方程组应用题
- 格式:doc
- 大小:123.50 KB
- 文档页数:3
二元一次方程组应用题经典题型1. 行程问题比如,甲、乙两人相距30千米,若两人同时相向而行,3小时后相遇;若两人同时同向而行,甲6小时可追上乙。
求甲、乙两人的速度。
设甲的速度是x千米/小时,乙的速度是y千米/小时。
相向而行时,根据路程 = 速度和×时间,可得到方程3(x + y)=30;同向而行时,根据路程差 = 速度差×时间,可得到方程6(x - y)=30。
这两个方程组成二元一次方程组,解这个方程组就能求出甲、乙的速度啦。
2. 工程问题有一项工程,甲队单独做需要x天完成,乙队单独做需要y天完成,两队合作需要6天完成,并且甲队做2天的工作量和乙队做3天的工作量相等。
求x和y的值。
把这项工程的工作量看成单位“1”,根据工作效率 = 工作量÷工作时间,甲队的工作效率就是1/x,乙队的工作效率就是1/y。
两队合作的工作效率就是1/6,可得到方程1/x+1/y = 1/6。
又因为甲队做2天的工作量和乙队做3天的工作量相等,即2/x = 3/y。
这样就组成了二元一次方程组,通过解方程组就能得到x和y的值啦。
3. 销售问题某商场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元。
求甲、乙两种商品各购进多少件?设购进甲种商品x件,购进乙种商品y件。
因为总共购进50件商品,所以x + y = 50。
甲种商品每件获利35×20% = 7元,乙种商品每件获利20×15% = 3元,总共获利278元,可得到方程7x+3y = 278。
这两个方程组成二元一次方程组,解方程组就可以求出x和y的值啦。
4. 调配问题有两个仓库,甲仓库有粮食x吨,乙仓库有粮食y吨。
如果从甲仓库调出10吨到乙仓库,那么乙仓库的粮食就是甲仓库的2倍;如果从乙仓库调出5吨到甲仓库,那么两仓库的粮食就相等。
求x和y的值。
根据题意可得到方程组:y + 10 = 2(x - 10)和x + 5 = y - 5。
二元一次方程组应用题经典题及答案一、行程问题题目:A、B 两地相距 120 千米,甲、乙两人分别从 A、B 两地同时出发,相向而行。
甲的速度是每小时 10 千米,乙的速度是每小时 20 千米。
经过多少小时两人相遇?答案:设经过 x 小时两人相遇。
甲行驶的路程为 10x 千米,乙行驶的路程为 20x 千米。
由于两人是相向而行,所以他们行驶的路程之和等于两地的距离,可列出方程:10x + 20x = 12030x = 120x = 4答:经过 4 小时两人相遇。
二、工程问题题目:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成。
若两人合作,需要多少天完成?答案:设两人合作需要 x 天完成。
把这项工程的工作量看作单位“1”,甲每天的工作效率是 1/10,乙每天的工作效率是 1/15。
两人合作每天的工作效率是(1/10 + 1/15),可列出方程:(1/10 + 1/15)x = 1(3/30 + 2/30)x = 15/30 x = 1x = 6答:两人合作需要 6 天完成。
三、商品销售问题题目:某商店将进价为 8 元的商品按每件 10 元售出,每天可售出200 件。
现在采用提高售价,减少销售量的办法增加利润,如果这种商品每件的销售价每提高 05 元,其销售量就减少 10 件,问应将每件售价定为多少元时,才能使每天利润为 640 元?答案:设将每件售价定为 x 元。
每件的利润为(x 8)元,售价提高了(x 10)元。
因为售价每提高 05 元,销售量减少 10 件,所以销售量减少了 10×(x 10)÷05 = 20(x 10)件。
实际销售量为200 20(x 10)件。
根据利润=每件利润×销售量,可列出方程:(x 8)200 20(x 10)= 640(x 8)(200 20x + 200)= 640(x 8)(400 20x)= 640400x 20x² 3200 + 160x = 640-20x²+ 560x 3840 = 0x² 28x + 192 = 0(x 12)(x 16)= 0解得 x₁= 12,x₂= 16答:应将每件售价定为 12 元或 16 元时,才能使每天利润为 640 元。
二元一次方程组应用题(50题)1. 婆婆家的流水问题婆婆家有一个流水池,从自来水管道接入流水池中,再从流水池中通过自来水管道供应给家中的各个水龙头。
假设自来水管道的水流速度为x,流水池的容积为y,通过自来水管道流出的水量为z。
