一元一次方程及等式的基本性质
- 格式:doc
- 大小:155.50 KB
- 文档页数:8
第五章 一元一次方程
思维导图
程
方次一元
一⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎪
⎪⎩
⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪
⎪⎪
⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪
⎪⎪⎨⎧⎪⎩⎪
⎨⎧⎪⎩⎪
⎨⎧写出答案检验解一元一次方程列一元一次方程设出适当的未知数找出等量审清题意题的一般步骤列一元一次方程解应用未知数的系数化为
合并同类项移项去括号去分母
解一元一次方程的步骤
结果仍是等式,所得的数或除以同一个不为个数:等式两边同时乘同一
性质结果仍是等式同一个代数式,所得的或减:等式两边同时加性质等式的基本性质数的值右两边的值相等的未知方程的解:使方程左、
数的等式方程的概念:含有未知未知数的指数都是式方程中的代数式都是整只含有一个未知数一元一次方程的概念
1)0(2)(11
考点精讲。
一元一次方程复习讲义1.方程的有关概念2.等式的基本性质3.解一元一次方程的基本步骤:4.应用一元一次方程解决实际问题的一般步骤(1)审 (2)找 (3)设 (4)列 (5)解 (6)验 (7)答1.下列方程是一元一次方程的有哪些? x+2y=9 x 2-3x=111=x x x 3121=- 2x=1 3x –5 3+7=10 x 2+x=12、解下列方程:⑴ 103.02.017.07.0=--x x ⑵16110312=+-+x x⑶03433221=-+++++x x x ⑷2362132432⎪⎭⎫ ⎝⎛+--=+--x x x x x(5)|5x 一2|=33、8=x 是方程a x x 2433+=- 的解,又是方程 ()[]b x b x x x +=⎥⎦⎤⎢⎣⎡---913131的解,求 b4、小张在解方程1523=-x a (x 为未知数)时,误将 - 2x 看成 2x 得到的解为3=x ,请你求出原来方程的解5、已知关于x 的方程 ()()x n x m 121232+=-+无穷多解,求m 、n1、(本题7分)按要求完成下面题目:323221+-=--x x x解:去分母,得424136+-=+-x x x ……① 即 8213+-=+-x x ……②移项,得 1823-=+-x x ……③合并同类项,得 7=-x ……④∴ 7-=x ……⑤上述解方程的过程中,是否有错误?答:__________;如果有错误,则错在__________步。
如果上述解方程有错误,请你给出正确的解题过程:2、(本题7分)请阅读下列材料:让我们来规定一种运算:bcad dc ba -=,例如:5432=2×5-3×4=10-12=-2. 按照这种运算的规定,若2121x x-=23,试用方程的知识求x 的值。
3、检修一处住宅区的自来水管,甲单独完成需要14天,乙单独完成需18天,丙单独完成需要12天。
一元一次方程的概念及解法4、等式的基本性质:(1)、等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
(2)、等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
5、解一元一次方程的基本步骤:【例题解析】那么a=bA . 2x 3yB . 7x 5 6x1C . 2、下列运用等式的性质对等式进行的变形中,正确的是【练习】:1、下列方程中是 元-次方程的是【知识点】: 1、一元一次方程的定义:只含有 未知数,并且未知数的次数都,这样的方程叫一元一次方程。
2、方程的解:使方程左右两边 的未知数的值叫方程的解。
3、解方程:求的过程叫做解方程。
(1):去分母;(2):去括号;(3):移项;(4):合并同类项;(5):系数化成 1。
例1、判断下列各式是不是一元 次方程,是的打“ V”,不是的打“X⑴ x+3y=4 2⑵ x -2x=6⑶-6x=0(4) 2m +n =0(5) 2x-y=8(6) 1 —+8=5yy例2、下列变形中, 正确的是A 、若 ac=bc ,那么 a=b 。
