① 随机抽样知识研习
- 格式:ppt
- 大小:1.67 MB
- 文档页数:25
随机抽样知识点总结随机抽样是统计学中的重要概念,它是指从总体中随机选择一部分个体进行观察与研究的一种方法。
在实际应用中,随机抽样常常被用来代表总体,以便进行统计推断和决策分析。
下面我们来总结一下关于随机抽样的一些重要知识点。
一、随机抽样的定义随机抽样是指从总体中以一定的概率分布随机选择一个或多个个体作为样本的过程。
在进行随机抽样时,要确保每个个体有相等的机会被选入样本,从而保证样本的代表性和可靠性。
二、随机抽样的方法1. 简单随机抽样:从总体中以相等的概率随机选择样本的方法,保证每个个体被选入样本的概率相等。
2. 分层随机抽样:将总体按照某种特定的特征分成若干个层次,然后在每个层次中进行简单随机抽样。
3. 系统抽样:按照一定的规律从总体中选择个体作为样本,例如每隔k个个体选择一个个体作为样本。
4. 整群抽样:将总体分成若干个互不相交的群体(或群组),然后从中随机选择若干个群作为样本。
5. 多阶段抽样:将总体层次化,先进行群组抽样,再在抽样所得的群组内进行简单随机抽样。
三、随机抽样的特点1. 代表性:通过随机抽样,样本能够尽可能代表总体的特征和变异性,从而使得对总体的推断更加准确。
2. 可靠性:在一定的置信水平下,通过对样本数据的分析和推断,可以得出关于总体的可靠性结论。
3. 实用性:随机抽样是一种简单、有效的统计抽样方法,能够在相对较小的成本和时间内获得对总体的有效信息。
四、随机抽样的应用1. 民意调查:随机抽样被广泛应用于民意调查中,通过对选民的随机抽样,可以得出对全国范围内的选民意见的推断。
2. 商品抽检:在商品生产过程中,可以通过随机抽样对产品进行抽检,保证产品质量的可靠性和稳定性。
3. 医学实验:在医学研究中,可以通过随机抽样的方式选择研究对象,以保证研究结论的有效性和可靠性。
4. 企业调查:在市场调研、消费者满意度调查等方面,也常常运用随机抽样的方法进行样本选择,以获得对总体的准确推断。
这篇教案主要是在数学随机抽样这个知识点上注重教学的深入浅出,采用有效的教学方法帮助学生轻松掌握难点。
一、教学目标:教学目标主要是帮助学生掌握数学随机抽样的基本概念和方法,包括如何计算样本方差和样本均值,并能够精确应用到实际的问题中。
二、教学内容:1、数学随机抽样的基本概念和定义随机抽样是指从总体中随机抽取一定数量的个体作为样本,从而用样本的数据来推断总体的特征。
在数学中,随机抽样包括简单随机抽样、分层随机抽样、整群随机抽样等多种形式。
2、数学随机抽样的方法数学随机抽样主要采用两种方法:一种是等概率抽样法,另一种是无放回抽样法。
其中,等概率抽样法是指每个个体被选中的概率相等,而无放回抽样法是指抽样过程不考虑是否重复抽到已经抽中的个体。
3、计算样本方差和样本均值的方法在数学随机抽样中,样本方差和样本均值是非常重要的两个统计量。
样本方差的计算方法是样本各个数据与数据的平均值之差的平方和的平均值,而样本均值就是指样本所有数据的算术平均数。
三、教学任务:1、基础概念学习,包括随机抽样的定义,种类以及方法等。
2、样本方差和样本均值的计算方法,以及如何使用计算机进行计算。
3、教学案例分析,应用数学随机抽样的相关知识,对实际问题进行分析和解决。
四、教学方法:1、引导式教学法通过引导式教学,引导学生在教学的过程中产生兴趣,积极去学习和思考。
在师生对话中,老师通过引导提问,让学生不断地参与学习。
2、合作探究法采用合作学习的方式,鼓励学生之间互相交流、协作,通过彼此之间的交流和探讨,提高学生的学习效果。
3、案例分析法通过教学案例分析的方式,让学生将所学知识运用到实际问题的探讨中,从而更好地理解所学。
五、教学流程:1、讲解什么是数学随机抽样以及其基本概念。
2、讲解数学随机抽样的方法。
3、讲解计算样本方差和样本均值的方法。
4、以教学案例的方式,让学生将学习到的知识应用到实际的问题中。
5、对学生的学习情况进行总结并进行充分的讨论。
初中了解随机抽样的基本方法知识点随机抽样是统计学中常用的一种抽样方法,通过随机选择样本,可以有效地代表总体,并且减少因抽样误差而引起的统计结论偏差。