已知当自来水管道的水流速度为8升/分钟时,流水池会在20分钟内完全注满。
求出流水池的容积和通过自来水管道流出的水量之间的关系。
解题思路:设流水池的容积为y升,通过自来水管道流出的水量为z升。
根据题意得到以下方程组: 1. 自来水管道的水流速度与流水池的注水时间关系:8升/分钟 = y/20分钟 2. 流水池的容积与自来水管道流出的水量关系:z = y根据方程组可以求得:y = 160升,z = 160升。
2. 兰兰购买书籍兰兰去书店购买了几本书,每本书的价格不等。
已知兰兰购买的这几本书的总价格为x元,当其中两本书的价格分别减少5元和增加7元后,他们的价格相等。
求出每本书的原始价格。
解题思路:设第一本书的价格为y元,第二本书的价格为z元。
根据题意得到以下方程组: 1. 兰兰购买的这几本书的总价格:x = y + z 2. 当其中两本书的价格分别减少5元和增加7元后,他们的价格相等:y - 5 = z + 7将第二个方程式代入第一个方程式中,求解可以得到:y = (x + 12) / 2,z = (x - 12) / 2。
3. 成绩排名班级里有30个学生,数学和英语两门课的成绩分别用x和y表示。
已知数学成绩平均分为80分,英语成绩平均分为85分。
学生成绩排名中,有10个学生的数学成绩高于平均分,有15个学生的英语成绩高于平均分。
求出数学和英语成绩中,既高于平均分,又相等的学生人数。
解题思路:设数学成绩高于平均分且相等的学生人数为y,英语成绩高于平均分且相等的学生人数为z。
根据题意得到以下方程组: 1. 数学成绩平均分为80分:(80 * 30 + y) / 30 =80 2. 英语成绩平均分为85分:(85 * 30 + z) / 30 = 85 3. 学生成绩排名中,有10个学生的数学成绩高于平均分:y = 10 4.学生成绩排名中,有15个学生的英语成绩高于平均分:z =15求解方程组可以得到:y = 10,z = 15,既高于平均分,又相等的学生人数为10。
完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。
类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。
类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。
方程组解应用题(习题)例题示范例1:小明和小丽两人同时到一家水果店买水果.小明买了1kg 苹果和2kg梨,共花了26元;小丽买了2kg苹果和1kg梨,共花了28元.则苹果和梨每千克的价格各为多少?列表梳理信息:苹果x元梨y元总价小明1226小丽2128过程书写:解:设每千克苹果的价格是x元,每千克梨的价格是y元,根据题意得,226 228 x yx y+=⎧⎨+=⎩解得,108 xy=⎧⎨=⎩答:每千克苹果的价格是10元,每千克梨的价格是8元.巩固练习1.解下列三元一次方程组.(1)1226310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩(2)2343327231x y zx y zx y z-+=⎧⎪-+=⎨⎪+-=⎩2.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少”.请你帮助小明解决他的问题.3.医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质.若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?4.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.则两种客房各租住了多少间?5.某服装厂要生产一批同样型号的运动服,已知每3米长的某种布料可做2件上衣或3条裤子.现有此种布料600米,请你帮助设计一下,如何分配布料,才能使运动服成套且不致于浪费,此时能生产多少套运动服?6.小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341.原来两个加数分别是多少?思考小结1.解一元一次方程应用题和二元一次方程组应用题的关键在于找等量关系,一元一次方程应用题需要找______组等量关系,二元一次方程组应用题需要找______组等量关系;表示等量关系的常见关键词有:恰好,___________________________.2.