.(93年)设随机变量X的密度函数为φ(χ),且φ(-χ)-φ(χ),F(χ)为X的分布函数,则对任意实数a,有【】A.F(-a)=1-∫0aφ(χ)dχB.F(-a)=-∫0aφ(χ)dχC.F(-a)=F(a)D.F(-a)=2F(a)-1正确答案:B解析:由概率密度的性质和已知,可得故选B.知识模块:概率论与数理统计9.(95年)设随机变量X~N(μ,σ2),则随着σ的增大,概率P(|X-μ|<σ) 【】A.单调增大.B.单调减小.C.保持不变.D.增减不定.正确答案:C解析:由已知X~N(μ,σ),得~N(0,1) 故P{|X-μ|<σ}==(1)Ф-Ф(-1) 故选C.知识模块:概率论与数理统计填空题10.(89年)设随机变量X的分布函数为则A=_______,P{|X|<}=_______.正确答案:1;解析:∵分布函数是右连续的,故得1=Asin ∴A=1 这时,F(χ)在(-∞,+∞)上都连续,于是知识模块:概率论与数理统计11.(91年)设随机变最X的分布函数为则X的概率分布为_______.正确答案:解析:F(χ)为一阶梯状函数,则X可能取的值为F(χ)的跳跃点:-1,1,3.P(X=-1)=F(-1)-F(-1-0)=0.4 P(X=1)=F(1)-F(1-0)=0.8-0.4=0.4 P(X=3)=F(3)-F(3-0)=1-0.8=0.2 知识模块:概率论与数理统计12.(94年)设随机变量X的概率密度为以Y表示对X的三次独立重复观察中事件{X≤}出现的次数P{Y=2}=_______.正确答案:解析:由题意,Y~B(3,p).其中p=故知识模块:概率论与数理统计13.(00年)设随机变量X的概率密度为若k使得P{X≥k}=,则k的取值范围是_______.正确答案:[1,3]解析:∵P(X≥k)=∫k+∞f(χ)dχ.可见:若k≤0,则P(X≥k)=1 若0<k<1,则P(X≥k)=若k>6,则P(X≥k)=0 若3<k≤6,则P(X ≥k)=若1≤k≤3,则P(X≥k)=综上,可知K∈[1,3].知识模块:概率论与数理统计14.(05年)从数1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P(Y=2}=_______.正确答案:解析:由题意,X的概率分布为而P(Y=2|X=1)=0,P(Y=2|X=2)=,P(Y=2|X=3)=,P(Y=2|X=4)=,故由全概率公式得知识模块:概率论与数理统计15.(05年)设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=_______,b=_______.正确答案:0.4;0.1.解析:由题意知0.4+a+b+0.1=1,∴a+b=0.5 而P{X=0}=0.4+a,P{X+Y=1}=P{X=0,Y=1}+P{X=1,Y=0}=a+b=0.5,P{X =0,X+Y=1}=P{X=0,Y=1}=a 由P{X=0,X+Y=1)=P{X=0)P{X +Y=1} ∴a=(0.4+a)0.5,得a=0.4,从而b=0.1.知识模块:概率论与数理统计16.(06年)设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max(X,Y)≤1}=_______.正确答案:解析:由题意知X与Y的概率密度均为:则P(X≤1}=P{Y≤1}=∫-∞1f(χ)dχ=故P{max(X,Y)≤1}=P{X≤1,y≤1}=P{X≤1}P{y≤1}=知识模块:概率论与数理统计17.(99年)设随机变量Xij(i=1,2,…,n;n≥2)独立同分布,Eij=2,则行列式Y=的数学期望EY=_______.正确答案:0解析:由n阶行列式的定义知Y=,P1,…,Pn为(1,…,n)的排列,τ(p1p2…pn)为排列p1p2…pn的逆序数.而Xij(i,j=1,2,…,n)独立同分布且EXij=2,故知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三(微积分)历年真题试卷汇编9(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(03年)设可微函数f(χ0,y0)在点(χ,y)取得极小僵,则下列结论正确的是【】A.f(χ0,y)在y=y0处导数等于零.B.f(χ0,y)在y=y0处导数大于零.C.f(χ0,y)在y=y0处导数小于零.D.f(χ0,y)在y=y0处的导数不存在.正确答案:A解析:由于f(χ,y)在(χ0,y0)取得极小值,则f(χ0,y)在y=y0取得极小值.又f(χ,y)在(χ0,y0)点处可微,则f′y(χ0,y0)存在,从而有f′y(χ0,y0)=0,即f(χ0,y)在y=y0处的导数为零,故应选A.知识模块:微积分2.(05年)设I1=,I2=cos(χ2+y2)dσ,I3=cos(χ2+y2)2dσ,其中D ={(χ,y)|χ2+y2≤1},则【】A.I3>I2>I1B.I1>I2>I3C.I2>I1>I3D.I3>I1>I2正确答案:A解析:由于当0≤χ≤时,cosχ是减函数,而当0≤χ2+y2≤1时,≥χ2+y2≥(χ2+y2)2,则cos≤cos(χ2+y2)≤cos(χ2+y2)2 故即I1≤I2≤I3 知识模块:微积分3.(06年)设f(χ,y)与φ(χ,y)均为可微函数,且φ′y愤怒(χ0,y0)≠0,已知(χ0,y0)是f(χ,y)在约束条件φ(χ,y)=0下的一个极值点,下列选项正确的是【】A.若f′χ(χ0,y0)=0,则f′y(χ0,y0)=0.B.若f′χ(χ0,y0)=0,则f′y(χ0,y0)≠0.C.若f′χ(χ0,y0)≠0,则f′y(χ0,y0)=0.D.若f′χ(χ0,y0)≠0,则f′y(χ0,y0)≠0.正确答案:D解析:由拉格朗日乘数法知,若(χ,y)是f(χ,y)在条件φ(χ,y)=0下的极值点,则必有若f′χ(χ0,y0)≠0,由①式知λ≠0,由原题设知φ′y(χ0,y0)≠0,由②式可知f′y(χ0,y0)≠0,故应选D.知识模块:微积分4.(07年)设函数f(χ,y)连续,则二次积分f(χ,y)dy等于【】A.B.C.D.正确答案:B解析:二次积分对应的二重积分的积分域D如图所示.交换二次积分次序得故应选B.知识模块:微积分5.(08年)已知f(χ,y)=,则【】A.f′χ(0,0),f′y(0,0)都存在.B.f′χ(0,0)不存在,f′y(0,0)存在.C.f′χ(0,0)存在,f′y(0,0)不存在.D.f′χ(0,0),f′y(0,0)都不存在.正确答案:B解析:f(χ,0)=e|χ|,在χ=0处不可导,事实上而不存在,则f′χ(0,0)不存在又f(0,y)=在y=0处可导,则f′y(0)存在,故应选B.知识模块:微积分6.(08年)设函数f连续,若F(u,v)=,其中区域Duv为图中阴影部分,则=【】A.vf(u2).B.f(u2).C.vf(u).D.f(u).正确答案:A解析:故应选A.知识模块:微积分填空题7.(01年)设生产函数为Q=ALαKβ,其中Q是产出量,L是劳动投入量,K是资本投入量,而A,α,β均为大于零的参数,则当Q=1时K关于L的弹性为_______.正确答案:解析:当Q=1时,1=ALαKβ等式两边对L求导,得0=αAL α-1Kβ+βALαKβ-1 解得由弹性计算公式知,K关于L的弹性为知识模块:微积分8.(02年)交换积分次序=_______.正确答案:解析:由原累次积分可知积分域如图2.16因此:知识模块:微积分9.(03年)设a>0,f(χ)=g(χ)=,而D表示全面,则I=f(χ)g(y-χ)d χdy=_______.正确答案:a2解析:由题意知f(χ)g(y-χ)=令Ω={(χ,y)|0≤χ≤1且0≤y -χ≤1}.则I==a2 其中区域Ω的面积为1.知识模块:微积分10.(04年)函数,(u,v)由关系式f[χg(y),y]=χ+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_______.正确答案:解析:令χg(y)=u,y=v,则χ=,g(y)=g(v),则知识模块:微积分11.(05年)设二元函数z=χeχ+y+(χ+1)ln(1+y),则dz|(1,0)=_______.正确答案:2edχ+(e+2)dy.解析:知识模块:微积分12.(06年)设函数f(u)可微,且f′(0)=,则z=f(4χ2-y2)在点(1,2)处的全微分dz|(1,2)=_______正确答案:4dχ-2dy.解析:则dz|(1,2)4dχ-2dy 知识模块:微积分13.(07年)设f(u,v)是二元可微函数,z=,则=_______.正确答案:解析:知识模块:微积分14.(08年)设D={(χ2,y2)|χ+y≤1},则(χ2-y)dχdy=_______.正确答案:解析:知识模块:微积分15.(09年)设z=(z+ey)χ,则=_______.正确答案:2ln2+1解析:由z=(χ+eyy)χ知,z(χ,0)=(χ+1)χ.代入χ=1得,=2ln2+1.知识模块:微积分解答题解答应写出文字说明、证明过程或演算步骤。
绝密★启用前2016年普通高等学校招生全国统一考试(全国III 卷)(适用地区:云南、广西、贵州、四川、西藏)理科数学本试卷共24题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一 、选择题(本大题共12小题)1.设集合{}{}|(2)(3)0,|0S x x x T x x =−−≥=> ,则ST =( )A . [2,3]B .(-∞ ,2][3,+∞)C . [3,+∞)D .(0, 2] [3,+∞) 2.若i 12z =+,则4i1zz =−( ) A .1B . -1C .iD . i −3.已知向量1(,22BA = ,31()22BC = ,则ABC ∠=( ) A .30︒ B .45︒ C .60︒ D .120︒4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )A .各月的平均最低气温都在0C ︒以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均气温高于20C ︒的月份有5个 5.若3tan 4α=,则2cos 2sin 2αα+=( ) A .6425 B . 4825C . 1D .16256.已知432a =,254b =,1325c =,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b <<7.执行下图的程序框图,如果输入的46a b ==,,那么输出的n =( )A .3B .4C .5D .68.在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( )A .10 B .10C .10−D .10−9.如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )A .18+B .54+C .90D .8110.在封闭的直三棱柱111ABC A B C −内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V的最大值是( ) A .4πB .92π C .6π D .323π11.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A .13B .12C .23D .3412.定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( ) A .18个 B .16个 C .14个 D .12个 二 、填空题(本大题共4小题)13.若,x y 满足约束条件1020220x y x y x y −+≥⎧⎪−≤⎨⎪+−≤⎩则z x y =+的最大值为_____________.14.函数sin y x x =的图像可由函数sin y x x =的图像至少向右平移_____________个单位长度得到.15.已知()f x 为偶函数,当0x <时,()ln()3f x x x =−+,则曲线()y f x =在点(1,3)−处的切线方程是_______________.16.已知直线l:30mx y m ++=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若AB =,则||CD =__________________. 三 、解答题(本大题共8小题)17.已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式; (II )若53132S =,求λ.18.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (II )建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:,7140.17i ii t y==∑0.55=≈2.646.参考公式:相关系数()()niit t y y r −−=∑回归方程y a b =+ 中斜率和截距的最小二乘估计公式分别为:a y bt =−,a y bt =−.19.如图,四棱锥P ABC −中,PA ⊥地面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.20.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.21.设函数()cos 2(1)(cos 1)f x a x a x =+−+,其中0a >,记|()|f x 的最大值为A .(Ⅰ)求()f x '; (Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.22.选修4-1:几何证明选讲如图,O 中AB 的中点为P ,弦PC PD ,分别交AB 于E F ,两点.(I )若2PFB PCD ∠=∠,求PCD ∠的大小;(II )若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明OG CD ⊥.23.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为()sin x y ααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=. (I )写出1C 的普通方程和2C 的直角坐标方程;(II )设点P 在1C 上,点Q 在2C 上,求PQ 的最小值及此时P 的直角坐标.24.选修4-5:不等式选讲已知函数()|2|f x x a a =−+.(I )当2a =时,求不等式()6f x ≤的解集;(II )设函数()|21|g x x =−.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.2017年普通高等学校招生全国统一考试(全国III 卷)理科数学(参考答案)一 、选择题 1.【答案】D【解析】由3)0(2)(x x −≥−解得3x ≥或2x ≤,所以|2{S x x =≤或3}x ≥ , 所以{|02T x S x ⋂=<≤或3}x ≥,故选D. 2.【答案】C【解析】试题分析:4i 4ii (12i)(12i)11zz ==+−−−,故选C . 3.【答案】A【解析】由题意得,1cos ||||12222112BC BA ABC BC BA ⨯+⋅∠===⨯ , 所以30ABC ∠=︒ ,故选A .4.【答案】D【解析】由图可知0°C 均在虚线框内,所以各月的平均最低气温都在0°C 以上,A 正确;由图可在七月的平均气温差大于7.5°C ,而一月的平均温差小于7.5°C ,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5°C ,基本相同,C 正确;由图可知平均最高气温高于20°C 的月份有3个或2个,所以不正确,故选D. 5.【答案】A【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=−=−,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .6.【答案】A【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 7.【答案】B【解析】第1次循环,得a =2,b =4,a =6,s =6,n =1; 第2次循环,得a =-2,b =6,a=4,s=10,n =2 第3次循环,得a =2,b =4,=6,s=16,n =3第4次循环,得a =-2,b =6,a =4,a =20>16,n=4 退出循环,输出n =4,故选B. 8.【答案】C【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以AC ==,AB =.由余弦定理,知222222cos 210AB AC BC A AB AC +−===−⋅,故选C . 9.【答案】B【解析】由三视图知几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积为3623323542s ⋅⋅+⋅⋅+⋅⋅=+=故选B.10.