在初中阶段,学生需要了解随机抽样的基本方法,以便在未来的学习和实践中能够正确地进行抽样调查和数据分析。
本文将介绍初中学生应该了解的随机抽样的基本方法知识点。
一、简单随机抽样简单随机抽样是一种最基本的抽样方法,它的特点是每个样本有相等的机会被选中。
简单随机抽样的步骤如下:1.首先,确定总体。
总体是指我们要进行抽样调查的对象或群体。
2.然后,确定样本量。
样本量是指我们从总体中随机选择的样本个数。
3.接下来,给总体中的每个个体或元素赋予编号,编号应该是唯一且有序的。
4.使用随机数表或随机数发生器产生随机数,根据随机数选择对应的编号,选中对应的样本。
5.重复步骤4,直到选够所需的样本量。
6.最后,对选中的样本进行调查和分析。
二、系统抽样系统抽样是一种按照一定规则从总体中选择样本的方法,它比简单随机抽样更加高效。
系统抽样的步骤如下:1.确定总体和样本量。
2.给总体中的每个个体或元素赋予编号。
3.计算出总体容量与样本量的比值,得到抽样间距。
4.随机选择一个起始个体,然后按照抽样间距选取样本。
5.重复步骤4,直到达到所需的样本量。
6.最后,对选中的样本进行调查和分析。
三、分层抽样分层抽样是将总体划分为若干层,在每一层中进行抽样。
分层抽样的步骤如下:1.确定总体和样本量。
2.根据总体的特点和目的,将总体划分为若干个层。
3.确定每个层的样本量,并计算出各层的比例或者确定样本量的比例。
4.分别从每个层中进行简单随机抽样或者其他抽样方法抽取样本。
5.对选中的样本进行调查和分析。
四、整群抽样整群抽样是将总体划分为若干个互不重叠的群组,然后从群组中进行抽样。
整群抽样的步骤如下:1.确定总体和群组。
2.将总体划分为互不重叠的群组。
3.确定每个群组的样本量,并计算出各群组的比例或者确定样本量的比例。
随机抽样高考知识点随机抽样是统计学中一种重要的采样方法,被广泛应用于各个领域。
在高考备战中,合理地应用随机抽样有助于提高复习效率,使学生更好地掌握高考知识点。
本文将凭借着抽样理论的知识,为大家介绍如何进行随机抽样高考知识点的方法和技巧。
一、了解高考知识体系在进行随机抽样之前,我们首先要对高考的知识体系有一个整体的了解。
高考知识点包括语文、数学、英语和其他各个学科的基础知识与应用能力。
通过梳理高考大纲和各个学科的知识点,可以形成一个较为完整的高考知识体系框架。
这样我们在进行随机抽样时,才能够有针对性地进行选择,针对自己薄弱的知识点进行着重复习。
二、确定随机抽样样本数量在进行随机抽样前,我们需要确定需要随机抽取的样本数量。
样本数量的多少会直接影响到我们所获得的信息的可靠性和代表性。
那么如何确定样本数量呢?通常情况下,我们可以利用抽样原则来进行估算。
抽样原则是指样本数量应当保证具有良好的代表性,即能够很好地反映整体的特征,且样本的大小不应过大或过小。
在高考复习中,我们可以采用逐步抽样的方法。
即先抽取一个相对较小的样本量,然后根据这些样本的反馈情况,逐步调整,确定最终所需的样本数量。
这样既能够节省时间和精力,又能够很好地掌握高考知识点。
三、利用随机数表进行抽样随机数表是用于进行随机抽样的重要工具之一。
我们可以准备一份随机数表,然后利用该表进行高考知识点的抽样。
具体操作方式为:1. 首先,根据事先确定的样本数量,找到随机数表的初始位置;2. 然后,按照表中的顺序,依次取出随机数;3. 接着,根据抽取的随机数,从相应的高考知识点中抽取样本;4. 最后,将抽取的样本进行整理和总结,形成系统的知识点复习资料。
通过利用随机数表进行抽样,我们可以确保每个知识点都有机会被抽取到,有利于全面提高高考知识点的熟练程度。
四、注意随机抽样的潜在偏差在进行随机抽样时,我们需要注意一些潜在的偏差。
抽样偏差是指由于抽样方法不当而导致样本结果与总体特征存在明显差异的情况。
高二数学《随机抽样》知识点总结
高二数学《随机抽样》知识点总结
一、简单随机抽样:
1.简单随机抽样的概念:
设一个总体含有N个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
2.最常用的简单随机抽样方法有两种——抽签法和随机数法.