结合下图梳理本章知识,并回答下列问题:①解二元一次方程组的基本思想是________________,可以通过_____________,________________把二元一次方程组转化为一元一次方程来解.②解决二元一次方程组应用题需要对信息进行梳理,梳理信息的常见手段有_________,__________.【参考答案】 巩固练习1.(1)345xyz=⎧⎪=⎨⎪=⎩(2)132xyz=⎧⎪=-⎨⎪=-⎩2.萝卜3元/斤,排骨18元/斤3.甲原料28克,乙原料30克4.三人间8间,两人间13间5.360米布料生产上衣,240米布料生产裤子,此时能生产240套运动服6.原来两个加数分别是21和32思考小结1.一;两;刚好,同时,共需,相同等2.①消元,代入消元法,加减消元法②列表,画线段图。
1、有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.篮球、排球队各有多少支参赛?2、甲、乙二人都以不变的速度在环形路上跑步,如果同时同地出发,反向而行,每隔2min 相遇一次;如果同时同地出发,同向而行,每隔6min相遇一次,已知甲比乙跑得快,甲、乙二人每分各跑多少圈?3、用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?4、某家商店的账目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天,以同样的价格卖出同样的52支牙刷和28支牙膏,收入518元.这个记录是否有误?如果有误,请说明理由.5、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花多少钱?6、有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5t,5辆大货车与6辆小货车一次可以运货35t,3辆大货车与5辆小货车一次可以运货多少吨?7、从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min,甲地到乙地全程是多少?8、养牛场原有30头大牛和15头小牛,1天约用饲料675 kg;一周后又购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲养员李大叔估计平均每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7 ~8 kg.你能否通过计算检验他的估计吗?9、2台大收割机和5台小收割机同时工作2 h共收割小麦3.6 hm2,3台大收割机和2台小收割机同时工作5 h共收割小麦8 hm2.1台大收割机和1台小收割机每小时各收割小麦多少公顷?10、张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5 h后到达县城.他骑车的平均速度是15 km/h,步行的平均速度是5 km/h,路程全长20 km.他骑车与步行各用多少时间?。
列二元一次方程组解应用题专项练习50题(有答案)ok1、已知某铁路桥长800m,火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度。
解:设火车的速度为v,长度为l,则有:l + 800 = vt (火车在桥上的时间)l = v(t-10) (火车在桥上外的时间)联立得:v = 80m/s,l = 2400m。
2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?解:设用x张铁皮制盒身,y张铁皮制盒底,则有:8x = 22y (每张铁皮做8个盒身或做22个盒底)x = 2y/7190 = 9x + 11y (总共用了190张铁皮)代入得:x = 60,y = 35.3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,一个桶身一个桶底正好配套做一个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?解:设用x张铁皮做桶身,y张铁皮做桶底,则有:x + y/8 = 63 (每张铁皮能做1个桶身或8个桶底)代入得:x = 35,y = 224.4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:货车种类 | 货车辆数(辆) | 累计运货吨数(吨) |甲。
