二次雷达波束控制系统设计
- 格式:pdf
- 大小:213.10 KB
- 文档页数:4
相控阵空管二次雷达数字波束形成方案相控阵空管二次雷达数字波束形成方案文/杨见1 谭威2【摘要】摘要基于相控阵雷达越来越凸显的诸多优势,在空管二次雷达领域也逐渐开始采用数字波束形成技术的相控阵雷达,以实现更加灵活的波束调度与控制等。
本文主要对数字波束形成技术的基础理论进行分析阐述,并提出基于均匀线阵相控阵空管二次雷达实际应用的数字波束形成方案。
【期刊名称】电子技术与软件工程【年(卷),期】2018(000)015【总页数】1【关键词】【关键词】二次雷达有源相控阵数字波束形成DBF 均匀线阵通过用机械、机电与电子方式改变阵列天线单元辐射信号的相位,实现天线波束指向的技术,在雷达发展初期即已为人所知,但是真正的发展则是从冷战开始,国际形势的紧张、大型战略相控阵雷达研制成功、良好的应用效果以及成本的降低等,极大的促进了相控阵技术的发展。
1 相控阵雷达技术简介及优势用电子控制方法,实现天线波束指向在空间转动或扫描的天线称为电扫描天线,也即相控阵天线。
相控阵雷达具有天线波束快速扫描能力、天线波束形状的捷变能力、空间功率合成能力、天线与雷达平台的共性能力、多波束形成能力、空域滤波与空间定向能力等相较于传统机械扫描雷达的明显优势。
2 均匀线阵波束形成理论假定某单个辐射源在远场区P点的电场强度为:式中,R为天线单元至测试点距离;λ为电磁波长;为天线单元辐射方向图;I0为复振幅。
辐射源为多个阵元组成的阵列时,在远区某测试点的总场强E应用叠加定律可以认为是线阵中N个辐射单元在测试点的辐射场强之和,有:式中,Ii可表示其中,为加权系数;为均匀线阵中相邻天线单元之间的馈电相位差。
若各天线单元方向图相同,则总场强为:式中,d为均匀天线阵列单元间距,而ri与r0之差与雷达至观测点距离相比较小,对场强E的影响可以忽略不计,则可以进一步简化为:为波束的最大指向。
当指向法相时,则上式可继续简化为:由此可知,辐射场中某点的合成场强为所有天线单元方向图与阵列因子的乘积之和。
二次雷达工作原理课件(一)
二次雷达工作原理课件
教学内容
•二次雷达的定义和基本原理
•二次雷达的组成部分
•二次雷达的工作过程
•二次雷达的应用领域
教学准备
•二次雷达的示意图或实物模型
•讲义或PPT
•实验设备(如果需要进行实验演示)
教学目标
•了解二次雷达的定义和基本原理
•理解二次雷达的组成部分及其功能
•掌握二次雷达的工作过程
•了解二次雷达在实际应用中的领域
设计说明
本课件以简洁清晰的方式介绍二次雷达的工作原理,通过图示和文字说明,使学生能够轻松理解和掌握相关知识。
教学过程
1.介绍二次雷达的定义和基本原理
–阐述雷达的定义和作用
–解释二次雷达的基本原理,即利用回波信号进行目标检测和跟踪
2.分析二次雷达的组成部分及其功能
–列举二次雷达的主要组成部分,如发射器、接收器、信号处理器等
–详细介绍每个组成部分的功能和作用
3.说明二次雷达的工作过程
–用图示展示二次雷达的工作流程,包括发射、接收、信号处理等步骤
–解释每个步骤的具体操作和原理
4.探讨二次雷达的应用领域
–引导学生思考并讨论二次雷达的实际应用领域,如航空、交通、气象等
–列举并解释二次雷达在不同领域中的具体应用案例
课后反思
本课件通过简明扼要的方式介绍了二次雷达的工作原理,结合图示和文字说明,帮助学生更好地理解相关概念。
在教学过程中,可以适当引导学生参与讨论和实验演示,以加深对二次雷达原理的理解。
同时,可以提供相关阅读材料,进一步拓展学生的知识面。
• 104•ELECTRONICS WORLD ・探索与观察浅谈二次雷达天线原理民航福建空管分局 陈 翰【摘要】二次雷达通常使用的是垂直大孔径天线,不同设备厂家所提供的雷达天线型号也是不尽相同。
但这些天线在工作原理上都大同小异,掌握其中通用的内容,就可以很快地学习不同厂家的天线。
【关键词】二次雷达;天线;垂直大孔径1.引言航管二次雷达是通过地面的询问机向航空器发射1030MHz 询问信号,安装有应答机的航空器接收到询问后回返回一个1090MHz 应答信号,雷达设备再接收应答信号来检测、识别目标的方位与距离。
2.二次雷达的工作原理二次雷达的信息交换,是通过将上行询问内容和下行应答内容进行脉冲编码来实现的。
按照ICAO 规范,传统空管二次雷达的询问模式共有6种,分别为1、2、3/A 、B 、C 、D 模式。
实际在民用航空中常用的是3/A 、C 两种模式。
这两种模式主要区别在于P1与P3的时间间隔不同。
P1~P3间隔是指P1和P3的0.5电平处脉冲前沿之间的间隔,其中3/A 模式下,间隔为8us ,C 模式下间隔为21us 。