二、系统抽样的步骤
假设要从容量为N的总体中抽取容量为n的样本:
(1)先将总体的N个个体编号;
(2)确定分段间隔k,对编号进行分段,当是整数时,取k=;
(3)在第1段用简单随机抽样确定第一个个体编号
l(l≤k);
(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号l+k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本.
三、分层抽样
1.分层抽样的概念:
在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.
2.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.
3.分层抽样时,每个个体被抽到的机会是均等的.。
高二数学下册《随机抽样》知识点复习总体和样本①在统计学中,把研究对象的全体叫做总体。
②把每个研究对象叫做个体。
③把总体中个体的总数叫做总体容量。
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,xx研究,我们称它为样本.其中个体的个数称为样本容量。
简单随机抽样也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随。
机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同,样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础,高三。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
简单随机抽样常用的方法①抽签法②随机数表法③计算机模拟法④使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
抽签法①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查。
练习题:.在简单随机抽样中,某一个个体被抽到的可能性A.与第几次抽样有关,次抽到的可能性最大B.与第几次抽样有关,次抽到的可能性最小c.与第几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与样本容量无关解析:由随机抽样的特点知某个体被抽到的可能性与第几次抽样无关,每一次抽到的可能性相等.答案:c.某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显着差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A.抽签法B.随机数法c.系统抽样法D.分层抽样法解析:从全体学生中抽取100名应用分层抽样法,按男、女学生所占的比例抽取.故选D.答案:D.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是A.简单随机抽样B.按性别分层抽样c.按学段分层抽样D.系统抽样解析:因为男女生视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样,故选c.答案:c。
初中了解随机抽样的基本方法知识点随机抽样是统计学中常用的一种数据采集方法,通过从总体中选择一部分样本来进行研究和分析。
了解随机抽样的基本方法对于初中生来说是很重要的,因为它可以帮助他们更好地理解和应用统计学知识。
本文将介绍随机抽样的基本方法知识点,以便初中生能够掌握这一重要的统计学概念。
一、什么是随机抽样?随机抽样是指从总体中按照一定的概率方法选择样本的过程。
在随机抽样中,每个个体被选入样本的概率是相等的,这样可以保证样本的代表性,进而推断出总体的特征。
随机抽样是进行统计研究的基础,能够减小样本误差,提高统计结果的可靠性。
二、随机抽样的基本方法1. 简单随机抽样简单随机抽样是最基本、最常用的抽样方法。
它的特点是每个个体都有相等的机会被选为样本,且样本之间相互独立。
简单随机抽样的步骤如下:(1)确定总体:首先确定要进行抽样研究的总体,比如某个班级的学生。
(2)编制抽样框架:将总体按特定的顺序编号,形成一个抽样框架,比如按学号编号。
(3)确定样本容量:确定需要抽取的样本容量,比如抽取20名学生作为样本。
(4)使用随机数表或随机数发生器:根据抽样框架的编号,利用随机数表或随机数发生器来随机选择样本。
(5)抽取样本:按照随机选择的结果,从抽样框架中抽取样本。
2. 系统抽样系统抽样是在抽样框架上按照一定的规律选择样本的方法。
它的特点是通过均匀地按一定步长选取样本,保证了样本的代表性。
系统抽样的步骤如下:(1)确定总体:同样需要确定要进行抽样研究的总体。
(2)编制抽样框架:同样要将总体按特定的顺序编号,形成一个抽样框架。
(3)确定抽样间隔:确定需要的抽样间隔,即每隔多少个样品抽取一个样本。
(4)随机开始:使用随机数表或随机数发生器,在抽样框架的某个位置上随机选择一个起始点。
(5)抽取样本:从起始点开始,按照抽样间隔,依次选取样本。
3. 分层抽样分层抽样是根据总体的某种特征将总体划分为若干个层次,然后在每个层次中进行独立的随机抽样,最后将不同层次的样本合并在一起。
七年级简单随机抽样知识点简单随机抽样是统计学中非常重要的一种抽样方法。
它是指从总体中随机抽取若干个样本,且每个样本被选中的概率相等。