| 2.| 15.5.|乙。
| 5.| 35.|现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,则货主应付运费多少元?解:设甲、乙两种货车每辆运输的吨数分别为x、y,则有:2x + 5y = 50 (过去两次租用的情况)3x + 5y = 70 (现在租用的情况)联立得:x = 10,y = 8.应付运费为:(15.5+35) * 30 = 1650元。
5、某工厂第一季度生产甲、乙两种机器共480台,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?解:设第一季度甲、乙两种机器分别生产x、y台,则有:x + y = 4801.1x + 1.2y = 554 (第二季度计划生产的情况)联立得:x = 280,y = 200.6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?解:设种茄子的亩数为x,种西红柿的亩数为y,则有:x + y = 252600x + 2600y = - 1700x - 1800y (总花费为元)联立得:x = 10,y = 15.总获纯利为:2600 * 10 + 2600 * 15 = 元。
二元一次方程组应用题二元一次方程组应用题1. 问题背景小明和小红一起出去旅行,他们租用了一辆汽车,行驶了一段距离后,发现行李箱中的一件物品忘记带了。
为了尽快找到这件物品,他们决定通过手机定位找到物品遗失的地点。
手机定位的原理是根据手机信号塔之间的距离进行计算的。
小明和小红的手机都连接在不同的信号塔上,他们想知道这件物品遗失的具体位置,于是想到利用两个信号塔之间的距离差来确定。
2. 方程建立设小明所连接的信号塔位置为(x1, y1),小红所连接的信号塔位置为(x2, y2),两个信号塔之间的距离差为d,则有:√[(x-x1)^2 + (y-y1)^2] - √[(x-x2)^2 + (y-y2)^2] = d 其中x和y分别表示物品遗失的位置。
3. 方程求解将方程进行平方去根的处理,得到[(x-x1)^2 + (y-y1)^2] - [(x-x2)^2 + (y-y2)^2] = d^2 展开化简后得到x^2 - 2x(x1-x2) + (x1^2 - x2^2) + y^2 - 2y(y1-y2) + (y1^2 - y2^2) = d^2将方程整理为二元一次方程组的标准形式,得到2(x2-x1)x + 2(y2-y1)y + x1^2 - x2^2 + y1^2 - y2^2 =d^2 - x1^2 + x2^2 - y1^2 + y2^2通过求解上述方程组,可以得到物品遗失的具体位置(x,y)。
4. 一个具体的例子假设小明连接的信号塔位置为(2, 4),小红连接的信号塔位置为(6, 8),两个信号塔之间的距离差为5。
将各个参数代入方程组中,得到:2(x2-2)x + 2(y2-4)y + 4^2 - 2^2 + 8^2 - 4^2 = 5^2 -4^2 + 6^2 - 8^2化简后得到:4x + 8y = 20通过求解上述方程组,可以得到物品遗失的具体位置。
二元一次方程组应用题1. 问题背景小明和小红是一对好朋友,他们经常一起做数学作业。
二元一次方程组(基础班)知识点睛1.含有____个未知数,并且所含未知数的项的次数都是____的整式方程叫做二元一次方程.2.共含有____个未知数的______________所组成的一组方程,叫做二元一次方程组.3.适合一个二元一次方程的____________________,叫做这个二元一次方程的一个解.4.二元一次方程组中各个方程的________,叫做这个二元一次方程组的解.5.解方程组的基本思路是________,主要方法有_________法和____________法.6.二元一次方程组应用题的处理思路(1)理解题意,找关键词;(2)梳理信息,列表,提取数据;(3)根据等量关系建方程组. 精讲精练1.若方程23786n mxy x y -+-=是关于x ,y 的二元一次方程,则m 的值为_______,n 的值为_______.2.已知方程22(4)(2)(3)1k x k x k y k -+++-=+,若k =______,则方程为二元一次方程;若k =_______,则方程为一元一次方程,且这个方程的解为__________.3.13x y =⎧⎨=⎩02x y =⎧⎨=-⎩和都是方程ax y b -=的解,则a =____,b =____.4.