【答案】B【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 11.【答案】A【解析】由题意设直线l 的方程为y =k (x +a ),分别令x c =−与0x =得||=()FM k a c −,由~OBE CBM ∆∆,得||||1|2|||O OE B FM BC =,即2()ka a k a c a c=−+,得13c a =,所以椭圆的离心率13e =,故选A . 12.【答案】C【解析】试题分析:由题意,得必有10a =,81a =,则具体的排法列表如下:二 、填空题 13.【答案】32【解析】试题分析:作出不等式组满足的平面区域,如图所示,由图知,当目标函数z x y =+经过点1(1,)2A 时取得最大值,即max 13122z =+=.14.【答案】32π【解析】因为2s ()3in in s x y x x π=++= ,2s ()3in in s x y x x π=−=2sin[)(2]33x ππ=+−所以s sin o y x x =的图像可以由函数sin y x x =的图像至少向右平移23π个单位长度得到. 15.【答案】21y x =−−【解析】试题分析:当0x >时,0x −<,则()ln 3f x x x −=−.又因为()f x 为偶函数,所以()()ln 3f x f x x x =−=−,所以1()3f x x'=−,则切线斜率为(1)2f '=−,所以切线方程为32(1)y x +=−−,即21y x =−−. 16.【答案】4【解析】因||AB =,且圆的半径为,所以圆心(0,0)到直线30mx y m ++=3=3=,解得3m =−,代入直线l 的方程3y x =+,得,所以直线l 的倾斜角为30︒,在梯形ABCD 中, ||co ||s304AB CD ==︒.三 、解答题 17.【答案】(Ⅰ)11()11n n a λλλ−=−−;(Ⅱ)1λ=−. 【解析】(I)当n =1时,111a a λ=+,故11,0a λ≠≠, 由10a ≠,0λ≠得0n a ≠,所以11n n a a λλ+=−. 因此{}n a 是首项为11λ−,公比为1λλ−的等比数列,于是11()11n n a λλλ−=−−. (Ⅱ)由(Ⅰ)得1()1n n S λλ=−−,由得5531311()1()132132λλλλ−=−=−−,即113232,解得1λ=−. 18.【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.试题解析:(Ⅰ)由折线图这数据和附注中参考数据得,721()28i i t t =−=∑0.55=,40.1749.32 2.89==−⨯=,2.890.990.552 2.646r ≈≈⨯⨯.因为与tt 的相关系数近似为0.99,说明与tt 的线性相关相当高,从而可以用线性回归模型拟合与tt 的关系.(II )由 1.33176.32y =≈及(I )得71721)( 2.89()ˆ0.10328()i i i i i t y b t t y t ==−−≈−==∑∑, ˆˆ 1.3310.10340.92ay bt =−≈−⨯≈ 所以,y 关于t 的回归方程为: ˆ0.920.10yt =+ 将2016年对应的t =9代入回归方程得:ˆ0.920.109 1.82y=+⨯≈ 所以预测2016年我国生活垃圾无害化处理量将约为1.82亿吨. 19.【答案】(Ⅰ)见解析;(Ⅱ)25. 【解析】试题解析:(Ⅰ)由已知得223AM AD ==,取BP 的中点T ,连接,AT TN ,由为PCPC 中点知,112222TN BC TN BC ====. 又//AD BC ,故TN AM ,四边形AMNT 为平行四边形,于是//MN AT . 因为AT ⊂平面,MN MN ⊄⊄平面PAB ,所以//MN 平面PAB .设(,,)(,,)n x y z n x y z ==为平面PMN 的法向量,则00n PM n PN ⎧⋅=⎪⎨⋅=⎪⎩,即240202x z x y z −=⎧+−=⎪⎩,可取(0,2,1)n =,于是||85|cos ,|25||||n AN n AN n AN ⋅<>==.20.【答案】(Ⅰ)见解析;(Ⅱ)21y x =−.试题解析:由题设1(,0)2F .设12:,:l y a l y b ==,则0ab ≠,且22111(,0),(,),(,),(,),(,)222222a b a b A B b P a Q b R +−−−. 记过,A B 两点的直线为l ,则l 的方程为2()0x a b y ab −++=. .....3分 (Ⅰ)由于F 在线段AB 上,故10ab +=. 记AR 的斜率为1k ,FQ 的斜率为2k ,则122211a b a b abk b k a a ab a a−−−=====−=+−, 所以ARFQ . ......5分(Ⅱ)设l 与x 轴的交点为1(,0)D x , 则1111,2222ABF PQF a b S b a FD b a x S ∆∆−=−=−−=. 由题设可得111222a bb a x −−−=,所以10x =(舍去),11x =. 设满足条件的AB 的中点为(,)E x y . 当AB 与x 轴不垂直时,由AB DE k k =可得2(1)1yx a b x =≠+−. 而2a by +=,所以21(1)y x x =−≠. 当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为21y x =−. ....12分21.【答案】(Ⅰ)'()2sin 2(1)sin f x a x a x =−−−;(Ⅱ)2123,05611,18532,1a a a a A a a a a ⎧−<≤⎪⎪++⎪=<<⎨⎪−≥⎪⎪⎩;(Ⅲ)见解析. 试题解析:(Ⅰ)'()2sin 2(1)sin f x a x a x =−−−.(Ⅱ)当1a ≥时,'|()||sin 2(1)(cos 1)|f x a x a x =+−+2(1)a a ≤+−32a =−(0)f =因此,32A a =−. ………4分当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+−−.令2()2(1)1g t at a t =+−−,则A 是|()|g t 在[1,1]−上的最大值,(1)g a −=,(1)32g a =−,且当14at a−=时,()g t 取得极小值,极小值为221(1)61()1488a a a a g a a a−−++=−−=−. 令1114a a −−<<,解得13a <−(舍去),15a >. (ⅰ)当105a <≤时,()g t 在(1,1)−内无极值点,|(1)|g a −=,|(1)|23g a =−,|(1)||(1)|g g −<,所以23A a =−.(ii )当151a <<时,由(1)(1)2(1)0g g a −−=−>,知1(1)(1)()4a g g g a−−>> 又1|()||(1)|(1)(17)048a a a g g a a −−−=−>+ 所以2161|()|48a a a A g a a−++==,故有 21611,1823,532,105a A a a a a a a a ⎧≤⎪⎪++⎪=<=<<⎨⎪−≥⎪⎪⎩(Ⅲ)由(Ⅰ)得'|()||2sin 2(1)sin |2|1|f x a x a x a a =−−−≤+−. 当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤−<−=. 当115a <<时,131884a A a =++≥,所以'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤−≤−=,所以'|()|2f x A ≤.22.【答案】(Ⅰ)60︒;(Ⅱ)见解析.试题解析:(Ⅰ)连结,PB BC ,则,BFD PBA BPD PCD PCB BCD ∠=∠+∠∠=∠+∠.因为AP BP =,所以PBA PCB ∠=∠,又BPD BCD ∠=∠,所以BFD PCD ∠=∠.又180,2PFD BFD PFB PCD ∠+∠=︒∠=∠,所以3180PCD ∠=︒, 因此60PCD ∠=︒.(Ⅱ)因为PCD BFD ∠=∠,所以180PCD EFD ∠+∠=︒,由此知,,,C D F E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过,,,C D F E 四点的圆的圆心,所以在CDCD 的垂直平分线上,又O 也在CD 的垂直平分线上,因此OG CD ⊥.23.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +−=;(Ⅱ)31(,)22. 试题解析:(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +−=. ……5分(Ⅱ)由题意,可设点P 的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C的距离()d α的最小值,()sin()2|3d παα==+−. ………………8分当且仅当2()6k k Z παπ=+∈时,()d α取得最小值,最小值为,此时P 的直角坐标为31(,)22. ………………10分 24.【答案】(Ⅰ){|13}x x −≤≤;(Ⅱ)[2,)+∞.试题解析:(Ⅰ)当2a =时,()|22|2f x x =−+.解不等式|22|26x −+≤,得13x −≤≤,因此,()6f x ≤的解集为{|13}x x −≤≤. ………………5分(Ⅱ)当x ∈R 时,()()|2||12|f x g x x a a x +=−++−|212|x a x a ≥−+−+|1|a a =−+, 当12x =时等号成立, 所以当x ∈R 时,()()3f x g x +≥等价于|1|3a a −+≥. ① ……7分当1a ≤时,①等价于13a a −+≥,无解;当1a >时,①等价于13a a −+≥,解得2a ≥,所以a 的取值范围是[2,)+∞. ………………10分。
考研数学三(多元函数微积分学)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2008年] 设则( ).A.fx’(0,0),fy’(0,0)都存在B.fx’(0,0)不存在,fy’(0,0)存在C.fx’(0,0)存在,fy’(0,0)不存在D.fx’(0,0),fy’(0,o)都不存在正确答案:B解析:因而则极限不存在,故偏导数fx’(0,0)不存在.而因而偏导数fy’(0,0)存在.仅(B)入选.知识模块:多元函数微积分学2.[2003年] 设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是( ).A.f(x0,y)在y=y0处的导数大于零B.f(x0,y)在y=y0处的导数等于零C.f(x0,y)在y=y0处的导数小于零D.f(x0,y)在y=y0处的导数不存在正确答案:B解析:解一因f(x,y)在点(x0,y0)处可微,故f(x,y)在点(x0,y0)处两个偏导数存在,因而一元函数f(x0,y)在y=y0处的导数也存在.又因f(x,y)在点(x0,y0)处取得极小值,故f(x0,y0)在y=y0处的一阶(偏)导数等于零.仅(B)入选.解二由函数f(x,y)在点(x0,y0)处可微知,f(x.y)在点(x0,y0)处的两个偏导数存在.又由二元函数极值的必要条件即得f(x,y)在点(x0,y0)处的两个偏导数都等于零.因而有知识模块:多元函数微积分学3.[2016年] 已知函数则( ).A.fx’-fy’=0B.fx’+fy’=0C.fx’-fy’=fD.fx’+fy’=f正确答案:D解析:则仅(D)入选.知识模块:多元函数微积分学4.[2017年] 二元函数z=xy(3-x-y)的极值点为( ).A.(0,0)B.(0,3)C.(3,0)D.(1,1)正确答案:D解析:zy’=y(3-x-y)-xy=y(3-2x-y),zy’=x(3-x-y)-xy=x(3-x-2y),又zxx’=-2y,zxy=3-2x-2y,zyy’=-2x,将选项的值代入可知,只有(D)符合要求,即A=zxx”(1,1)=-2,B=zxy”(1,1)=-1,C=zyy”(1,1)=-2.满足B2-AC=-3<0,且A=-2<0,故点(1,1)为极大值点.仅(D)入选.知识模块:多元函数微积分学5.[2006年] 设f(x,y)与φ(z,y)均为可微函数,且φy’(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,Y)=0下的一个极值点,下列选项正确的是( ).A.若fx’(x0,y0)=0,则fy’(x0,y0)=0B.若fx’(x0,y0)=0,则f’y(x0,y0)≠0C.若fx’(x0,y0)≠0,则fy’(x0,y0)=0D.若fx’(x0,y0)≠0,则f’y(x0,y0)≠0正确答案:D解析:解一由拉格朗日乘数法知,若(x0,y0)是f(x,y)在条件φ(x,y)=0下的极值点,则必有fx’(x0,y0)+λφx’(x0,y0)=0,①fx’(x0,y0)+λφx’(x0,y0)=0.②若fx’(x0,y0)≠0,由式①知λ≠0.又由题设有φy’(x0,y0)≠0,再由式②知fy’(x0,y0)≠0.仅(D)入选.解二构造拉格朗日函数F(x,y,λ)=f(x,y)+λφ(x,y),并记对应于极值点(x0,y0)处的参数的值为λ0,则由式③与式④消去λ0得到fx’(x0,y0)/φx’(0,y0)=一λ0=f’y(x0,y0)/φ’y(x0,y0).即f’x(x0,y0)φ’y(x0,y0)一fy’(x0,y0)φx’(x0,y0)=0.整理得若fx’(x0,y0)≠0,则由式③知,φx’(x0,y0)≠0.因而fy’(x0,y0)≠0.仅(D)入选.解三由题设φy’(x,y)≠0知,φ(x,y)=0确定隐函数y=y(x).将其代入f(x,y)中得到f(x,y(x)).此为一元复合函数.在φ(x,y)=0两边对x求导,得到因f(x,y(x))在x=x0处取得极值,由其必要条件得到f’x+fy’y’=fx’+fy’(一φx’/φy’)=0.因而当fx’(x0,y0)≠0时,必有fy’(x0,y0)≠0.仅(D)入选.知识模块:多元函数微积分学填空题6.[2012年] 设连续函数z=f(x,y)满足则dz|(0,1)=__________.正确答案:2dx-dy解析:用函数f(x,y)在(x0,y0)处的微分定义:与所给极限比较易知:z=f(x,y)在点(0,1)处可微,且fx’(0,1)=2,fy’(0,1)=-1,f(0,1)=1,故dz|(0,1)=fx’(0,1)dx+fy’(0,1)dy=2dx-dy.知识模块:多元函数微积分学7.[2009年] 设z=(x+ey)x,则正确答案:2ln2+1解析:解一为简化计算,先将y=0代入z中得到z(x,0)=(x+1)x,z为一元函数.将x=1代入上式,得到解二考虑到z(x,0)=(x+1)x为幂指函数,先取对数再求导数:lnz=xln(x+1).在其两边对x求导,得到则知识模块:多元函数微积分学8.[2007年] 设f(u,v)是二元可微函数,则正确答案:解析:解一设u=y/x,v=x/y.为方便计,下面用“树形图”表示复合层次与过程.由式①一式②得到解二令f1’,f2’分别表示z=f(y/x,x /y)对第1个和第2个中间变量y/x、x/y求导数,则知识模块:多元函数微积分学9.[2004年] 函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则正确答案:解析:令u=xg(y),v=y,由此解出于是知识模块:多元函数微积分学10.[2005年] 设二元函数z=xex+y+(x+1)ln(1+y),则dz|(1,0)=_________.正确答案:2edx+(e+2)dy解析:dz=d[xex+y+(x+1)ln(1+y)]=d(xex+y)+d[(x+1)ln(1+y)] =ex+ydx+xex+y(dx+dy)+ln(1+y)dx+[(x+1)/(1+y)]dy.①将x=1,y=0代入上式(其中dz,dx,dy不变),得到dz|(1,0)=edx+e(dx+dy)+2dy=2edx+(e+2)dy.解二利用全微分公式求之.为此,先求出偏导数故解三用定义简化法求之.固定一个变量转化为另一个变量的一元函数求导.由z(x,0)=xex得到由z(1,y)=ey+2ln(1+y)得到故知识模块:多元函数微积分学11.[2006年] 设函数f(u)可微,且f’(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz|1,2=___________.正确答案:4dx一2dy解析:解一dz=df(4x2-y2)=f’(u)du=f’(u)d(4x2-y2)=f’(u)(8xdx-2ydy),其中u=4x2-y2.于是dz|1,2=f’(0)(8dx-4dy)=4dx-2dy.解二利用复合函数求导公式和定义简化法求之.由z=f(4x2-y2)得到解三由z=f(4x2-y2)得到于是故dz|1,2=4dx-2dy.知识模块:多元函数微积分学12.[2011年] 设函数则dz|1,1=____________.正确答案:(1+2ln2)(dx—dy)解析:解一所给函数为幂指函数,先在所给方程两边取对数,然后分别对x,y求偏导:由得到则解二先用定义简化法求出然后代入全微分公式求解.故dz|1,1=2(ln2+1/2)dx-2(ln2+1/2)dy=(1+2ln2)(dx-dy).知识模块:多元函数微积分学13.[2015年] 若函数z=z(x,y)由方程ex+2y+3z+xyz=1确定,则dz|0,0=_______________.正确答案:解析:在ex+2y+3z+xyz=1①两边分别对x,y求偏导得到同法可得将x=0,y=0代入式①易求得z=0,代入式②、式③分别得到则知识模块:多元函数微积分学14.[2014年] 二次积分正确答案:解析:注意到不易求出,需先交换积分次序,由积分区域的表达式D={(x,y)|y≤x≤1,0≤y≤1)-{(x,y)|0≤y≤x,0≤x≤1}及交换积分次序得到故知识模块:多元函数微积分学解答题解答应写出文字说明、证明过程或演算步骤。