下面详细介绍一下七年级学生在学习简单随机抽样这一知识点时需要掌握的内容。
1. 总体和样本在进行简单随机抽样时,首先需要明确总体和样本的概念。
总体是指研究对象的全体,而样本则是从总体中随机抽取的一部分。
在进行统计分析时,样本往往可以代表总体。
2. 随机数表简单随机抽样通常需要使用随机数表。
随机数表是一种随机产生数字的表格,其中的每个数字都具有相同的概率被选中。
选取样本时,可以使用随机数表中的数字来决定选取哪些个体。
3. 抽样误差抽样误差是指样本统计量与总体参数之间的差异。
在进行简单随机抽样时,样本的大小和选取的方式都会影响抽样误差的大小。
通常情况下,样本的大小越大,抽样误差就越小。
4. 抽样分布抽样分布是指在进行多次简单随机抽样后,得到的样本统计量的分布。
在抽样分布中,每个样本统计量都有可能出现,但是这些统计量的出现概率不同。
通过分析抽样分布,可以计算出总体参数的置信区间。
5. 样本量的确定在进行简单随机抽样时,需要确定样本的大小。
样本的大小决定了抽样误差的大小和统计分析的精度。
通常情况下,样本的大小需要根据总体的大小和统计目的来确定。
样本量的大小过小会导致抽样误差较大,而过大则会浪费资源。
总的来说,简单随机抽样是统计学中非常基础和重要的一种抽样方法。
在学习简单随机抽样时,了解总体和样本的概念、使用随机数表、抽样误差的影响因素、抽样分布以及样本量的确定都是必备的知识点。
随机抽样【学习目标】1、了解简单随机抽样的概念,掌握实施简单随机抽样的常用方法:抽签法和随机数表法;2、了解系统抽样的意义,并会用系统抽样的方法从总体中抽取样本;3、了解分层抽样的概念与特征,清楚简单随机抽样、系统抽样、分层抽样的区别和联系.【要点梳理】要点一、简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.1、简单随机抽样的概念:一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体被抽到的可能性是相同的,那么这种抽样方法叫简单随机抽样,这样抽取的样本,叫做简单随机样本.2、简单随机抽样的特点:(1)被抽取样本的总体个数N是有限的;(2)简单随机样本数n小于等于样本总体的个数N;(3)从总体中逐个进行抽取,使抽样便于在实践中操作;(4)它是不放回抽取,这使其具有广泛应用性;(5)每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.3、实施抽样的方法:(1)抽签法:抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力又不方便,若标号的纸片或小球搅拌得不均匀还可能导致抽样的不公平.抽签法的一般步骤:①将总体中的N个个体编号;②把这N个号码写在形状、大小相同的号签上;③将号签放在同一箱中,并搅拌均匀;④从箱中每次抽取一个号签,连续抽取n次;⑤将总体中与抽到的号签的编号一致的n个个体取出.(2)随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.随机数表法的步骤:①将总体的个体编号(每个号码的位数一致);②在随机数表中任选一个数字作为开始;③从选定的数开始按一定的方向读下去,若得到的数码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止.注意:①选定开始数字,要保证所选数字的随机性;②确定读数方向获取样本号码时,读数方向可向左、向右、向上、向下,样本号码不能重复,否则舍去.要点诠释:1、简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2、抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型.3、简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.要点二、系统抽样1、系统抽样的概念:当总体中的个体比较多时,将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取一个个体,得到所需要的样本,这样的抽样方法称为系统抽样,也称作等距抽样.2、系统抽样的特征:(1)当总体容量N 较大时,采用系统抽样;(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样;(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.3、系统抽样的一般步骤:(1)采用随机的方法将总体中的N 个个体编号;(2)将编号按间隔k 分段,当N n 是整数时,取N k n =,当N n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数'N 能被n 整除,这时取'N k n =,并将剩下的总体重新编号; (3)在第一段用简单随机抽样确定起始个体的编号()l l N l k ∈≤,;(4)按照一定的规则抽取样本,通常是将编号为2(1)l l k l k l n k +++-,,,,的个体取出. 要点诠释:1、从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.2、系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.