B 、a=b C 、b ,那么a=bD 、若 a 2 =b 2x 23、若x(n-2)+2n=0是关于x的方程一元一次方程,则n=—,此时方程的解是x= 。
其中变形正确的是((1) x + 2x +4x=140【练习】:1、下列叙述正确的是则a=b则a=b则a=b4、某数x 的43%比它的一半少 7,则列岀求x 的方程应是(A : 43%x 1B : 43%(x !) 7 C2 2 :43%X 7 43%x例3、给岀下面四个方程及其变形: ①4x 8 0变形为x 3x 变形为4x2 ③—x 3变形为2x515;4x2变形为x2; 3、解方程:(1)丄 y-3-5y= 1 ;、x X(2) =5;2 31(3 )0.6x- —x-3=032 4 例5、解方程:(利用去括号、移项等步骤解方程)(1) 2x 1 4 ;2(2)2( X — 2) - (4 X —1)=3(1—x )____________ ,根据是例6、解方程:(利用去分母、去括号、移项、合并同类项及系数化成1解方程)A .①③④B •①②④C.②③④D .①②③例4、解方程:(利用移项、合并同类项及系数化成1来解方程)(2) 3x + 20=4x-25①若a=b ,则 a+c=b+ c②若 a=b ,贝U a-c=b- c ③若a+c=b+ c ,则 a=b ④若,a-c=b- c ,⑤若a=b ,则 ac=bc ⑥若 ac=bc ,贝U a=b⑦若a=b ,则-ca b ⑧若—_,c c⑨若a=b ,则⑩若b ,则 a=b(11)若 a=b ,贝U a 2=b 2 (12)若 a 2=b 2,(13)若 a=b ,则 a 3=b 3(14)若 a 3=b 3,贝U a=b2、方程2y-6=y+7变形为 2y-y=7+6 ,这种变形叫解:去分母,得 _____________________________________ 依据 ________________去括号,得 ______________________________________ 依据 ____________________移项,得 ________________________________________ 依据 ____________________合并同类项,得 __________________________________ 依据 ___________________系数化为1,得x 6例7、数学小诊所:小马虎的解法对吗如果不对,应怎么改正解方程专=1-专 解:去分母 2 ( 2x-1)=1-4x-1 去括号4x-仁1-4x-1移项 4x+4x=1-1+1系数化为1x=8【练习】:解方程:归纳:解一元一次方程的步骤:依据合并8x=12x —1x+2 (1)=T +13x 1 4x 2 15(3) 4-3(2-x)=5x例7、已知关于x 的方程13x 2的解互为倒数,求m 的值.3 31、解方程2(x3)5(1x) 3(x1),去括号正确的是().(A) 2x 6 55x3x3(B) 2x 35x3x 3 (C) 2x 6 55x3x3(D) 2x 35x3x 13x 7 2、解方程3x 721x31的步骤中,去分母一项正确的是().(A)3(3x 7)22x6(B)3x 7(1x)1 (C)3(3x 7)2(1x)1(D)3(3x7)2(1x) 6 3x 1 2x 23、若的值比的值小1,则X的值为()23/ 1313_5/ 5(A)(B)- (C) (D)-—5513134、解方程4(x 1)x2(x1)步骤下:①去括号,得4x 4 x2x 1 ②移项,得4x x 2x 1 4③合并同类项,得3x 55④系数化为1,得x -检验知:x —不是原方程的根,说明解题的四个步骤有错,其中做错的一步是35、当x= _____ 时,2x 8的值等于一-的倒数.46、已知3x 6 (y 3) 0,则3x 2y 的值是 _____________7、当x = _____ 时,式子1(1 2x)与式子2(3x 1)的值相等8、解方程:9、已知 A=2x-5,B=3x+3,求A 比B 大7时的x 值.x 4x 210、如果方程8的解与方程4x (3a 1) 6x 2a 1的解相同,求式子321a 的值.a111、已知x 1是关于x 的方程1」(m3m(y 3) 2 m(2y 5).12,已知方程 4x 2m 3x 1与方程3x 2m 6x 1的解相同.3(A )①(B )② (C )③ (D )④1)、2x 3(2x 1) 16 (x 1)2x 3 4x 1.3)、142 51x [2 -(x 4)]2x 3、2x 110x 1 2x 1 ,)、 1 36 4x) 2x 的解,解关于y 的方程:(1)求m的值; (2)求代数式(m 3)2010 (2m 2)2011的值.。