绝密★启封并使用完毕前注意事项: 1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2。
答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3。
全部答案在答题卡上完成,答在本试题上无效。
4。
考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =( )(A ) [2,3] (B)(—∞ ,2] [3,+∞) (C ) [3,+∞) (D)(0, 2][3,+∞) 【答案】D(2)若i 12z =+,则4i1zz =-( )(A)1 (B ) —1 (C)i (D ) i - 【答案】C 【解析】试题分析:4i 4ii (12i)(12i)11zz ==+---,故选C .考点:1、复数的运算;2、共轭复数.(3)已知向量13(2BA = ,31()22BC = ,则ABC ∠=( ) (A)30︒ (B )45︒ (C )60︒ (D)120︒ 【答案】A(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C︒,B点表示四月的平均最低气温约为5C︒.下面叙述不正确的是()(A)各月的平均最低气温都在0C︒以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于20C ︒的月份有5个【答案】D(5)若3tan4α=,则2cos2sin2αα+=()(A)6425(B)4825(C) 1 (D)1625【答案】A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .(6)已知432a =,254b =,1325c =,则( )(A)b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A 【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . (7)执行下图的程序框图,如果输入的46a b ==,,那么输出的n =( )(A )3 (B )4 (C )5 (D )6 【答案】B(8)在ABC △中,π4B,BC 边上的高等于13BC,则cos A( )(A )31010 (B )1010 (C )1010 (D )31010【答案】C 【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD=.由余弦定理,知22222225910cos 210225AB AC BC AD AD AD A AB AC AD AD+-+-===-⋅⨯⨯,故选C .(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A)18365+ (B )54185+ (C)90 (D )81 【答案】B(10) 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A)4π (B)92π(C )6π (D )323π【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴。
2016 年一般高等学校招生全国一致考试理科数学一.选择题:本大题共 12 小题,每题 5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的 .(1)设会合 S= S x P(x 2)(x 3) 0 ,T x x 0 ,则 S I T=(A) [2 ,3] (B) (- , 2] U [3,+ )(C) [3,+ )(D) (0, 2] U [3,+ )(2)若 z=1+2i ,则4izz 1(A)1 (B) -1 (C) i (D)-iuuv( 1 uuuv(3,1),(3)已知向量BA , 2) ,BC 则 ABC=2 2 2 2(A)30 0 (B) 450 (C) 60 0 (D)120 0(4)某旅行城市为向旅客介绍当地的气温状况,绘制了一年中月均匀最高气平和均匀最低气温的雷达图。
图中A 点表示十月的均匀最高气温约为150C,B 点表示四月的均匀最低气温约为50C。
下边表达不正确的选项是(A) 各月的均匀最低气温都在00C 以上(B)七月的均匀温差比一月的均匀温差大(C)三月和十一月的均匀最高气温基真同样(D)均匀气温高于 200C 的月份有 5 个(5)若tan 3 ,则 cos2 2sin 264 448 16(B) (C) 1(A)25 (D)25 254 3 1(6)已知a 23 , b 44, c 253,则(A )b a c ( B)a b c (C) b c a (D) c a b(7)履行下列图的程序框图,假如输入的a=4, b=6,那么输出的n=(A )3(B)4(C) 5(D)6(8)在 △ABC 中, B = π BC1cos A =,边上的高等于则4 3BC ,(A )3 10(B )101010(C ) -10 (D )- 3 1010 10 (9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 36 5(B ) 54 18 5(C ) 90 (D )81(10) 在关闭的直三棱柱 ABC-A 1B 1C 1 内有一个体积为 V 的球,若AB BC , AB=6 ,BC=8, AA 1 =3,则 V 的最大值是(A ) 4π (B )9( C ) 6π(D )3223x 2 y 2 1(a b 0) 的左焦点, A , B 分别为 C 的左,右极点 .P 为(11)已知 O 为坐标原点, F 是椭圆 C :b 2 a 2C 上一点,且 PF ⊥ x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点E.若直线 BM 经过 OE 的中点,则C 的离心率为(A )1(B )1(C )2(D )33234(12)定义 “规范 01 数列 ”{a n } 以下: { a n } 共有 2m 项,此中 m 项为 0,m 项为 1,且对随意 k 2m , a 1 , a 2, L , a k 中 0 的个数许多于 1 的个数 .若 m=4,则不一样的“规范 01 数列”共有 (A )18 个(B )16 个 (C ) 14 个 (D )12 个二、填空题:本大题共 3 小题,每题 5 分(13)若 x , y 知足拘束条件 错误 ! 未找到引用源。
学习资料收集于网络,仅供参考启封并使用完毕前绝密★试题类型:新课标Ⅲ年普通高等学校招生全国统一考试2016 理科数学页。
考试结束后,将本试卷4题,共150分,共II和第卷(非选择题)两部分,共24本试卷分第I卷(选择题) 和答题卡一并交回。
注意事项:答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
1.毫米黑字迹的签字笔书写,字体工整,笔迹清0.5选择题必须使用2B铅笔填涂;非选择题必须使用2. 楚。
请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答3. 题无效。
作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
4. 5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I卷. 小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一.选择题:本大题共12????I0x|x??2)(x?3)0?,T?S?|x(x=T ,则S(1)设集合?????????????3,0,??2,32??,23,???3, C. D. B. A.D【答案】??????????0,2?3,???S2??,?ST3,D,【解析】易得,选【考点】解一元二次不等式、交集i4 (2),则若i2z?1??1zz? D. C. A. 1 B. ii?1?C【答案】4i,选C,,故【解析】易知i?z1?241??zzi??1?zz 【考点】共轭复数、复数运算学习资料.学习资料收集于网络,仅供参考??3113,BA? ),则(3),已知向量=(,BCABC?????2222?? A D.120°B. 45° C. 60° A. 30°y A【答案】C3x3BCBA?B2????ABCcos【解析】法一:,30???ABC2?11BCBA?点为坐标原点建立如图所示直角坐标系,易知法二:可以B30ABC?CBx?30,??60?ABx?,?【考点】向量夹角的坐标运算图.(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.点表示四月的平均最低气温约为下面叙述不正确的是A点表示十月的平均最高气温约为,B中C515C以上A. 各月的平均最低气温都在C0七月的平均温差比一月的平均温差大B.三月和十一月的平均最高气温基本相同C.个平均最高气温高于的月份有5D. C20D【答案】的月份有七月、八【解析】从图像中可以看出平均最高气温高于C20左右,故最多3个月,六月为C20【考点】统计图的识别32????tan ,则(5)若??2sin2cos4164864 A.D. B. C. 1252525A【答案】2????64cos4tan1cos??4sin2??【解析】??cos?2sin2?25222???tan?1?cossin【考点】二倍角公式、弦切互化、同角三角函数公式学习资料.学习资料收集于网络,仅供参考124(6),则已知25??3,cba?2,333 D. B. C. A.b?c?b?cb?a?c?aa?b?ca A【答案】21422,故【解析】525?3,c?a?2?4,b?ba?c?33333【考点】指数运算、幂函数性质=n(7)执行右面的程序框图,如果输入的a=4,b=6,那么输出的D. 6 A. 3 B. 4 C. 5B 【答案】【解析】列表如下a4 2 6 -2 4 2 6 -2 4b 6 6 6 4 4s20 0 10 16 6n4231【考点】程序框图Aπ1BC?B ,,边上的高等于(8)在中,则?BCAcosABC△341031010310 B. C. A. D. ??10101010CB【答案】CD【解析】如图所示,可设,则,,2?AB2DC?1AD?BD?2?5?910,由余弦定理知,??Acos?5?AC? 1052?2【考点】解三角形(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. B. C. 90 D. 81 5?18545?1836【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为学习资料.学习资料收集于网络,仅供参考5?18?9?36?5433??2?3?6?2?32?【考点】三视图、多面体的表面积-的最=3,则V,BC=8,AA 内有一个体积为CV的球.若AB⊥BC,AB(10)在封闭的直三棱柱ABC=6AB1111大值是π32π9 A. D. B.C. π4π6 32 10B【答案】6【解析】由题意知,当球为直三棱柱的内接球时,体积最如图所示,选取过球心且平行于直三棱柱底面的截面,大,8则由切线长定理可知,内接圆的半径为2,?9433??R,所以内接球的半径为又的最大值为,即V23AA??2?1232【考点】内接球半径的求法22yx.B分别为C的左,右顶点为坐标原点,F是椭圆C:的左焦点,A,已知(11)O0)a??b??1(22ba 的BM经过OEM,与y轴交于点E. 若直线上一点,且为CPF⊥x轴.过点A的直线l与线段PF 交于点P 中点,则C的离心率为y2131 C.D. A.B.3342P E A【答案】MN c?aMFMFAFaONOB B???,??【解析】易得aOE2ONAOMFBFa?c x OAF c?ca?1aa????caa?2a?c1c???e3a【考点】椭圆的性质、相似,a,…a项为1,且对任意k≤2m,,mm共有{a规范(12)定义“01数列”{}如下:a}2m项,其中项为0,21nn”共有()01=4的个数不少于a中01的个数,若m,则不同的“规范数列k 12个.14C个.18A.个B16 .个D C 【答案】【解析】学习资料.学习资料收集于网络,仅供参考??0?1111????0?111????0????10?11?????1???1?01???????0?0?111???????00?11?????1?????011?1???? ?0??0?11????1?0????1?01??????0?111????00?11????1????1?010?1??????0?11???0?1??1?01????【考点】数列、树状图第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分x?y?1?0??x?2y?0,则x,y满足约束条件的最大值为________.(13)设y?x?z??x?2y?2?0?3【答案】231???????3,,1,故最小值为,代入目标函数可得【解析】三条直线的交点分别为1?,1,,0,2,?110???22??【考点】线性规划3cosxy?sinx?sinx??3cosxy的图像至少向右平移______个单位长度得到(14)的图像可由函数函数. ?2【答案】3??????【解析】,故可前者的图像可由后者向?2sinx3cosx?sin2sincosx?x?,y?x?3?ysinx?????33?????2个单位长度得到右平移3【考点】三角恒等变换、图像平移??????31,??yxx?xf()ln??3fx处的切线方程是则曲线当为偶函数,x(f(15)已知),时,______ 在点0x?学习资料.学习资料收集于网络,仅供参考【答案】0?1?2x?y11?????3???f'(x)?3,故切线方程为,【解析】法一:,21??f'f?1'?2??01?2x?y?x?x1??????????f'?1f??2'x?3,,法二:当时,,故切线方程为x3lnx?xf?x??f0?2x?y?10x?x 【考点】奇偶性、导数、切线方程22轴交于分别作已知直线的垂线与与圆:过交于两点,(16)03??mxy?3m?12??yxD,BCA,A,Bllx__________. ,则两点,若32AB??|CD|3【答案】y B,于作图所示,于,作【解析】如ABOF?FAE?BDE FA,即3?OF?AB?23,OA?23,E D x C3m?33,???m3?321m? 30°∴直线l的倾斜角为33??3CD?AE?2?2 【考点】直线和圆、弦长公式. 解答题:解答应写出文字说明,证明过程或演算步骤三.)12分(17)(本小题满分??a .,其中=1+λa已知数列λ≠0的前n项和S nn n??a 证明是等比数列,并求其通项公式;(1) n31?S ,求(2) 若λ.532(2) ;【答案】(1)【解析】?? (1) 解:0a,?S?1?nn0a??n????时,当2?na?aS??1??1?S?a?aa1nn?nnnn1n1??????a??1a即,1?nn学习资料.学习资料收集于网络,仅供参考???即1?0,???0,a?0,?1n?a??n,即2n,????a11n?????q,是等比数列,公比∴a?n1??,时,当n=1a??aS?11111?a即?1?1n?1?1???a??????n1?1???31?S 2)若(5325???1??1???????11??5?????31????则?1?S??????5?321??1???1?1???【考点】等比数列的证明、由求通项、等比数列的性质S n(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:777???2?0.55?(yy),≈2.646.,参考数据:,40.17yt?y9.32?7iiii1?i11?ii?学习资料.学习资料收集于网络,仅供参考n?)yt)(y(t??ii1i?参考公式:,r?nn??22y)(yt(t)??ii1i?1?i中斜率和截距的最小二乘估计公式分别为:回归方程bta?y?n?)