要点三、分层抽样1、分层抽样的概念:当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,可将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.2、分层抽样的特点:(1)适用于总体是由有明显差别的几部分组成时的情况;(2)分层抽样对各个个体来说被抽取的可能性相同.3、分层抽样的优点:(1)样本具有较强的代表性;(2)在各层抽样时,可灵活地选用不同的抽样方法.4、分层抽样的步骤:(1)将总体按一定的标准分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(各层可以按简单随机抽样或系统抽样的方法抽取)要点诠释:1、应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.2、分层抽样是当总体有差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是,层内样本的差异要小,而层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样.(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.3、分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法.要点四、三种抽样方法的比较【典型例题】类型一:简单随机抽样例1.下列抽取样本的方式是否属于简单随机抽样?说明理由.(1)从无限多个个体中抽取100个个体作样本;(2)盒子里共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意抽出1个零件进行质量检验后再把它放回盒子里.【解析】(1)不是简单随机抽样,因为总体的个数是无限的.(2)不是简单随机抽样,因为它是放回抽样.【总结升华】简单随机抽样的四个特点:(1)总体的个数有限;(2)逐个抽取;(3)是不放回的抽取;(4)每个个体被抽到的可能性必须是相同的.举一反三:【变式1】下面的抽样方法是简单随机抽样吗?为什么?(1)某班45名同学,指定个子最高的5名同学参加学校组织的某项活动.(2)从20个零件中一次性抽出3个进行质量检验.(3)一小孩从玩具箱中的20件玩具中随意拿出一件来玩.玩后放回再拿下一件,连续玩了5件.【解析】(1)不是简单随机抽样.因为这不是等可能抽样.(2)不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.(3)不是简单随机抽样.因为这是有放回抽样.例2.某工厂有112件产品,产品的编号为1,2,…,112.用随机数表法抽取一个容量为10的样本,写出抽样过程.【解析】解法一:第一步,将这112件产品原有的编号调整为001,002,003, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向,例如,选第9行第7列的数“3”,向右读;第三步,从“3”开始,向右读,每次读出三位,凡不在001~112中的数跳过去不读,前面已经读过的数也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,产品原来的编号为74,100,94,52,80,3,105,107,83,92的那10件就是被抽取出来的产品.解法二:第一步,将这112件产品原来的编号调整为101,102,103, (212)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向,例如,选第9行第7列的数“3”,向右读;第三步,从“3”开始,向右读,每次读出三位,凡不在101~212中的数跳过去不读,前面已经读过的数也跳过去不读,依次可得到155,134,174,180,165,196,206,105,160,201;第四步,对应原来编号为55,34,74,80,65,96,106,5,60,101的产品就是要抽取的对象.【总结升华】本例中,112件产品原有的编号1,2,…,112的位数不统一,有1位数,有2位数,还有3位数.为了解决这一矛盾,解法一采用了“在位数少的数前面加0”的处理方法,例如,1变为001,11变为011;解法二采用了“把原来的数加上10的倍数”的处理方法.例如,2变为102,12变为112.解法一、解法二所采用的处理方法都达到了凑齐位数的效果.举一反三:【变式1】某校有学生1200人,为调查某种情况,打算抽取一个样本容量为50的样本,则此样本采用简单随机抽样将如何获得?【解析】解法一:(抽签法)①把该校学生编号,号码为0001,0002,0003,…,1200;②做大小、形状相同的号签;③将这些号签放在同一个箱子里,进行均匀搅拌;④抽签时,每次从中抽出1个号签,连续抽出50个号签,就得到了一个容量为50的样本.解法二:(随机数表法)①把该校学生编号,号码为0001,0002,0003,…,1200;②在随机数表中选定一个起始位置,假如起始位置是表中第5行第9列的数字6;③从6开始向右连续取数字,以4个数为一组,取到一行末尾时转到下一行从左到右继续读取,所得数字如下:6438,5482,4622,3162,4309,9006,1844,3253,2383,0130,3016……所取得的4位数字如果小于或等于1200,则对应此号的学生就是被抽取的个体.如果所取得的4位数字大于1200而小于2400则减去1200,剩余数字即是被抽取的号码.