方程3217x y +=在自然数范围内的解()A .有无数组B .只有1组C .只有3组D .只有4组5.判断下列方程组是否是二元一次方程组,并说明理由.(1)232x y x y +=⎧⎨-=⎩(2)0x y y +=⎧⎨=⎩(3)234232x y x z +=⎧⎨-=⎩(4)x y z x y z -=⎧⎨+=-⎩(5)56a b ab +=⎧⎨=⎩(6)224251x y x y ⎧-=⎪⎨⎪-=⎩6.二元一次方程组2102x y y x+=⎧⎨=⎩的解是__________.①43x y =⎧⎨=⎩;②36x y =⎧⎨=⎩;③24x y =⎧⎨=⎩;④42x y =⎧⎨=⎩.7.解方程组.(1)4+3524x y x y =⎧⎨-=⎩(2)2316413x y x y +=⎧⎨+=⎩(3)653615x y x y -=⎧⎨+=-⎩(4)32923x y x y -=⎧⎨+=⎩(5)2524322x y x y -=-⎧⎨+=⎩(6)34212521x y x y +=⎧⎨+=⎩(7)569745x y x y -=⎧⎨-=-⎩8.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了50间大寝室和55间小寝室,也正好住满.该校的大小寝室每间各住多少人?解法选择:方程组中的一个方程的一个未知数的系数为1或-1时,优先选择代入消元法;方程组的两个方程中同一个未知数的系数相反或相等时,优先选择加减消元法;如果不是上述的两种情况,一般是把方程组的两个方程中同一个未知数的系数变成相反或相等,然后利用加减消元法求解.9.制造某种产品,1人用机器,3人靠手工,每天可制造60件;2人用机器,2人靠手工,每天可制造80件.那么3人用机器,1人靠手工,每天可制造多少件?10.某厂有甲、乙两个小组共同生产某种产品.若甲组先生产1天,然后两组又一起生产了5天,则两组产量一样多.若甲组先生产了300个产品,然后两组又各生产4天,则乙组比甲组多生产100个产品.两组每天各生产多少个产品?11.一张方桌由1个桌面、4条桌腿组成.已知1m3木料可以做方桌的桌面50个或做桌腿300条,现有5m3木料,则用多少木料做桌面、多少木料做桌腿,做出的桌面和桌腿恰好能配成方桌?能配成多少张方桌?12.某服装厂有22名工人,每人每天可生产上衣6件或裤子10条.1件上衣配2条裤子,为使每天生产的上衣和裤子刚好配套,则生产上衣和生产裤子的工人应分别安排多少名?13.如图,某化工厂与A,B两地有公路和铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米).这两次运输共支出公路运费15000元,铁路运费97200元.请计算这批产品的销售款比原料费和运输费的和多多少元.二元一次方程组(随堂测试)1.解方程组:(1)54247x yx y⎧-=⎪⎨-=⎪⎩;(2)2343620x yx y+=⎧⎨-=⎩.2.某体育场的环形跑道长400m,甲、乙分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30s相遇一次.如果同向而行,那么每隔80s乙就追上甲一次.甲、乙的速度分别是多少?1.解下列方程组:(1)73228x yx y-=⎧⎨+=⎩;(2)25438x yx y+=⎧⎨+=⎩;(3)4312236x yx y-=⎧⎨+=⎩;(4)2316413x yx y+=⎧⎨+=⎩;(5)56223216x yx y-=⎧⎨+=⎩;(6)5217251x yx y+=⎧⎨-=⎩;。
1.目前节能灯在城市已基本普及,为响应号召,某商场计划用3800元购进甲,乙两种节能灯共120只,这两种节能灯的进价、售价如下表:
进价(元/只)售价(元/只)
甲型25 30
乙型45 60
(1)求甲、乙两种节能灯各进多少只?
(2)全部售完120只节能灯后,该商场获利多少元?
2.某公园的门票价格如下表:
购票人数1﹣50人51﹣100人100人以上
每人门票数13元11元9元
实验学校初二(1)、二(2)两个班的学生共104人去公园游玩,其中二(1)班的人数不到50人,二(2)班的人数有50多人,经估算,如果两个班都以班为单位分别购票,则一共应付1240元,如果两班联合起来,作为一个团体购票,则可节省不少钱,你能否求出两个班共有多少名学生联合起来购票能省多少钱?
3.开学初,某中学八(1)班学生去商场购买了A品牌足球1个、B品牌足球2个,共花费210元,八(2)班学生购买了A品牌足球3个、B品牌足球1个,共花费230元.