(yt?y?t)(ii1i? bt?a?y,b?n?2)t(t?i1?i 1.82亿吨【答案】(1)见解析;(2),t0.92?0.10y?【解析】7?y i7?6?4?5?1?2?31i?1.331y???t?4由题意得,(1) 77n7??ynt?y)ty(t?t)(y?iiii1.33??7?440.171i1?i?0.99??r??0.55?287777????2222)(yt(?y)(t?t?)y(?t)y iiii1i1i?i1?1?i?yt的线性相关程度相当高,从而可以用线性回归方程来拟合t因为y与的相关系数近似为0.99,说明y与t的关系与n?)y(ty)(?t?ii2.891i? (2) 0.103b??? 28n?2t(t?i1i?0.92?4?y?bt?1.33?0.103a?t?0.10?a?bt?0.92yy的线性回归方程为所以关于t1.82?y代入回归方程可得,将9t?亿吨预测2016年我国生活垃圾无害化处理量将约为1.82【考点】相关性分析、线性回归)本小题满分(19)(12分,=3,AB=AD=ACBCABCD中,如图,四棱锥P-ABCDPA⊥底面,AD∥. PC的中点NAMM,为线段AD上一点,=2MD,为=4=PABC ∥平面MNPAB;证明(1).与平面求直线(2)所成角的正弦值PMNAN 学习资料.学习资料收集于网络,仅供参考58【答案】(1) 见解析;(2)252??2AMAD由已知得(1) ,取的中点,连接,【解析】TN,A TTBP312BC?TN?......3分由为中点知,. BCPC/NTN/2,四边形为平行四边形,,故又平行且等于AMNT/BCTNAD/AM. 于是AT/MN/ ........6分. 平面因为平面,平面,所以//MNMN?PABPABA T?PAB为以为坐标原点,,又面,故可以(2) 取中点,连接,则易知ABCDBCAEPA?AAE?EADAE轴建立空间直角坐标系,轴,以为轴,以为yAPADzx??5????????02,0,2,0,0,00、P、N0,0,4C、,1,2、MA5,则????2??????55??21,??4,PN?N,,?AN?1,2,PM?0,2,????????22??????故平面的法向量10,2,n?PMN584?cos?AN,n???255?5258与平面所成角的正弦值为直线PMNAN?25【考点】线面平行证明、线面角的计算)分本小题满分12(20)(2的准线CB两点,交C于A,xx的焦点为F,平行于轴的两条直线l,l:已知抛物线Cy分别交=221.Q两点于P,FQ;PQ的中点,证明AR∥(1)若F在线段AB上,R是. AB中点的轨迹方程△ABF的面积的两倍,求(2)若△PQF的面积是21??xy (2) 【答案】(1) 见解析;【解析】法一:(1)1,0)(F,则设,且.由题设by:?:ly?a,l0ab?2122211aa?bb1A(,a),B(,b),P(?,a),Q(?,b),R(?,).222222 学习资料.学习资料收集于网络,仅供参考分记过两点的直线为,则的方程为. .....3B,A0b)y?ab?(2x?a?ll. 由于在线段上,故0?1?abABF记的斜率为,的斜率为,则FQARkk21aba???b1ba. kk??b?????21aa22aba?a?1 ......5分所以. FQAR∥法二:PF,证明:连接RF,,=90°AFP+∠BFQAP 由=AF,BQ=BF及AP∥BQ,得∠,∴∠PFQ=90°的中点,∵R是PQ RP=RQ,=∴RF ≌△FAR,∴△PAR ,∠FRAAR∴∠P=∠FAR,∠PRA= AR,BFQBQF+∠=180°﹣∠QBF=∠PAF=2∠P∵∠,=∴∠FQB∠PAR ,∴∠PRA=∠PQF FQ∴AR∥.(2)设与轴的交点为,l,0)D(xx1ba?111 . 则?,?Sb?axSa?b?FD?PQFABF?1?2222a?b11,所以(舍去由题设可得),. ???axb1?x?0x111222设满足条件的的中点为. )y(x,EAB2y(x??1). 轴不垂直时,由可得当与ABk?kx DEAB1a?bx?a?b2y?. 而,所以1)?1(xy?x?22?x?1y. 分.重合与轴垂直时,与当所以,所求轨迹方程为....12DEABx 【考点】抛物线、轨迹方程) (21)(分本小题满分12 学习资料.学习资料收集于网络,仅供参考????????的最大值为. 设函数,其中,记xf1?acos2x?xxa?1?cosf0?aA??;(1)求xf'(2)求;A??. (3)证明:A?f'x2【答案】见解析【解析】???? (1) xsina?asin2xf'?x1??2|f(x)|?|acos2x?(a?1)(cosx?1)|?a?2(a?1)?f(0)2a??1a?3当时,(2) A?3a?2.因此,21?1)cosxx?(a?f(x)?2acos)xf(1?a?0.变形为时,将当21t?(a?1))g(t?2at?1,1][?(t)||g A令,则上的最大值,是在1?a?tg(tg(1)?3a?2)1)g(??a取得极小值,时,,且当,4a22?6aa?a1?(a?1)1)???1??g(.极小值为4a8a8a1?a11a??1a???1?(舍去).令,解得,4a351?0?ag(t)(?1,1)|g(?1)|?a|g(1)|?2?3a|g(?1)|?|g(1)|,所以①当,在内无极值点,时,,5A?2?3a.11?a?a?1g(?1)?g(1)?g()0?)?a?1)?g(1)?2(1g(.,知②当时,由54a2?6aaa?11?1?a(1?a)(1?7a))|?A?|g(|01)g(?|??g(||)?.又,所以4a8a4a8a学习资料.学习资料收集于网络,仅供参考1?2?3a,0?a??5?211a?a?6??A?1,?a综上,.?5a8?1?a?2,a3???'1|?|a1)sinx|?2a??f(x)|?|?2asin2x(a?|得.(1)(3) 由1'A2?3a)?a|?1?a?2?4?2(2|f(x)?0?a. 当时,5311a'A?a?f2(x)|?1|1?a?1???A?. ,所以时,当4588a''A?|xf|()?3a12?4?a?6Axf|()?2|1a?.时,当,所以【考点】导函数讨论单调性、不等式证明铅笔在答题卡上把所选题目题号后的方框涂黑。
2016年普通高等学校招生全国统一考试(全国Ⅲ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅲ,理1,5分】设集合()(){}{}|230,|0S x x x T x x =--≥=> ,则S T =I ( )(A )[]2,3 (B )(][),23,-∞+∞U (C )[)3,+∞ (D )(][)0,23,+∞U 【答案】D【解析】由()()230x x --≥解得3x ≥或2x ≤,{}23S x x ∴=≤≥或,所以{}023S T x x x =<≤≥I 或,故选D . 【点评】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.(2)【2016年全国Ⅲ,理2,5分】若i 12z =+,则4i1zz =-( )(A )1 (B )1- (C )i (D )i - 【答案】C【解析】4i 4ii (12i)(12i)11zz ==+---,故选C . 【点评】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成1-.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.(3)【2016年全国Ⅲ,理3,5分】已知向量13(,)2BA =uu v ,31(,)2BC =uu u v ,则ABC ∠=( )(A )30︒ (B )45︒ (C )60︒ (D )120︒ 【答案】A【解析】由题意,得133132222cos 11BA BC ABC BA BC⨯+⨯⋅∠===⨯u u u r u u u r u u u r u u u r ,所以30ABC ∠=︒,故选A . 【点评】(1)平面向量a r 与b r 的数量积为·cos a b a b θr r r r=,其中θ是a r 与b r 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有||=a a a ·r r r ,·cos a ba b θ=r rr r ,·0a b a b ⇔⊥r r r r =,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(4)【2016年全国Ⅲ,理4,5分】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A )各月的平均最低气温都在0C ︒以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同(D )平均气温高于20C ︒的月份有5个 【答案】D【解析】由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0C ︒以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20C ︒的月份有3个或2个,所以不正确,故选D .【点评】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .(5)【2016年全国Ⅲ,理5,5分】若3tan 4α=,则2cos 2sin 2αα+=( ) (A )6425(B )4825(C )1 (D )1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .【点评】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系. (6)【2016年全国Ⅲ,理6,5分】已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A .【点评】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.(7)【2016年全国Ⅲ,理7,5分】执行下图的程序框图,如果输入的46a b ==,,那么输出的n =( )(A )3 (B )4 (C )5 (D )6 【答案】B【解析】第一循环,得2,4,6,6,1a b a s n =====;第二循环,得2,6,4,10,2a b a s n =-====;第三循环,得2,4,6,16,3a b a s n =====;第四循环,得2,6,4,2016,4a b a s n =-===>=; 退出循环,输出4n =,故选B .【点评】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.(8)【2016年全国Ⅲ,理8,5分】在ABC D 中,π4B =,BC 边上的高等于13BC ,则cos A = ( )(A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD =.由余弦定理,知22222210cos 2225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C .【点评】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.(9)【2016年全国Ⅲ,理9,5分】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81 【答案】B【解析】由三视图该集合体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .【点评】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立 未知量与已知量间的关系,进行求解.(10)【2016年全国Ⅲ,理10,5分】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .【点评】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.(11)【2016年全国Ⅲ,理11,5分】已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12 (C )23 (D )34【答案】A 【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得点()FM k a c =-,OE ka =,由~OBE ∆CBM ∆,得12OE OB FM BC=,即()2ka a k a c a c =-+,整理得13c a =,所以椭圆离心率为1e 3=,故选A . 【点评】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .(12)【2016年全国Ⅲ,理12,5分】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( ) (A )18个 (B )16个 (C )14个 (D )12个【答案】C【解析】由题意,得必有0a =,1a =,则具体的排法列表如下:,故选C .往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.第II 卷本卷包括必考题和选考题两部分。
研究生入学考试数学三试题一、选择题:1~10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当0x +→时,与x 等价的无穷小量是(A )1ex- (B )1ln1xx+- (C )11x +- (D )1cos x - [ ](2)设函数()f x 在0x =处连续,下列命题错误的是:(A )若0()limx f x x →存在,则(0)0f = (B )若0()()lim x f x f x x→+-存在,则(0)0f = .(B )若0()lim x f x x →存在,则(0)0f '= (D )若0()()lim x f x f x x→--存在,则(0)0f '=.[ ](3)如图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-的图形分别是直径为2的下、上半圆周,设0()()d xF x f t t =⎰,则下列结论正确的是:(A )3(3)(2)4F F =-- (B) 5(3)(2)4F F = (C )3(3)(2)4F F = (D )5(3)(2)4F F =-- [ ](4)设函数(,)f x y 连续,则二次积分1sin 2d (,)d xx f x y y ππ⎰⎰等于(A )10arcsin d (,)d yy f x y x ππ+⎰⎰ (B )10arcsin d (,)d yy f x y x ππ-⎰⎰(C )1arcsin 02d (,)d yy f x y x ππ+⎰⎰ (D )1arcsin 02d (,)d yy f x y x ππ-⎰⎰(5)设某商品的需求函数为1602Q P =-,其中,Q P 分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是(A) 10. (B) 20 (C) 30. (D) 40. [ ] (6)曲线()1ln 1e x y x=++的渐近线的条数为 (A )0. (B )1. (C )2. (D )3. [ ](7)设向量组123,,ααα线性无关,则下列向量组线性相关的是线性相关,则 (A) 122331,,αααααα---(B) 122331,,αααααα+++(C) 1223312,2,2αααααα---.(D) 1223312,2,2αααααα+++. [ ](8)设矩阵211100121,010112000A B --⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,则A 与B(A) 合同且相似(B )合同,但不相似.(C) 不合同,但相似. (D) 既不合同也不相似 [ ] (9)某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p <<,则此人第4次射击恰好第2次击中目标的概率为(A )23(1)p p -. (B )26(1)p p -.(C )223(1)p p -. (D )226(1)p p - [ ](10)设随机变量(),X Y 服从二维正态分布,且X 与Y 不相关,(),()X Y f x f y 分别表示,X Y 的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)X Y f x y 为 (A) ()X f x . (B) ()Y f y . (C) ()()X Y f x f y . (D)()()X Y f x f y . [ ] 二、填空题:11~16小题,每小题4分,共24分. 把答案填在题中横线上.