如果遇到相同号码,则只留第一次取得的数字,其余的舍去,经此处理,被抽取的学生号码如下:0438,0682,1022,0762,0709,0606,0644,0853,1183,0130,0616……一直取够50人止.【变式2】要从10架钢琴中抽取4架进行质量检验,请你设计抽样方案.【解析】解法一:(随机数表法)第一步,将10架钢琴编号,号码是0,1, (9)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第3行第6列的数“2”,向右读.第三步,从数“2”开始,向右读,每次读取1位,重复数字只记录一次,依次可得到2,7,6,5.第四步,以上号码对应的4架钢琴就是要抽取的对象.解法二:(抽签法)第一步,将10架钢琴编号,号码是0,1, (9)第二步,将号码分别写在一张纸条上,揉成团,制成号签第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个抽取4个号签,并记录上面的编号.第五步,所得号码对应的4架钢琴就是要抽取的对象.【总结升华】(1)将钢琴编号从0开始,10架钢琴用0—9就可表示,这样总体中的所有个体可用一位数表示,便于使用随机数表.(2)用抽签法抽样关键是将号签搅匀.类型二:系统抽样例3.下列抽样中,最适宜用系统抽样法的是()A.某市的4个区共有2000名学生,且4个区的学生人数之比为3∶8∶8∶2,从中抽取200名学生做样本B.从某厂生产的2000个电子元件中随机抽取5个做样本C.从某厂生产的2000个电子元件中随机抽取200个做样本D.从某厂生产的20个电子元件中随机抽取5个做样本【答案】 C【解析】A中各区学生有区别,不好分成均衡的几部分,不适宜,B中抽取样本容量太小,不适宜.D 中总体个数较少,不适宜.故选C【总结升华】系统抽样适合总体容量较大且个体间差异较小的情况.举一反三:【变式1】下列抽样中不是系统抽样的是().A.从号码为1~15的15个球中任选3个作为样本,先在1~5号球中用抽签法抽出i0号,再将号码为i0+5,i0+10的球也抽出B.工厂生产的产品,用传送带将产品送入包装车间的过程中,检查人员从传送带上每5 min抽取一件产品进行检验C.弄某项市场调查,规定在商店门口随机地抽一个人进行询问,直到调查到事先规定的调查人数为止D.某电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈【答案】C【解析】本题的判定依据是系统抽样方法的特征:系统抽样适用于个体数目较多但均衡的总体.判断一种抽样是不是系统抽样,首先看是否在抽样前知道总体是由什么构成的,抽样的方法能否保证每个个体按事先规定的条件等可能入样,再看抽样过程中是否将总体分成了几个均衡的部分,是否在每个部分中进行简单随机抽样.本题C显然不是系统抽样,因为事先不知道总体,抽样方法也不能保证每个个体等可能入样,总体也没有分成均衡的几部分,故C不是系统抽样.【总结升华】系统抽样的特点:①适用于总体容量较大的情况;②剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;③是等可能抽样,每个个体被抽到的可能性都是n/N.例4.为了了解参加某种知识竞赛的1 003名学生的成绩,抽取一个容量为50的样本,选用什么抽样方法比较恰当?简述抽样过程.【思路点拨】因为总体容量较大,且个体差异不大,适宜选用系统抽样.【解析】抽样过程如下:(1)随机地将这l 003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1000能被样本容量50整除,然后将1000个个体重新编号为1,2,3, (1000)(3)将总体按编号顺序均分成50部分,每部分包括20个个体.(4)在编号为1,2,3,…,20的第一部分个体中,利用简单随机抽样抽取一个号码,比如是18.(5)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.【总结升华】(1)总体中的每个个体被剔除的概率相等都是31003,也就是每个个体不被剔除的概率相等都是10001003.采用系统抽样时每个个体被抽取的概率都是501000,所以在整个抽样过程中每个个体被抽取的可能性仍然相等,都是10005050 100310001003⨯=.(2)系统抽样是建立在简单随机抽样的基础之上的,在总体中剔除若干个个体时,采用的是简单随机抽样;当将总体均分后对第一部分进行抽样时,采用的也是简单随机抽样.举一反三:【变式1】从某厂生产的802辆轿车中抽取80辆测试某项性能.请合理选择抽样方法进行抽样,并写出抽样过程.【解析】因为802不能整除80,为了保证“等距”分段,应先剔除2个个体.由于总体及样本中的个体数较多,且无明显差异,因此采用系统抽样的方法,步骤如下:第一步,先从802辆轿车中剔除2辆轿车(剔除方法可用随机数表法);第二步,将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每段含8001080k==个个体;第三步,从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;第四步,从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.【总结升华】用系统抽样法抽取样本,当Nn不为整数时,取Nkn⎡⎤=⎢⎥⎣⎦,即先从总体中用简单随机抽样的方法剔除N-nk个个体,且剔除多余的个体不影响抽样的公平性.