P1、P2、P3的0.5电平脉冲宽度均为0.8us ,脉冲前沿宽度均为0.05~1us ,脉冲后沿均为0.05~0.2us 。
询问时,可以根据需要,只发射单一模式询问信号也可以各种模式交错询问。
3.天线基本理论天线的具体形式繁多,有多种分类方法,但是其中的基本理论,分析方法以及典型天线的工作原理与点特性却是相通的。
3.1 方向性函数天线的方向性函数是描写天线的辐射作用在空间的相对分布的数学表示式,方向图则是相应的图解表示。
场强振幅的归一化方向性函数定义为:式中,为天线在任意方向上的场强;为在最大辐射方向上的场强。
针对定向天线,它的方向图一般都呈现出花瓣状,而且都包含两个甚至多个波瓣:其中辐射方向上最大的瓣称为主瓣,剩余的瓣均被称为旁瓣或副瓣。
我们通常利用主瓣和副瓣的宽度来描写天线辐射处得能量的集中度。
初探S模式二次雷达的基本原理作者:王磊来源:《中国科技纵横》2019年第09期摘要:二次监视雷达是一种应用于空中交通管制中的,包含传递信息和检测飞机等功能的雷达系统。
我国的空管雷达的使用要追溯到上个世纪,国家对于这一项技术在我国的航空领域中的相当重视,曾多次委派研究团队赴外参考学习,将这一项技术引进至国内,从最早的A/C模式的雷达系统再到现代的S模式雷达系统,我国在空中管制雷达这一块的技术已经渐趋成熟。
本文将以S模式二次雷达为议题中心,着重探讨一下这一项技术的基本原理,并谈一谈这项技术在在我国航空领域的应用。
关键词:S模式;二次雷达;接收信号;基本原理中图分类号:TN958.96 文献标识码:A 文章编号:1671-2064(2019)09-0211-020 前言S模式二次雷达的开发起源于美国和英国,当时飞机数量大量增加,自动控制ATC系统中涌现众多异步干扰问题,为此科研人员将每架飞机编上离散地址码,对雷达扫描波束内的目标进行点名性的询问,被点到名的飞机才予以回答[1]。
这样就可以避免A/C交互模式中的A、C两种模式相关问题,大大降低雷达的询问率,进一步减少异步干扰问题。
S模式二次雷达安装了数据链通信功能,提高了管制系统自动化水平。
为此,将S模式询问定义为离散选址信标系统,雷達询问是针对于特定地址编码的目标进行定向呼叫的询问。
安装S模式应答机的飞机都有特殊的地址码,飞机对雷达询问的应答信息中必须包含本机地址码。
1 S模式基本概念及特性1.1 S模式基本概念S模式主要是考虑到未来航空航天科技发展,低高空交通密集情况下,能够准确对空中情报进行实时监控,获取可靠的数据链通信以保证航空安全[2]。
S模式支持当下的地面传感部门二次雷达系统。
S模式由空中防撞、地空数据沟通、地面数据网等模块组成。
以S模式支持的数据链是飞机和地面之间的通信基础,地空数据链进行数据传输时,是地面二次雷达系统和S 模式空中应答设备之间的通信沟通。
图1雷达头设系统配置图1AMS SIR-S雷达系统概述1.1系统介绍AMS SIR-S雷达系统采用单脉冲技术,使得测角精度大大提高,理论上分析一个雷达回波就可以确定目标的到达角,从而可以大大减少地面站的询问率,使得异步干扰进一步减少。
由于利用OBA信息和更为强大的计算能力,使得雷达录取时抗击假目标和同步干扰目标性能也大大提升,雷达的水平覆盖范围是0.5-256海里,垂直覆盖角度为0.25度—40度,检测概率不小于99%。
AMS SIR-S雷达系统包括天线Science&Technology Vision科技视界101Science &Technology Vision科技视界群,SIR-S 单脉冲二次监视雷达,双雷达头处理器(RHP),雷达维护监视席位,本地控制和监视系统,以及双以太局域网,其连接如图1所示。
1.2发射机单元发射机单元由两个发射机组成:一个为主发射机,也是和通道发射机;一个是辅发射机,也是控制通道发射机。
发射机采用全固态发射机,并且使用了插接式连接。
发射机输出功率衰减分为8个等级,从-12dB,以2dB 为步进,也可以完全关断输出功率。
输出功率可进行方位编程,每周扫描分为128个扇区,相应每个扇区为2.8度。
在每个扇区对P1-P3和P2的输出功率进行控制。
发射机具有BITE(built in test equipment)自检功能,可向RPCM 发送状态报告,并接受RPCM 控制,其检测可到达LRU (least replaceable unit)级别。
发射机的频率为1030MHz+0.01MHz;输出功率大于62dBm。
如图2为发射机单元原理方框图。
1.3接收机单元接收机采用全固态接收机,并且使用了插接式连接。
接收机单元包含三个匹配的对数通道,分别是Σ通道,Δ通道和Ω通道。