(11) 3231lim(sin cos )2x x x x x x x →+∞+++=+ __________. (12)设函数123y x =+,则()(0)n y =________. (13) 设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫=⎪⎝⎭,则z zx y x y ∂∂-=∂∂ __________.(14)微分方程3d 1d 2y y y x x x ⎛⎫=- ⎪⎝⎭满足11x y==的特解为y =________.(15)设矩阵0100001000010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则3A 的秩为 .(16)在区间()0,1中随机地取两个数,则这两个数之差的绝对值小于12的概率为 . 三、解答题:17~24小题,共86分. 解答应写出文字说明、证明过程或演算步骤. (17) (本题满分10分)设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性. (18) (本题满分11分)设二元函数2,||||1(,)1||||2x x y f x y x y ⎧+≤⎪=<+≤,计算二重积分D(,)d f x y σ⎰⎰,其中(){},||||2D x y x y =+≤.(19) (本题满分11分)设函数(),()f x g x 在[],a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得()()f g ξξ''''=.(20) (本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间. (21) (本题满分11分)设线性方程组123123212302040x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321x x x a ++=-有公共解,求a 的值及所有公共解.(22) (本题满分11分)设三阶对称矩阵A 的特征向量值1231,2,2λλλ===-,T1(1,1,1)α=-是A 的属于1λ的一个特征向量,记534B A A E =-+,其中E 为3阶单位矩阵.(I )验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量; (II )求矩阵B . (23) (本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他.(I )求{}2P X Y >;(II) 求Z X Y =+的概率密度.2007答案1….【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可.【详解】当0x +→时,1x --,112x,()211122x x -=, 故用排除法可得正确选项为(B ).事实上,000lim lim lim 1x x +++→→→==,或lnln(1)ln(1()x x o x o o x =+--=++=.所以应选(B )【评注】本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算. 类似例题见《数学复习指南》(经济类)第一篇【例1.54】 【例1.55】.2…….【分析】本题考查可导的极限定义及连续与可导的关系. 由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数()f x 去进行判断,然后选择正确选项.【详解】取()||f x x =,则0()()lim0x f x f x x→--=,但()f x 在0x =不可导,故选(D ).事实上,在(A),(B)两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得(0)0f =.在(C )中,0()limx f x x →存在,则00()(0)()(0)0,(0)lim lim 00x x f x f f x f f x x→→-'====-,所以(C)项正确,故选(D)【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效.类似例题见文登强化班笔记《高等数学》第2讲【例2】,文登07考研模拟试题数学二第一套(2).3…….【分析】本题实质上是求分段函数的定积分. 【详解】利用定积分的几何意义,可得221113(3)12228F πππ⎛⎫=-= ⎪⎝⎭,211(2)222F ππ==,22202011(2)()d ()d ()d 122F f x x f x x f x x ππ---==-===⎰⎰⎰. 所以 33(3)(2)(2)44F F F ==-,故选(C ).【评注】本题属基本题型. 本题利用定积分的几何意义比较简便.类似例题见文登强化班笔记《高等数学》第5讲【例17】和【例18】,《数学复习指南》(经济类)第一篇【例3.38】【例3.40】.4…….【分析】本题更换二次积分的积分次序,先根据二次积分确定积分区域,然后写出新的二次积分. 【详解】由题设可知,,sin 12x x y ππ≤≤≤≤,则01,arcsin y y x ππ≤≤-≤≤,故应选(B ).【评注】本题为基础题型. 画图更易看出.类似例题见文登强化班笔记《高等数学》第10讲【例5】,《数学复习指南》(经济类)第一篇【例7.5】,【例7.6】.5…….【分析】本题考查需求弹性的概念. 【详解】选(D ).商品需求弹性的绝对值等于d 2140d 1602Q P P P P Q P-⋅==⇒=-, 故选(D ).【评注】需掌握微积分在经济中的应用中的边际,弹性等概念.相关公式及例题见《数学复习指南》(经济类)第一篇【例11.2】.6…….【分析】利用曲线的渐近线的求解公式求出水平渐近线,垂直渐近线和斜渐近线,然后判断. 【详解】()()11lim lim ln 1e ,lim lim ln 1e 0xxx x x x y y x x →+∞→+∞→-∞→-∞⎡⎤⎡⎤=++=+∞=++=⎢⎥⎢⎥⎣⎦⎣⎦,所以 0y =是曲线的水平渐近线;()001lim lim ln 1e xx x y x→→⎡⎤=++=∞⎢⎥⎣⎦,所以0x =是曲线的垂直渐近线; ()()1e ln 1e ln 1e 1e lim lim 0lim lim 11xxx x x x x x y x x x x →+∞→+∞→+∞→+∞++++==+==,[]()1lim lim ln 1e0xx x b y x x x →+∞→+∞⎡⎤=-=++-=⎢⎥⎣⎦,所以y x =是曲线的斜渐近线. 故选(D ).【评注】本题为基本题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在. 本题要注意e x当,x x →+∞→-∞时的极限不同.类似例题见文登强化班笔记《高等数学》第6讲第4节【例12】,《数学复习指南》(经济类)第一篇【例5.30】,【例5.31】.7……..【分析】本题考查由线性无关的向量组123,,ααα构造的另一向量组123,,βββ的线性相关性. 一般令()()123123,,,,A βββααα=,若0A =,则123,,βββ线性相关;若0A ≠,则123,,βββ线性无关. 但考虑到本题备选项的特征,可通过简单的线性运算得到正确选项.【详解】由()()()1223310αααααα-+-+-=可知应选(A ).或者因为()()122331123101,,,,110011ααααααααα-⎛⎫ ⎪---=- ⎪ ⎪-⎝⎭,而1011100011--=-, 所以122331,,αααααα---线性相关,故选(A ).【评注】本题也可用赋值法求解,如取()()()TTT1231,0,0,0,1,0,0,0,1ααα===,以此求出(A ),(B ),(C ),(D )中的向量并分别组成一个矩阵,然后利用矩阵的秩或行列式是否为零可立即得到正确选项.完全类似例题见文登强化班笔记《线性代数》第3讲【例3】,《数学复习指南》(经济类)《线性代数》【例3.3】.8……【分析】本题考查矩阵的合同关系与相似关系及其之间的联系,只要求得A 的特征值,并考虑到实对称矩阵A 必可经正交变换使之相似于对角阵,便可得到答案.【详解】 由2211121(3)112E A λλλλλλ--=-=--可得1233,0λλλ===,所以A 的特征值为3,3,0;而B 的特征值为1,1,0.所以A 与B 不相似,但是A 与B 的秩均为2,且正惯性指数都为2,所以A 与B 合同,故选(B ). 【评注】若矩阵A 与B 相似,则A 与B 具有相同的行列式,相同的秩和相同的特征值. 所以通过计算A 与B 的特征值可立即排除(A )(C ). 完全类似例题见《数学复习指南》(经济类)第二篇【例5.17】.9……..【分析】本题计算贝努里概型,即二项分布的概率. 关键要搞清所求事件中的成功次数. 【详解】p ={前三次仅有一次击中目标,第4次击中目标}12223(1)3(1)C p p p p p =-=-,故选(C ).【评注】本题属基本题型.类似例题见《数学复习指南》(经济类)第三篇【例1.29】【例1.30】10…….【分析】本题求随机变量的条件概率密度,利用X 与Y 的独立性和公式|(,)(|)()X Y Y f x y f x y f y =可求解. 【详解】因为(),X Y 服从二维正态分布,且X 与Y 不相关,所以X 与Y 独立,所以(,)()()X Y f x y f x f y =.故|()()(,)(|)()()()X Y X Y X Y Y f x f y f x y f x y f x f y f y ===,应选(A ).【评注】若(),X Y 服从二维正态分布,则X 与Y 不相关与X 与Y 独立是等价的.完全类似例题和求法见文登强化班笔记《概率论与数理统计》第3讲【例3】,《数学复习指南》(经济类)第三篇第二章知识点精讲中的一(4),二(3)和【例2.38】11….【分析】本题求类未定式,可利用“抓大头法”和无穷小乘以有界量仍为无穷小的结论.【详解】因为323233110222lim lim0,|sin cos |22112x x x x x x xx x x x x x x x →+∞→+∞++++===+<++, 所以3231lim(sin cos )02x x x x x x x →+∞+++=+. 【评注】无穷小的相关性质:(1) 有限个无穷小的代数和为无穷小; (2) 有限个无穷小的乘积为无穷小; (3) 无穷小与有界变量的乘积为无穷小.完全类似例题和求法见文登强化班笔记《高等数学》第1讲【例1】,《数学复习指南》(经济类)第一篇【例1.43】12,……..【分析】本题求函数的高阶导数,利用递推法或函数的麦克老林展开式.【详解】()212,2323y y x x '==-++,则()1(1)2!()(23)n n n n n y x x +-=+,故()1(1)2!(0)3n n n n n y +-=. 【评注】本题为基础题型.完全类似例题见文登强化班笔记《高等数学》第2讲【例21】,《数学复习指南》(经济类)第一篇【2.20】,【例2.21】.13…….【分析】本题为二元复合函数求偏导,直接利用公式即可. 【详解】利用求导公式可得1221z y f f x x y ∂''=-+∂, 1221z x f f y x y∂''=-∂, 所以122z z y x xy f f x y xy ⎛⎫∂∂''-=-- ⎪∂∂⎝⎭. 【评注】二元复合函数求偏导时,最好设出中间变量,注意计算的正确性.完全类似例题见文登强化班笔记《高等数学》第9讲【例8】, 【例9】,《数学复习指南》(经济类)第一篇【例6.16】,【例6.17】,【例6.18】.14…..【分析】本题为齐次方程的求解,可令y u x=. 【详解】令yu x=,则原方程变为 33d 1d d d 22u u x u x u u x u x+=-⇒=-.两边积分得 2111ln ln 222x C u -=--, 即222111e e y u x x x C C=⇒=,将11x y==代入左式得 e C =,故满足条件的方程的特解为 22e e x y x =,即y =,1e x ->.【评注】本题为基础题型.完全类似例题见文登强化班笔记《高等数学》第7讲【例2】, 【例3】,《数学复习指南》(经济类)第一篇【例9.3】.15……….【分析】先将3A 求出,然后利用定义判断其秩.【详解】30100000100100000()10001000000000000A A r A ⎛⎫⎛⎫⎪⎪⎪⎪=⇒=⇒= ⎪⎪⎪⎪⎝⎭⎝⎭.【评注】本题为基础题型.矩阵相关运算公式见《数学复习指南》(经济类)第二篇第二章第1节中的知识点精讲.16……….【分析】根据题意可得两个随机变量服从区间()0,1上的均匀分布,利用几何概型计算较为简便. 【详解】利用几何概型计算. 图如下:所求概率2113214A D S S ⎛⎫- ⎪⎝⎭===.【评注】本题也可先写出两个随机变量的概率密度,然后利用它们的独立性求得所求概率.完全类似例题见文登强化班笔记《概率论与数理统计》第3讲【例11】,《数学复习指南》(经济类)第三篇【例2.29】,【例2.47】.17……..【分析】由凹凸性判别方法和隐函数的求导可得.【详解】 方程 ln 0y y x y -+=两边对x 求导得ln 10y y y yy y'''+-+=, 即(2ln )1y y '+=,则1(1)2y '=. 上式两边再对x 求导得()2(2ln )0y y y y'''++=则1(1)8y ''=-,所以曲线()y y x =在点(1,1)附近是凸的.【评注】本题为基础题型.类似例题见文登强化班笔记《高等数学》第6讲【例10】,《数学复习指南》(经济类)第一篇【例5.29】.18…….【分析】由于积分区域关于,x y 轴均对称,所以利用二重积分的对称性结论简化所求积分. 【详解】因为被积函数关于,x y 均为偶函数,且积分区域关于,x y 轴均对称,所以1DD (,)d (,)d f x y f x y σσ=⎰⎰⎰⎰,其中1D 为D 在第一象限内的部分.而12D 1,0,012,0,(,)d d x y x y x y x y f x y x σσσ+≤≥≥≤+≤≥≥=+⎰⎰⎰⎰⎰⎰1122220110d d d d xx x x x x y x y x y ---⎛⎫ ⎪=++ ⎪⎝⎭⎰⎰⎰⎰⎰⎰(1112=.所以(D1(,)d 13f x y σ=++⎰⎰.【评注】被积函数包含22y x +时, 可考虑用极坐标,解答如下:1210,00,0(,)d x y x y x y x y f x y σσ≤+≤≤+≤>>>>=⎰⎰⎰⎰22sin cos 10sin cos d d r πθθθθθ++=⎰⎰=.类似例题见文登强化班笔记《高等数学》第10讲【例1】,《数学复习指南》(经济类)第一篇【例7.3-例7.4】.19…….【分析】由所证结论()()f g ξξ''''=可联想到构造辅助函数()()()F x f x g x =-,然后根据题设条件利用罗尔定理证明.【详解】令()()()F x f x g x =-,则()F x 在[],a b 上连续,在(,)a b 内具有二阶导数且()()0F a F b ==.(1)若(),()f x g x 在(,)a b 内同一点c 取得最大值,则()()()0f c g c F c =⇒=, 于是由罗尔定理可得,存在12(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用罗尔定理,可得 存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=. (2)若(),()f x g x 在(,)a b 内不同点12,c c 取得最大值,则12()()f c g c M ==,于是 111222()()()0,()()()0F c f c g c F c f c g c =->=-<, 于是由零值定理可得,存在312(,)c c c ∈,使得3()0F c = 于是由罗尔定理可得,存在1323(,),(,)a c c b ξξ∈∈,使得12()()0F F ξξ''==.再利用罗尔定理,可得 ,存在12(,)ξξξ∈,使得()0F ξ''=,即()()f g ξξ''''=. 【评注】对命题为()()0n fξ=的证明,一般利用以下两种方法:方法一:验证ξ为(1)()n fx -的最值或极值点,利用极值存在的必要条件或费尔马定理可得证;方法二:验证(1)()n fx -在包含x ξ=于其内的区间上满足罗尔定理条件.类似例题见文登强化班笔记《高等数学》第4讲【例7】,《数学复习指南》(经济类)第一篇【例4.5】,【例4.6】.20….【分析】本题考查函数的幂级数展开,利用间接法. 【详解】211111()34(4)(1)541f x x x x x x x ⎛⎫===- ⎪---+-+⎝⎭,而 10011111(1),2414333313nnn n n x x x x x ∞∞+==--⎛⎫=-⋅=-=--<< ⎪--⎝⎭-∑∑, 10011111(1)(1),1311222212nn nn n n x x x x x ∞∞+==---⎛⎫=⋅=-=-<< ⎪-+⎝⎭+∑∑ , 所以 1111000(1)(1)(1)1(1)()(1)3232n n n n n n n n n n n n x x f x x ∞∞∞++++===⎡⎤----=-+=-+-⎢⎥⎣⎦∑∑∑, 收敛区间为 13x -<<.