【变式2】某服装厂平均每小时大约生产服装362件,要求质检员每小时抽取40件服装检验其质量状况,请你设计一个调查方案.【解析】因为总体中的个体数较多,并且总体是由没有明显差异的个体组成,所以本题宜采用系统抽样法.第一步:把这些服装分成40组,由于36240的商是9,余数是2,所以每个组有9件服装还剩2件服装,这时分段间隔就是9.第二步:先用简单随机抽样的方法从这些服装中抽取2件服装不进行检验.第三步:将剩下的服装进行编号,编号分别为0,1,2, (359)第四步:从第一组(编号分别为0,1,…,8)的服装中按照简单随机抽样的方法抽取1件服装,比如,编号为k.第五步:依次抽取编号分别为下面数字的服装k,k+9,k+18,k+27,…,k+39×9,这样就抽取了一个容量为40的样本.类型三:分层抽样例5.在下列问题中,各采用什么抽样方法抽取样本?(1)从20台彩电中抽取4台进行质量检验;(2)科学会堂有32排座位,每排有40个座位(座号为1~40),一次报告会坐满了听众,会后为听取意见留下了座号为18的所有32名听众进行座谈;(3)光远中学有180名教职工,其中教师136名,管理人员20名,后勤服务人员24名,为征求某项意见,现从中抽取一个容量为15的样本.【答案】(1)简单随机抽样;(2)系统抽样;(3)分层抽样.【解析】(1)所述问题中总体中的个体数和样本容量均较少,故宜用简单随机抽样法;(2)所述问题具有总体中的个体数较多,且每个个体无明显差异的特点,所以适宜用系统抽样法;(3)所述问题的总体中的个体具有明显差异,即出现了3个层次,因此适宜用分层抽样法.【总结升华】总体容量较小宜用抽签法;总体容量较大,而样本容量较小宜用随机数表法;总体容量较大,样本容量也较大的宜用系统抽样法;总体是由差异明显的几个层次组成,宜用分层抽样法.举一反三:【变式1】一个单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人,为了了解职工的收入情况,要从中抽取一个容量为20的样本,如何去抽取?方法一:将160人从1到160编上号,然后将用白纸做成的有1~160号的160个号签放入箱内搅匀,最后从中抽取20个签,与签号相同的20个人被选出.方法二:将160人从1至160编号,按编号顺序分成20组,每组8人,令1~8号为第一组,9~16号为第二组,……,153~160号为第20组.从第一组中用抽签方式抽到一个为k号(1≤k≤8),其余组是(k+8n)号(n=1,2,3,…,19),以此抽取20人.方法三:按20∶160=1∶8的比例,从业务员中抽取12人,从管理人员中抽取5人,从后勤服务人员中抽取3人,都用简单随机抽样法从各类人员中抽取所需人数,他们合在一起恰好抽到20人.以上的抽样方法,依次是简单随机抽样、分层抽样、系统抽样的顺序是().A.方法一、方法二、方法三B.方法二、方法一、方法三C.方法一、方法三、方法二D.方法三、方法一、方法二【答案】C【变式2】某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样【答案】D例6【思路点拨】先采用分层抽样法确定出此地区城市、县镇、农村应被抽取的个体数,再用分层抽样法将城市应抽取的个体数分配到小学、初中、高中.同理可以完成县镇、农村的分配.【解析】第一步,确定城市、县镇、农村应抽取的个体数.城市、县镇、农村的学生数分别为:357000+226200+11000=695200(人),221600+134200+43300=399100(人),258100+11290+6300=275690(人).因为样本容量与总体容量的比为1∶1000,所以样本中包含的各部分个体数分别为:16952006951000⨯≈(人),13991003991000⨯≈(人),12756902761000⨯≈(人). 第二步,将城市应抽取的个体数分配到小学、初中、高中.因为城市小学、初中、高中的人数比为:357000∶226200∶112000=3570∶2262∶1120=1785∶1131∶560,1785+1131+560=3476,所以城市小学、初中、高中应抽取的人数分别为:69517853572476⨯≈(人),69511312263476⨯≈(人),6955601123476⨯≈(人). 第三步,将县镇应抽取的个体数分配到小学、初中、高中.因为县镇小学、初中、高中的人数比为:221600∶134200∶43300∶2216∶1342∶433,2216+1342+433=3991,所以县镇小学、初中、高中应抽取的人数分别为:39922162223991⨯≈(人),39913421343991⨯≈(人),399433433991⨯≈(人). 第四步,使用同样的方法将农村应抽取的个体数分配到小学、初中、高中.可得农村小学、初中、高中应抽取的人数分别为:258(人),11(人),6(人).第五步,再用合适的方法在对应的各个部分中抽取个体.在各层中所抽取的个体数如下表所示(单位:人):按照上表数目在各层中用合适的方法抽取个体,合在一起形成所需样本.【总结升华】 本题交错使用了分层抽样的方法,像这样比较复杂的问题,在解答的时候可以先将问题分成几个部分,再对各个部分具体解决.举一反三:【变式1】一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人,为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?【解析】 用分层抽样来抽取样本,步骤是:(1)分层.