(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?
(2)为响应习总书记“足球进校园”的号召,学校使用专项经费1500元全部购买A、B两种品牌的足球供学生使用,那么学校有多少种购买足球的方案?请分别设计出来.4.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.
(1)求该同学看中的随身听和书包单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八五折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
5.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:
污水处理器型号A型B型
处理污水能力(吨/月)240 180
已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.
(1)求每台A型、B型污水处理器的价格;
(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?
6.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,
已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A
品牌的足球和2个B品牌的足球共需360元.
(1)求A,B两种品牌的足球的单价.
(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.
7.用如图①中的长方形和正方形纸板做侧面和底面,做成如图②的
竖式和横式两种无盖纸盒,现在仓库里有1000张正方形纸板和2000
张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?
8.某服装点用6000购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.
类型
价格
A型B型
进价(元/件)60 100
标价(元/件)100 160
(1)求这两种服装各购进的件数;
(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?
9.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:
速度y(公里/时)里程数s(公里)车费(元)
小明60 8 12
小刚50 10 16
(1)求p,q的值;
(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?
10.学生在素质教育基地进行社会实践活动,帮助农民伯
伯采摘了黄瓜和茄子共40千克,他们了解到这些蔬菜的种植成本共42元,还了解到如下信息:
(1)请问采摘的黄瓜和茄子各多少千克?
(2)这些采摘的黄瓜和茄子可赚多少元?
11.某地为了鼓励居民节约用水,决定实行两极收费制,即每月用水量不超过15吨(含15吨)时,每吨按政府补贴优惠价收费;每月超过15吨时,超过部分每吨按市场调节价收费.小明家1月份用水23吨,交水费35元,2月份用水19吨,交水费25元.
(1)求每吨水的政府补贴优惠价市场调节价分别是多少?
(2)小明家3月份用水24吨,他家应交水费多少元?
12.如图,长青化工厂与A、B两地有公路、铁路相连.这家工
厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000
元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路
运价为1.2元/(吨•千米),且这两次运输共支出公路运输费
15000元,铁路运输费97200元.
求:该工厂从A地购买了多少吨原料?制成运往B地的产品多
少吨?
13.用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套
盒.现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?
14.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天花去住宿费1510元,两种客房各租住多少间?
15.我市为加快美丽乡村建设,建设秀美幸福清远,对A、B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了3个A类村庄和4个B 类村庄共投入资金1080万元.
(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?
(2)乙镇2个A类美丽村庄和5个B类村庄改建共需资金多少万元?
16.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:
①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?
②请你帮该物流公司设计租车方案.
17.谢瑞到商场购买甲、乙两种商品,这两种商品价格之和为500元.若分别购买甲种商品3件,乙种商品4件,一共付了1590元,请问:
(1)甲,乙两种商品的价格是多少元?
(2)如果甲,乙两种商品都打8折,那么他可节约多少元钱?
18.某大学食堂共有7个大餐厅和3个小餐厅,经过测试,同时开放3个大餐厅和2个小餐厅,可供3160名学生就餐;同时开放2个大餐厅和3个小餐厅,可供2640名学生就餐.
(1)求1个大餐厅、1个小餐厅可分别供多少名学生就餐?
(2)若10个餐厅同时开放,能否供全校的6500名学生就餐?请说明理由.
19.小李到农贸批发市场了解到苹果和西瓜的价格信息如下:
水果品种苹果西瓜
批发价格8元/公斤 1.6元/公斤
零售价格10元/公斤2元/公斤
他共用280元批发了苹果和西瓜共75公斤,
(1)请问小李批发的苹果和西瓜各多少公斤?
(2)若他当天把批发回来的苹果和西瓜按零售价格全部卖出,小李能赚多少钱?
20.根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高cm,放入一个大球水面升
高cm.
(2)放入大球、小球共10个,如果要使水面上升到50cm,求
放入大球、小球的个数.。