【评注】请记住常见函数的幂级数展开.完全类似例题见文登强化班笔记《高等数学》第11讲【例13】,《数学复习指南》(经济类)第一篇【例8.15】.21…..【分析】将方程组和方程合并,然后利用非齐次线性方程有解的判定条件求得a . 【详解】将方程组和方程合并,后可得线性方程组12312321231230204021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩ 其系数矩阵22111011101200110140031012110101aa A a a a a ⎛⎫⎛⎫ ⎪ ⎪-⎪ ⎪=→ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭.21110111001100110003200011001100(1)(2)0a a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪-+-- ⎪⎪----⎝⎭⎝⎭. 显然,当1,2a a ≠≠时无公共解. 当1a =时,可求得公共解为 ()T1,0,1k ξ=-,k 为任意常数; 当2a =时,可求得公共解为()T0,1,1ξ=-.【评注】本题为基础题型,考查非齐次线性方程组解的判定和结构.完全类似例题见文登强化班笔记《线性代数》第4讲【例8】,《数学复习指南》(经济类)第二篇【例4.12】,【例4.15】.22……【分析】本题考查实对称矩阵特征值和特征向量的概念和性质.【详解】(I )()()5353531111111111144412B A A E ααλαλααλλαα=-+=-+=-+=-,则1α是矩阵B 的属于-2的特征向量.同理可得()532222241B αλλαα=-+=,()533333341B αλλαα=-+=.所以B 的全部特征值为2,1,1设B 的属于1的特征向量为T 2123(,,)x x x α=,显然B 为对称矩阵,所以根据不同特征值所对应的特征向量正交,可得T 120αα=.即 1230x x x -+=,解方程组可得B 的属于1的特征向量T T 212(1,0,1)(0,1,0)k k α=-+,其中12,k k 为不全为零的任意常数.由前可知B 的属于-2的特征向量为 T 3(1,1,1)k -,其中3k 不为零.(II )令101011101P ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,由(Ⅰ)可得-1100010002P BP ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则011101110B -⎛⎫ ⎪= ⎪ ⎪-⎝⎭.【评注】本题主要考查求抽象矩阵的特征值和特征向量,此类问题一般用定义求解,要想方设法将题设条件转化为Ax x λ=的形式. 请记住以下结论:(1)设λ是方阵A 的特征值,则21*,,,(),,kA aA bE A f A A A -+分别有特征值 21,,,(),,(A k a b f A λλλλλλ+可逆),且对应的特征向量是相同的. (2)对实对称矩阵来讲,不同特征值所对应的特征向量一定是正交的完全类似例题见文登强化班笔记《线性代数》第5讲【例12】,《数学复习指南》(经济类) 第二篇【例5.24】23…….【分析】(I )可化为二重积分计算;(II) 利用卷积公式可得.【详解】(I ){}()()12002722d d d 2d 24x x y P X Y x y x y x x y y >>=--=--=⎰⎰⎰⎰. (II) 利用卷积公式可得()(,)d Z f z f x z x x +∞-∞=-⎰20121(2)d ,01201(2)d ,12(2)120,0,z z x x z z z z x x z z z -⎧-<<⎪⎧-<<⎪⎪=-<<=-≤<⎨⎨⎪⎪⎩⎪⎩⎰⎰其他其他. 【评注】 (II)也可先求出分布函数,然后求导得概率密度.完全类似例题见文登强化班笔记《概率论与数理统计》第3讲【例10】,【例11】,《数学复习指南》(经济类)第三篇【例2.38】,【例2.44】.(24) (本题满分11分)设总体X 的概率密度为1,021(),12(1)0,x f x x θθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他12(,,X X …,)n X 为来自总体X 的简单随机样本,X 是样本均值.(I )求参数θ的矩估计量θ;(II )判断24X 是否为2θ的无偏估计量,并说明理由.【分析】利用EX X =求(I );判断()224E Xθ=. 【详解】(I )()101()d d d 22124x x EX xf x x x x θθθθθ+∞-∞==+=+-⎰⎰⎰, 令112242X X θθ=+⇒=-. (II )()()()()222214444E X E X DX EX DX EX n ⎡⎤⎡⎤==+=+⎢⎥⎣⎦⎣⎦, 而()22212201()d d d 221336x x EX x f x x x x θθθθθθ+∞-∞==+=++-⎰⎰⎰, 所以 ()2225121248DX EX EX θθ=-=-+, 所以 ()()222211115441133412E X DX EX n n n n θθθ⎡⎤⎛⎫⎛⎫⎛⎫=+=++-++≠ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭, 故24X 不是2θ的无偏估计量.【评注】要熟练掌握总体未知参数点估计的矩估计法,最大似然估计法和区间估计法.完全类似例题见文登强化班笔记《概率论与数理统计》第5讲【例3】,《数学复习指南》(经济类)第三篇【例6.3,例6.6,例6.9】,。
绝密★启封并使用完毕前试题类型:新课标Ⅲ2016年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的XX 、XX 填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整,笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I 卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=>,则ST =A. []2,3B. (][),23,-∞+∞C. [)3,+∞D. (][)0,23,+∞【答案】D【解析】易得(][),23,S =-∞+∞,(][)0,23,S T ∴=+∞,选D【考点】解一元二次不等式、交集 (2)若12z i =+,则41izz =- A. 1 B. 1- C. i D. i - 【答案】C【解析】易知12z i =-,故14zz -=,41ii zz ∴=-,选C 【考点】共轭复数、复数运算(3)已知向量13,22BA⎛⎫= ⎪⎪⎝⎭,BC =(32,12),则ABC∠A. 30°B. 45°C. 60°D.120°【答案】A【解析】法一:332cos112BA BCABCBA BC⋅∠===⨯⋅,30ABC∴∠=法二:可以B点为坐标原点建立如图所示直角坐标系,易知60,30,30ABx CBx ABC∠=∠=∴∠=【考点】向量夹角的坐标运算(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C,B点表示四月的平均最低气温约为5C.下面叙述不正确的是A. 各月的平均最低气温都在0C以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20C的月份有5个【答案】D【解析】从图像中可以看出平均最高气温高于20C的月份有七月、八月,六月为20C左右,故最多3个【考点】统计图的识别(5)若3tan4α=,则2cos2sin2αα+=A. 6425B.4825C. 1D.1625【答案】A【解析】22222cos4sin cos14tan64 cos2sin225cos sin1tanααααααααα+++===++【考点】二倍角公式、弦切互化、同角三角函数公式(6)已知4213332,3,25a b c===,则A. b a c<< B. a b c<< C. b c a<< D. c a b<<【答案】Ax yCAB【解析】422123333324,3,255a b c =====,故c a b >> 【考点】指数运算、幂函数性质(7)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n =A. 3B. 4C. 5D. 6 【答案】B 【解析】列表如下 a4 2 6 -2 4 2 6 -2 4 b6 4 6 4 6 s 0 6 10 16 20 n1234【考点】程序框图(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =A.31010 B. 1010 C.1010- D. 31010-【答案】C【解析】如图所示,可设1BD AD ==,则2AB =,2DC =,5AC ∴=,由余弦定理知,25910cos 10225A +-==-⨯ 【考点】解三角形(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 18365+B. 54185+C. 90D. 81 【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为 2332362393654185⨯⨯+⨯⨯+⨯⨯+=+【考点】三视图、多面体的表面积DCAB(10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是A. 4πB. 9π2C. 6πD. 32π3【答案】B【解析】由题意知,当球为直三棱柱的内接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,如图所示,则由切线长定理可知,内接圆的半径为2, 又1322AA =<⨯,所以内接球的半径为32,即V 的最大值为34932R ππ=【考点】内接球半径的求法(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A. 13B. 12C. 23D. 34【答案】A【解析】易得,2ON OB a MF MF AF a c MF BF a c OE ON AO a -=====+ 12a a c a ca c a a c --∴=⋅=++ 13c e a ∴== 【考点】椭圆的性质、相似(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有( ) A .18个 B .16个 C .14个 D .12个 【答案】C 【解析】86011110111010111101001110011110110011101010111001111011001110101⎧⎧→⎧⎪⎪⎪→⎧⎪⎪⎪⎨⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪→⎪⎪⎩⎩⎩⎪⎪⎧→⎪⎨⎧⎪⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪→⎨⎩⎪⎩⎪⎨⎪→⎪⎧⎪⎪→⎨⎪⎪⎪→⎩⎩⎩⎪⎪⎧→⎧⎪⎪⎪→⎪⎧⎨⎪⎨⎪⎪⎪→→⎨⎩⎩⎪⎪⎪→⎧⎪⎪→⎨⎪→⎪⎩⎩⎩【考点】数列、树状图第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则z x y =+的最大值为________.【答案】32【解析】三条直线的交点分别为()()12,1,1,,0,12⎛⎫-- ⎪⎝⎭,代入目标函数可得33,,12-,故最小值为10-【考点】线性规划(14)函数sin y x x =-的图像可由函数sin y x x =+的图像至少向右平移______个单位长度得到. 【答案】23π【解析】sin 2sin ,sin 2sin 33y x x x y x x x ππ⎛⎫⎛⎫==-==+ ⎪ ⎪⎝⎭⎝⎭,故可前者的图像可由后者向右平移23π个单位长度得到 【考点】三角恒等变换、图像平移(15)已知f (x )为偶函数,当0x <时,()()ln 3f x x x =-+,则曲线()y f x =在点()1,3-处的切线方程是______【答案】210x y ++= 【解析】法一:11'()33f x x x-=+=+-,()'12f ∴-=,()'12f ∴=-,故切线方程为210x y ++= 法二:当0x >时,()()ln 3f x f x x x =-=-,()()1'3,'12f x f x∴=-∴=-,故切线方程为210x y ++= 【考点】奇偶性、导数、切线方程(16)已知直线l:30mx y m ++-=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D两点,若AB =,则||CD =__________. 【答案】3【解析】如图所示,作AE BD ⊥于E ,作OF AB ⊥于F,3AB OA OF ==∴=,即3=,m ∴= ∴直线l 的倾斜角为30°3CD AE ∴=== 【考点】直线和圆、弦长公式三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}n a 的前n 项和S n =1+λa n ,其中λ≠0. (1) 证明{}n a 是等比数列,并求其通项公式; (2) 若53132S =,求λ. 【答案】(1) ;(2) 【解析】 解:(1) 1,0n n S a λλ=+≠0n a ∴≠当2n ≥时,11111n n n n n n n a S S a a a a λλλλ---=-=+--=- 即()11n n a a λλ--=,0,0,10,n a λλ≠≠∴-≠即1λ≠即()1,21n n a n a λλ-=≥-, ∴{}n a 是等比数列,公比1q λλ=-,当n =1时,1111S a a λ=+=, 即111a λ=- 1111n n a λλλ-⎛⎫∴=⋅ ⎪--⎝⎭(2)若53132S =则555111131113211S λλλλλλλ⎡⎤⎛⎫-⎢⎥ ⎪--⎝⎭⎢⎥⎛⎫⎣⎦==-= ⎪-⎝⎭-- 1λ∴=-【考点】等比数列的证明、由n S 求通项、等比数列的性质 (18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑721()0.55ii yy =-=∑7≈2.646.参考公式:12211()()()(y y)nii i nnii i i tt y y r tt ===--=--∑∑∑,回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,a y bt =- 【答案】(1)见解析;(2)0.920.10y t =+,1.82亿吨 【解析】(1) 由题意得123456747t ++++++==,711.3317ii yy ==≈∑711777722221111()()40.1774 1.330.99280.55()()()()nii i ii i ii ii i i i i tt y y t ynt yr tt y y tt y y ======----⨯⨯===≈⨯----∑∑∑∑∑∑因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归方程来拟合y 与t 的关系(2) 121()()2.890.10328()nii i nii tt y y b tt ==--==≈-∑∑ 1.330.10340.92a y bt =-=-⨯≈所以y 关于t 的线性回归方程为0.920.10y a bt t =+=+ 将9t =代入回归方程可得, 1.82y =预测2016年我国生活垃圾无害化处理量将约为1.82亿吨【考点】相关性分析、线性回归 (19)(本小题满分12分)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.【答案】(1) 见解析;(2)8525【解析】(1) 由已知得223AM AD ==,取BP 的中点T ,连接,AT TN , 由N 为PC 中点知//TN BC ,122TN BC ==. ......3分 又//AD BC ,故TN 平行且等于AM ,四边形AMNT 为平行四边形, 于是//MN AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB . ........6分(2) 取BC 中点E ,连接AE ,则易知AE AD ⊥,又PA ⊥面ABCD ,故可以A 为坐标原点,以AE 为x 轴,以AD 为y 轴,以AP 为z 轴建立空间直角坐标系,则()()()()50,0,00,0,45,2,0,1,20,2,02A P CN M ⎛⎫⎪ ⎪⎝⎭、、、、()55,1,2,0,2,4,,1,222AN PM PN N ⎛⎫⎛⎫∴==-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故平面PMN 的法向量()0,2,1n =485cos ,52552AN n ∴<>==⨯ ∴直线AN 与平面PMN 所成角的正弦值为8525【考点】线面平行证明、线面角的计算 (20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 【答案】(1) 见解析;(2) 21y x =- 【解析】(1)法一:由题设1(,0)2F .