按年龄将职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为10015005=,则在不到35岁的职工中抽125×15=25(人); 在35岁至49岁的职工中抽280×15=56(人);在50岁及50岁以上的职工中抽95×15=19(人).(3)在各层分别按抽签法或随机数表法抽取样本.(4)综合每层抽样,组成样本.【总结升华】分层后,各层的个体数较多时,可采用系统抽样或随机数表法抽取出各层中的个体,一定要注意按比例抽取.例7.为了考察某校的教学水平,现抽查这个学校高一年级部分学生的本学年考试成绩进行分析.为了全面地反映实际情况,采取以下三种方式进行抽查(已知该校高一年级共有20个班,并且所有学生都已经按随机方式编好了学号,假定该校每班人数都相同):①从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察这20个学生的考试成绩;②每个班都抽取1人,共计20人,考察这20个学生的考试成绩;③把该校高一年级的学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进行考察(已知按成绩分,该校高一学生中成绩优秀的学生有150名,良好的学生有600名,普通的学生有250名).根据上面的叙述,试回答下列问题:(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中,各自采用何种抽样方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.【思路点拨】依据总体和个体的特点,选择抽取样本的方法.【答案】(1)高一年级全体学生的本学年考试成绩,高一年级每个学生本学年的考试成绩,抽取的20名学生本学年的考试成绩.(2)简单随机抽样法,系统抽样法和简单随机抽样法,分层抽样法和简单随机抽样法.(3)略【解析】(1)这三种抽取方式中,其总体都是指该校高一年级全体学生的本学年考试成绩,个体都是指高一年级每个学生本学年的考试成绩.其中第①种抽取方式中样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第②种抽取方式中样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第③种抽取方式中样本为所抽取的100一名学生本学年的考试成绩,样本容量为100.(2)上面三种抽取方式中,第①种方式采用的方法是简单随机抽样法;第②种方式采用的方法是系统抽样法和简单随机抽样法;第③种方式采用的方法是分层抽样法和简单随机抽样法.(3)第①种方式抽样的步骤如下:第一步:首先在这20个班中用抽签法任意抽取一个班.第二步:然后在这个班中按学号用随机数表法或抽签法抽取20名学生,考察其考试成绩.第②种方式抽样的步骤如下:第一步:首先在第一个班中,用简单随机抽样法任意抽取一个学号为n的学生.第二步:在其余的19个班中,选取学号为a+nk(n=1,2,…,19,k为各班人数)的学生,共计19人第三步:前两步所抽个体组成样本.第③种方式抽样的步骤如下:第一步:分层.因为若按成绩分,其中优秀学生共150人,良好学生共600人,普通学生共250人,所以在抽取样本时,应该把全体学生分成三个层次.第二步:确定各个层次抽取的人数.因为样本容量与总体的个体数比为100∶1000=1∶10,所以在每个层次抽取的个体数依次为等,等,哿,即15,60,25.第三步:按层次分别抽取.。
初中数学什么是随机抽样如何进行随机抽样初中数学什么是随机抽样如何进行随机抽样在统计学中,随机抽样是一种常用的抽样方法,它是从总体中以随机的方式选择个体或事物作为样本的过程。
随机抽样的目的是使得每个个体被选中的机会相等且独立,从而保证样本的代表性和可靠性。
本文将介绍随机抽样的概念,并阐述如何进行随机抽样。
随机抽样是一种基于概率的抽样方法,它是按照一定的概率规则从总体中选择样本的方法。
随机抽样的特点是每个个体被选中的机会相等且独立,这样可以尽量减少样本的偏差和误差,使得样本能够代表总体的特征。
进行随机抽样的步骤如下:1. 确定总体:首先需要明确研究的总体是什么,总体可以是人口、产品、动物群体等不同类型的个体或事物。
2. 确定样本量:确定需要抽取的样本数量,样本量应根据研究目的和总体的特点来确定。
样本量的大小对于研究结果的准确性和可靠性有重要影响。
3. 编制抽样框架:抽样框架是指包含总体中所有个体的清单或者群体的划分,它是进行随机抽样的基础。
根据总体的特点,可以将抽样框架编制为清单或者群体划分。
4. 随机数生成:通过随机数表、随机数发生器或者抽签等方式生成随机数,随机数的生成应该具有随机性和均匀性。
5. 抽取样本:根据生成的随机数,按照一定的规则从抽样框架中选择样本。
例如,可以根据随机数的大小或者位置来选取个体或者群体作为样本。
6. 记录样本数据:将被选中的个体或者群体记录下来,并收集相关的数据信息。
样本数据应准确、完整地反映个体或者群体的特征。
需要注意的是,随机抽样需要保证随机性和独立性,以确保样本的代表性和可靠性。
在实际操作过程中,可以结合使用随机数表、随机数发生器或者抽签等方式来生成随机数,然后根据随机数来选择样本。
总之,随机抽样是一种常用的抽样方法,它通过随机的方式从总体中选择样本。
进行随机抽样的关键是确定总体、样本量和抽样框架,并使用合适的随机数生成方法进行样本选择。
合理的随机抽样可以提高样本的代表性和可靠性,从而使得样本能够有效地代表总体的特征。