另外还包括了相位检测器。
三个通道各向RPCM 送出两路视频信号,向相位检测器送出一路视频信号。
初探S模式二次雷达的基本原理1. 引言1.1 背景介绍S模式雷达是一种常用的雷达系统,广泛应用于军事、民航和气象等领域。
在雷达技术领域,S波段通常指2-4 GHz的频段,因此S模式雷达也被称为S波段雷达。
S模式雷达的基本原理是利用雷达系统发射的微波信号与目标物体散射的回波信号之间的时差和频率差来实现目标探测和跟踪。
1.2 研究意义S模式雷达的研究还可以促进相关技术的发展和应用。
雷达技术通常与信号处理、电子技术、通信技术等多个领域相互关联,通过研究S 模式雷达的工作原理和应用领域,可以促进相关技术的进步和创新,推动雷达技术与其他领域的融合与发展。
【字数:253】1.3 研究目的研究目的是通过对S模式雷达基本原理的深入探讨,进一步了解其在雷达领域的作用和意义,为未来雷达技术的发展提供参考和借鉴。
研究目的还包括探讨S模式雷达在不同应用领域中的优势和局限性,希望能够找到更多适用于S模式雷达的改进和创新方向。
通过本次研究,我们希望能够为雷达技术的发展和完善做出一定的贡献,推动雷达技术在各个领域的应用和推广,为社会的进步和发展做出积极贡献。
2. 正文2.1 S模式雷达概述S模式雷达(S-band radar)是一种采用S波段频率工作的雷达系统,主要用于监测航空器、船只和地面目标。
S波段频率位于C波段和X波段之间,具有较高的频率和较长的波长,在雷达应用中有着重要的地位。
S模式雷达具有较高的分辨率和灵敏度,能够准确地探测目标并提供详细的信息。
其工作原理是通过发射电磁波,接收目标反射回来的信号,并根据信号的延迟时间和频率差异来确定目标的距离、速度和方向。
S模式雷达广泛应用于航空交通管制、气象观测、军事侦察等领域。
S模式雷达相比于其他雷达系统具有更高的精度和灵敏度,能够在复杂环境下工作,提供更加可靠的监测和识别能力。
其优势在于可以有效地应对各种威胁和干扰,保证目标的安全和可靠性。
随着雷达技术的不断发展和进步,S模式雷达的应用范围和性能也会不断提升,未来其在航空、航海、军事和科研领域将发挥越来越重要的作用。
DI G I T C W技术 研究Technology Study一种二次雷达大垂直口径天线的电讯设计汪旭东,徐 涛(安徽四创电子股份有限公司,合肥 230088)摘要:本文分析了一种二次雷达大垂直口径天线的电讯设计方法,包括列馈、行馈的设计,介绍了和波束、差波束、控制波束的设计思路及仿真结果。
通过实际的工程样机测试,验证了设计方法的有效性和实用性。
关键词:大垂直口径天线;二次雷达;和波束;差波束;控制波束doi:10.3969/J.ISSN.1672-7274.2017.01.008中图分类号:TN95 文献标识码:A 文章编码:1672-7274(2017)01-0030-04Abstract: This paper analyzes a Telecommunications design method of a Large Vertical Aperture Antenna in Monopulse Secondary Surveillance Radar, including Design of column feed and row feed. This paper also describes the design ideas and emluator result of Sum Beam 、Difference Beam 、Control Beam.Through the actual engineering prototype test,Which proves the validity and practicability of the design method.Keywords: Large Vertical Aperture Antenna; Secondary Surveillance Radar; Sum Beam; Difference Beam; Control Beam.Wang Xudong, Xu Tao(Anhui Sun Create Electronics Co., Ltd., Hefei, 230088)A Telecommunications Design of a Large Vertical Aperture Antenna in MonopulseSecondary Surveillance Radar1 引言S 模式单脉冲二次雷达天线是二次监视雷达非常重要的组成部分,它对整机系统性能起到决定性的作用。