设12:,:l y a l y b ==,则0ab ≠,且22111(,),(,),(,),(,),(,)222222a b a b A a B b P a Q b R +---.记过,A B 两点的直线为l ,则l 的方程为2()0x a b y ab -++=. .....3分 由于F 在线段AB 上,故10ab +=. 记AR 的斜率为1k ,FQ 的斜率为2k ,则122211a b a b abk b k a a a a ab---=====-=+-. 所以FQ AR ∥. ......5分 法二:证明:连接RF ,PF ,由AP =AF ,BQ =BF 与AP ∥BQ ,得∠AFP +∠BFQ =90°, ∴∠PFQ =90°, ∵R 是PQ 的中点, ∴RF =RP =RQ , ∴△P AR ≌△F AR ,∴∠P AR =∠F AR ,∠PRA =∠FRA ,∵∠BQF +∠BFQ =180°﹣∠QBF =∠P AF =2∠P AR , ∴∠FQB =∠P AR , ∴∠PRA =∠PQF , ∴AR ∥FQ .(2)设l 与x 轴的交点为1(,0)D x , 则1111,222ABF PQF a b S b a FD b a x S ∆∆-=-=--=. 由题设可得111222a b b a x ---=,所以10x =(舍去),11x =. 设满足条件的AB 的中点为(,)E x y . 当AB 与x 轴不垂直时,由AB DE k k =可得2(1)1yx a b x =≠+-. 而2a by +=,所以21(1)y x x =-≠. 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为21y x =-. ....12分 【考点】抛物线、轨迹方程 (21)(本小题满分12分)设函数()()()cos 21cos 1f x a x a x =+-+,其中0a >,记()f x 的最大值为A .(1)求()'f x ;(2)求A ;(3)证明:()'2f x A ≤.【答案】见解析【解析】(1)()()'2sin 21sin f x a x a x =---(2)当1a ≥时,|()||cos 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =因此,32A a =-.当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--.令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值, (1)g a -=,(1)32g a =-,且当14a t a-=时,()g t 取得极小值, 极小值为221(1)61()1488a a a a g a a a--++=--=-. 令1114a a --<<,解得13a <-(舍去),15a >. ①当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-. ②当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4a g g g a-->>. 又1(1)(17)|()||(1)|048a a a g g a a--+--=>,所以2161|()|48a a a A g a a -++==. 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩. (3)由(1)得'|()||2sin 2(1)sin |2|1|f x a x a x a a =---≤+-. 当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=.当115a <<时,131884a A a =++≥,所以'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,所以'|()|2f x A ≤.【考点】导函数讨论单调性、不等式证明请考生在22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。
2016考研数三真题答案2016年考研数学三真题答案是考生们备考过程中非常关注的一个问题。
考研数学三作为考试科目中的一项,对于数学基础和解题能力的要求相对较高。
因此,掌握2016年考研数学三真题答案对于备考者来说是非常重要的。
首先,我们来看一下2016年考研数学三真题的整体情况。
这一年的数学三试卷分为两个部分,分别是选择题和非选择题。
选择题占据了试卷的大部分,其中包括了单选题和多选题。
非选择题则是开放性的问题,需要考生们进行详细的解答。
整个试卷的难度较大,对于考生们的数学基础和解题能力提出了较高的要求。
接下来,我们来分析一下2016年考研数学三真题中的选择题部分。
选择题是考生们备考过程中需要重点关注的部分。
在这一部分中,考生们需要根据题目给出的条件和要求,选择正确的答案。
这对于考生们的逻辑思维和解题能力有着很高的要求。
因此,备考过程中,考生们需要通过大量的练习来提高自己的解题能力,熟悉各种题型和解题方法。
在2016年考研数学三真题的选择题部分中,有一道题目是关于概率统计的。
这道题目考察了考生们对于概率分布和期望的理解和应用能力。
在解答这道题目时,考生们需要运用到一些概率统计的知识和技巧,例如概率分布的计算和期望的求解。
通过解答这道题目,考生们可以加深对于概率统计知识的理解,并且提高解题能力。
除了选择题部分,2016年考研数学三真题中的非选择题部分也是备考者需要重点关注的部分。
在这一部分中,考生们需要根据题目给出的条件和要求,进行详细的解答。
这对于考生们的数学推理和分析能力提出了较高的要求。
因此,备考过程中,考生们需要通过大量的练习来提高自己的解题能力,熟悉各种题型和解题方法。
在2016年考研数学三真题的非选择题部分中,有一道题目是关于微分方程的。
这道题目考察了考生们对于微分方程的理解和应用能力。
在解答这道题目时,考生们需要运用到一些微分方程的知识和技巧,例如常微分方程的求解和特解的求取。
通过解答这道题目,考生们可以加深对于微分方程知识的理解,并且提高解题能力。
研究生入学考试2000到2013年最新最全数学三考试试题2000年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2001年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2002年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2003年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____. (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵T E A αα-=, T aE B αα1+=,其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________. (6)设总体X 服从参数为2的指数分布,n X X X ,,,21Λ为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ ](3)设2n n n a a p +=,2nn n a a q -=,Λ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(B) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 都收敛.(C) 若∑∞=1n n a 条件收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定.(D) 若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n n q 敛散性都不定. [ ](4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ ] (5)设s ααα,,,21Λ均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则s ααα,,,21Λ线性无关.(B) 若s ααα,,,21Λ线性相关,则对于任意一组不全为零的数s k k k ,,,21Λ,都有.02211=+++s s k k k αααΛ(C) s ααα,,,21Λ线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21Λ线性无关的必要条件是其中任意两个向量线性无关. [ ](6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ ] 三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 五、(本题满分8分) 计算二重积分.)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n n n x n x 的和函数f(x)及其极值. 七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(x e x g x f =+ (1)求F(x)所满足的一阶微分方程; (2)求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 其中.01≠∑=n i i a 试讨论n a a a ,,,21Λ和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1)求a,b 的值;(2)利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2004年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 若()0sin lim cos 5x x xx b e a→-=-,则a =______,b =______.(2) 函数(),f u v 由关系式()(),f xg y y x g y =+⎡⎤⎣⎦确定,其中函数()g y 可微,且()0g y ≠,则2fu v∂=∂∂______. (3) 设()211,,2211,,2x xe x f x x ⎧-≤<⎪⎪=⎨⎪-≥⎪⎩ 则()2121f x dx -=⎰_____. (4) 二次型()()()()222123122331,,f x x x x x x x x x =++-++的秩为______. (5) 设随机变量X 服从参数为λ的指数分布,则{P X >=______.(6) 设总体X 服从正态分布()21,N μσ,总体Y 服从正态分布()22,N μσ,112,,,n X X X L 和212,,,n Y Y Y L 分别是来自总体X 和Y 的简单随机样本,则()()122211122n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎣⎦∑∑______. 二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 函数()()()()2sin 212x x f x x x x -=--在下列哪个区间内有界. (A )()1,0- (B )()0,1 (C )()1,2 (D )()2,3(8) 设()f x 在(),-∞+∞内有定义,且()lim x f x a →∞=,()1,0,0,0,f x g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩则(A )0x =必是()g x 的第一类间断点 (B )0x =必是()g x 的第二类间断点(C )0x =必是()g x 的连续点 (D )()g x 在点0x =处的连续性与a 的值有关. (9) 设()()1f x x x =-,则(A )0x =是()f x 的极值点,但()0,0不是曲线()y f x =的拐点 (B )0x =不是()f x 的极值点,但()0,0是曲线()y f x =的拐点 (C )0x =是()f x 的极值点,且()0,0是曲线()y f x =的拐点 (D )0x =不是()f x 的极值点,()0,0也不是曲线()y f x =的拐点 (10) 设有以下命题:① 若()2121n n n u u ∞-=+∑收敛,则1n n u ∞=∑收敛② 若1n n u ∞=∑收敛,则10001n n u ∞+=∑收敛③ 若1lim1n n nu u +→∞>,则1n n u ∞=∑发散④ 若()1n n n u v ∞=+∑收敛,则1n n a ∞=∑,1n n v ∞=∑都收敛则以上命题中正确的是(A )①② (B )②③ (C )③④ (D )①④(11) 设()f x '在[],a b 上连续,且()()0,0f a f b ''><,则下列结论中错误的是 (A )至少存在一点()0,x a b ∈,使得()()0f x f a > (B )至少存在一点()0,x a b ∈,使得()()0f x f b > (C )至少存在一点()0,x a b ∈,使得()00f x '= (D )至少存在一点()0,x a b ∈,使得()00f x =(12) 设n 阶矩阵A 与B 等价,则必有(A )当()0A a a =≠时,B a = (B )当()0A a a =≠时,B a =- (C )当0A ≠时,0B = (D )当0A =时,0B =(13) 设n 阶矩阵A 的伴随矩阵*0A ≠,若1234,,,ξξξξ是非齐次线性方程组Ax b =的互不相等的解,则对应的齐次线性方程组0Ax =的基础解系(A )不存在 (B )仅含一个非零解向量(C )含有两个线性无关的解向量 (D )含有三个线性无关的解向量(14) 设随机变量X 服从正态分布()0,1N ,对给定的()0,1α∈,数n u 满足{}P X u αα>=,若{}P X x α<=,则x 等于(A )2u α (B )12uα-(C )12u α- (D )1u α-三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分8分)求22201cos lim sin x x x x →⎛⎫- ⎪⎝⎭.(16)(本题满分8分) 求()22Dx y y d σ++⎰⎰,其中D 是由圆224x y +=和()2211x y ++=所围成的平面区域(如图).(17)(本题满分8分)设()(),f x g x 在[],a b 上连续,且满足()()x xaaf t dtg t dt ≥⎰⎰,[),x a b ∈, ()()bbaaf t dtg t dt =⎰⎰证明:()()b ba axf x dx xg x dx ≤⎰⎰.(18)(本题满分9分)设某商品的需求函数为1005Q P =-,其中价格()0,20P ∈,Q 为需求量. (Ⅰ)求需求量对价格的弹性()0d d E E >;(Ⅱ)推导()1d dRQ E dP=-(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.(19)(本题满分9分)设级数()468242462468x x x x +++-∞<<+∞⋅⋅⋅⋅⋅⋅L 的和函数为()S x .求: (Ⅰ)()S x 所满足的一阶微分方程;(Ⅱ)()S x 的表达式.(20)(本题满分13分)设()()()1231,2,0,1,2,3,1,2,2TTTa ab a b ααα==+-=---+,()1,3,3Tβ=-. 试讨论当,a b 为何值时,(Ⅰ)β不能由123,,ααα线性表示;(Ⅱ)β可由123,,ααα唯一地线性表示,并求出表示式;(Ⅲ)β可由123,,ααα线性表示,但表示式不唯一,并求出表示式.(21)(本题满分13分)设n 阶矩阵111b b b b A b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L LM M M L. (Ⅰ)求A 的特征值和特征向量;(Ⅱ)求可逆矩阵P ,使得1P AP -为对角矩阵.(22)(本题满分13分)设,A B 为两个随机事件,且()()()111,,432P A P B A P A B ===,令 1,0,.A X A ⎧=⎨⎩发生,不发生1,0,.B Y B ⎧=⎨⎩发生,不发生求:(Ⅰ)二维随机变量(),X Y 的概率分布; (Ⅱ)X 与Y 的相关系数XY ρ; (Ⅲ)22Z X Y =+的概率分布.(23)(本题满分13分) 设随机变量X 的分布函数为()1,,;,0,.x F x x x βαααβα⎧⎛⎫->⎪ ⎪=⎨⎝⎭⎪≤⎩其中参数0,1αβ>>. 设12,,,n X X X L 为来自总体X 的简单随机样本.(Ⅰ)当1α=时,求未知参数β的矩估计量;(Ⅱ)当1α=时,求未知参数β的最大似然估计量; (Ⅲ)当2β=时,求未知参数α的最大似然估计量.2005年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 极限22lim sin 1x xx x →∞=+______.(2) 微分方程0xy y '+=满足初始条件()12y =的特解为______.(3) 设二元函数()()1ln 1x y z xe x y +=+++,则()1,0dz =______.(4) 设行向量组()()()()2,1,1,1,2,1,,,3,2,1,,4,3,2,1a a a 线性相关,且1a ≠,则a =______. (5) 从数1,2,3,4中任取一个数,记为X ,再从1,,X L 中任取一个数,记为Y ,则{}2P Y ==______.(6) 设二维随机变量(),X Y 的概率分布为若随机事件{}0X =与1X Y +=相互独立,则a =______,b =______.二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 当a 取下列哪个值时,函数()322912f x x x x a =-+-恰有两个不同的零点.(A )2 (B )4 (C )6 (D )8 (8) 设()()22222123,cos ,cos DD DI I x y d I x y d σσσ==+=+⎰⎰⎰⎰⎰⎰,其中(){}22,1D x y xy =+≤,则(A )321I I I >> (B )123I I I >> (C )213I I I >> (D )312I I I >>(9) 设0,1,2,,n a n >=L 若1n n a ∞=∑发散,()111n n n a ∞-=-∑收敛,则下列结论正确的是(A )211n n a ∞-=∑收敛,21n n a ∞=∑发散 (B )21n n a ∞=∑收敛,211n n a ∞-=∑发散(C )()2121n n n a a ∞-=+∑收敛 (D )()2121n n n a a ∞-=-∑收敛(10) 设()sin cos f x x x x =+,下列命题中正确的是(A )()0f 是极大值,2f π⎛⎫⎪⎝⎭是极小值(B )()0f 是极小值,2f π⎛⎫⎪⎝⎭是极大值(C )()0f 是极大值,2f π⎛⎫⎪⎝⎭也是极大值(D )()0f 是极小值,2f π⎛⎫⎪⎝⎭也是极小值(11) 以下四个命题中,正确的是(A )若()f x '在()0,1内连续,则()f x 在()0,1内有界(B )若()f x 在()0,1内连续,则()f x 在()0,1内有界 (C )若()f x '在()0,1内有界,则()f x 在()0,1内有界 (D )若()f x 在()0,1内有界,则()f x '在()0,1内有界 (12) 设矩阵()33ij A a ⨯=满足*T A A =,其中*A 为A 的伴随矩阵,T A 为A 的转置矩阵. 若111213,,a a a 为三个相等的正数,则11a 为(A (B )3 (C )13(D (13) 设12,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则()112,A ααα+线性无关的充分必要条件是(A )10λ= (B )20λ= (C )10λ≠ (D )20λ≠(14)(注:该题已经不在数三考纲范围内)三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分8分)求011lim 1x x x e x -→+⎛⎫-⎪-⎝⎭.(16)(本题满分8分)设()f u 具有二阶连续导数,且(),y x g x y f yf x y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,求222222g g x y x y ∂∂-∂∂.(17)(本题满分9分)计算二重积分221Dx y d σ+-⎰⎰,其中(){},01,01D x y x y =≤≤≤≤.(18)(本题满分9分)求幂级数211121n n x n ∞=⎛⎫- ⎪+⎝⎭∑在区间()1,1-内的和函数()S x .(19)(本题满分8分)设()(),f x g x 在[]0,1上的导数连续,且()()()00,0,0f f x g x ''=≥≥.证明:对任何[]0,1α∈,有()()()()()()11ag x f x dx f x g x dx f a g ''+≥⎰⎰(20)(本题满分13分) 已知齐次线性方程组(ⅰ)123123123230,2350,0,x x x x x x x x ax ++=⎧⎪++=⎨⎪++=⎩ 和 (ⅱ)()12321230,210,x bx cx x b x c x ++=⎧⎪⎨+++=⎪⎩ 同解,求,,a b c 的值.(21)(本题满分13分)设T A C D C B ⎛⎫= ⎪⎝⎭为正定矩阵,其中,A B 分别为m 阶,n 阶对称矩阵,C 为m n ⨯阶矩阵.(Ⅰ)计算T P DP ,其中1mn E A C P O E -⎛⎫-= ⎪⎝⎭;(Ⅱ)利用(Ⅰ)的结果判断矩阵1T B C A C --是否为正定矩阵,并证明你的结论.(22)(本题满分13分)设二维随机变量(),X Y 的概率密度为()0,01,02,,1,x y x f x y <<<<⎧=⎨⎩其它. 求:(Ⅰ)(),X Y 的边缘概率密度()(),X Y f x f y ; (Ⅱ)2Z X Y =-的概率密度()Z f z ;(Ⅲ)1122P Y X ⎧⎫≤≤⎨⎬⎩⎭.(23)(本题满分13分)设()12,,,2n X X X n >L 为来自总体()20,N σ的简单随机样本,其样本均值为X ,记,1,2,,i i Y X X i n =-=L .(Ⅰ)求i Y 的方差,1,2,,i DY i n =L ; (Ⅱ)求1Y 与n Y 的协方差()1,n Cov Y Y ;(Ⅲ)若()21n c Y Y +是2σ的无偏估计量,求常数c .2006年全国硕士研究生入学统一考试数学三试题一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上.(1) ()11lim ______.nn n n -→∞+⎛⎫= ⎪⎝⎭(2) 设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()2____.f '''=(3) 设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z=(4) 设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______.(6) 设总体X 的概率密度为()()121,,,,2x n f x e x X X X -=-∞<<+∞L 为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则()(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . (8) 设函数()f x 在0x =处连续,且()22lim1h f h h →=,则()(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在 (C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 (9) 若级数1n n a ∞=∑收敛,则级数()(A) 1n n a ∞=∑收敛 . (B )1(1)n n n a ∞=-∑收敛.(C) 11n n n a a ∞+=∑收敛. (D) 112n n n a a ∞+=+∑收敛. (10) 设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是()(A) []12()()C y x y x -. (B) []112()()()y x C y x y x +-.(C) []12()()C y x y x +. (D) []112()()()y x C y x y x ++(11) 设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是()(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. (12) 设12,,,s αααL 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是() (A) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性相关. (B) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关.(C) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关.(D) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性无关.列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(A) 1C P AP -=. (B) 1C PAP -=.(C) T C P AP =. (D) T C PAP =.(14) 设随机变量X 服从正态分布211(,)N μσ,随机变量Y 服从正态分布222(,)N μσ,且 {}{}1211P X P Y μμ-<>-<则必有()(A) 12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ>三、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin ,,0,01arctan xy y yf x y x y xy xπ-=->>+,求:(Ⅰ)()()lim ,y g x f x y →+∞=;(Ⅱ)()0lim x g x +→。
第 1 页 2016年考研数学三真题及详细解析 一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.
(1)设函数()yfx在(,)内连续,其导数如图所示,则( ) (A)函数有2个极值点,曲线()yfx有2个拐点 (B)函数有2个极值点,曲线()yfx有3个拐点 (C)函数有3个极值点,曲线()yfx有1个拐点 (D)函数有3个极值点,曲线()yfx有2个拐点 【答案】(B)
xy
0 【解析】【解析】由图像易知选B 2、已知函数(,)xefxyxy,则
(A)''0xyff (B)''0xyff (C)''xyfff (D)''xyfff 【答案】(D) 【解析】2(1)'xxexyfxy 2'xyefxy,所以''xyfff
(3)设(i,,)iiDTxydxdy3123,其中(,),Dxyxy10101,
(,),,(,),DxyxyxDxyxxy223010011,则
(A)TTT123 (B)TTT312 (C)TTT231 成功在于执着,祝大家考研成功! hbwendu.com 第2 页
(D)TTT213 【答案】B 【解析】由积分区域的性质易知选B.
(4)级数为sin()nnknn1111,(K为常数) (A)绝对收敛 (B)条件收敛 (C)发散 (D)收敛性与K有关 【答案】A 【解析】由题目可得,
sin()sin()sin()()nnnnnnknknknnnnnnnn1111111111
因为sin()()()nknnnnnnnnnn111111,由正项级数的比较判别法得,该级数绝对收敛。 (5)设,AB是可逆矩阵,且A与B相似,则下列结论错误的是( )
(A)TA与TB相似 (B)1A与1B相似 (C)TAA与TBB相似 (D)1AA与1BB相似 【答案】(C) 【解析】此题是找错误的选项。由A与B相似可知,存在可逆矩阵,P使得1PAPB,则 111111111111111111(1)()()~,A(2)()~(3)()~, TTTTTTTTPAPBPAPBABPAPBPAPBABBPAAPPAPPAPBBAABBD
故()不选;,故()不选;故()不选;
此外,在(C)中,对于111()TTPAAPPAPPAP,若1=PAPB,则1()TTTTPAPB,而1TPAP未必等于TB,故(C)符合题意。综上可知,(C)为正确选项。
(6)设二次型222123123122313(,,)()222fxxxaxxxxxxxxx的正负惯性指数分别为1,2,则 第 3 页
( ) (A)1a (B)2a (C)21a (D)1a或2a 【答案】(C)
【解析】考虑特殊值法,当0a时,123122313(,,)222fxxxxxxxxx,
其矩阵为011101110,由此计算出特征值为2,1,1,满足题目已知条件,故0a成立,因此(C)为正确选项。 7、设,AB为随机事件,0()1,0()1,PAPB若()1PAB则下面正确的是( )
(A)()1PBA (B)()0PAB (C)()1PAB (D)()1PBA 【答案】(A) 【解析】根据条件得()()PABPB
()()1()()1()1()1()PABPABPABPBAPAPAPA
8、设随机变量,XY独立,且(1,2),(1,4)XNY,则()DXY为 (A)6 (B)8 (C)14 (D)15 【答案】(C)
【解析】因为,XY独立,
则22222()()()()DXYEXYEXYEXEYEXEY 222()()()14DXEXDYEYEXEY
二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. 成功在于执着,祝大家考研成功! hbwendu.com 第4 页
(9)已知函数()fx满足()sinlimxxfxxe3012121,则lim()____xfx0 【答案】6
【解析】因为()sin()sin()()limlimlimlimxxxxxfxxfxxfxxfxexx3000012121221333 所以lim()xfx06
(10)极限limsinsinsin____xnnnnnn201122. 【答案】sincos11 【解析】limsinsinsinlimsinsinsincosnxxiniinxxdxnnnnnnn1200011121211
(11)设函数(,)fuv可微,(,)zzxy有方程()(,)xzyxfxzy221确定,则,____dz01. 【答案】,dzdxdy012 【解析】()(,)xxyxfxzy221两边分别关于,xy求导得 ()(,)(,)()()((,)()(,))xxyyzxzxfxzyxfxzyzxzyxfxzyzfxzy2121212112,将,,xyz011代入得,
,dzdxdy01
2
(13)行列式1000100014321____________. 【答案】432234 第 5 页
【解析】4143210010100010=01+4110++2+3+4.00132+101432+1
(-)
14、设袋中有红、白、黑球各1个,从中有放回的取球,每次取1个,直到三种颜色的球都取到为止,则取球次数恰为4的概率为
【答案】29
【解析】22133
1112()23339PACC
三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.
15 (本题满分10分)求极限410limcos22sinxxxxx
【解析】410limcos22sinxxxxx
4cos22sin10limxxxxxe
24434
442121()24!3!0limxxx
xxxxxeo
13e
16、(本题满分10分)
设某商品的最大需求量为1200件,该商品的需求函数()QQp,需求弹性(0)120pp,p为单价(万元) (1)求需求函数的表达式
(2)求100p万元时的边际收益,并说明其经济意义。 【解析】(1)由弹性的计算公式得 pdQQdp
可知pdQQdp120pp 成功在于执着,祝大家考研成功! hbwendu.com 第6 页
分离变量可知120dQdpQp 两边同时积分可得 lnln(120)QpC 解得(120)QCp 由最大需求量为1200可知 (0)1200Q,解得10C
故10(120)120010Qpp (2)收益(120010)RQpPP
边际收益:(120020)(10)20012000dRdRdpppdQdpdQ
已知1008000pdRdQ 经济学意义是需求量每提高1件,收益增加8000万元. (17)(本题满分10分) 设函数,01022xdtxtxf求xf',并求xf的最小值。
【解析】当11x时,313423122022xxdtxtdttxxfxx 当1x时,3121022xdttxxf
则131103134013134131223232xxxxxxxxxxxf
121024012412'22xxxxxxxxxx
xf