七年级上一元一次方程知识点整理一、本章知识点梳理:知识点一:方程的相关概念 知识点二:解方程知识点三: 用方程解应用题二、各知识点分类讲解知识点一:方程的有关概念(1)概念总结1. 方程:含有未知数的等式就叫做方程. 注意未知数的理解,n m x ,等,都可以作为未知数2.一元一次方程:只含有一个未知数(元),并且未知数的指数都是1(次),这样的方程叫做一元一次方程。
⑴ 方程:含有未知数的 叫做方程; 使方程左右两边值相等的 ,叫做方程的解; 求方程解的 叫做解方程. 注意:重点区分:方程的解与解方程.注:⑴ 方程的解和解方程是两个不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。
⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。
理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①0≠a 时,方程有唯一解ab x =; ②0,0==b a 时,方程有无穷解;③0,0≠=b a 时,方程无解。
⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3.判断一元一次方程的条件 1. 首先是一元一次方程。
2. 其次是必须只含有一个未知数3. 未知数的指数是14. 分母中不含有未知数例1:判定下列那些方程,那些是一元一次方程?0=x ,712=+x π,3)813(4)5(21,01002,2,01-+=-=++=+=+x x x y x xx 0)(22=+-x x x注意:1、分式的含义,分式不能在方程中出现。
2、必须进行方程的化简,最后的结果中,仍然满足满足一元一次方程的定义时才可。
3、π是字母,但不是未知数,是一个常数。
(2)典型例题 例1、下列方程①313262-=+x x ②4532x x =+ ③2(x+1)+3=x 1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个.A.1B.2C.3D.4例2、 如果(m-1)x |m|+5=0是一元一次方程,那么m =___.例3、 一个一元一次方程的解为2,请写出一个这样的一元一次方程 . 知识点二:解方程 1:等式的基本性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍是等式。
一元一次方程知识精华6.1从实际问题到方程知识点一:方程的概念分析:代数式是用运算符号()把数字和表示数字的字母连接起来的式子(单独的一个数字或字母也叫代数式),(两个代数式用等号连接起来就成了等式。
二方程式是含有未知数的等式),即方程式是特殊的等式,据此即可做出正确判断。
知识解读:1、含有未知数的等式,叫做方程。
2、方程和等式的区别:方程是含有未知数的等式;等式可以含有未知数,也可以不含有未知数。
注意:(1)方程是特殊的等式,但等式不一定是方程。
(2)方程中的未知数可以是多个。
知识点二:方程的解点拨:检验一个数是不是方程的解有3个步骤:(1)分别代入;(2)分别计算;(3)得出结论。
知识点三:把实际问题转化为数学问题—列方程知识解读:使方程左右两边的值相等的未知数的值,叫做方程的解。
注意:(1)方程的解是指方程中未知数的取值。
一般来说,这个值是通过解方程求出来的。
(2)可根据方程解的意义来检验所给的数值是否是原方程的解。
检验方法如下:将所给的未知数的值分别代入原方程的左边和右边,如果左边=右边,说明所得的解释原方程的解;如果左边≠右边,说明所得的解不是原方程的解。
知识解读:根据题目中的等量关系列出方程,应先分析题目中的数量关系,列出未知数,再根据得到的等量关系列出方程。
题型一:检验一个数是否是方程的解。
点拨:检验一个数是不是一些方程的解,需把握两点:(1)它是否是方程中未知数的值;(2)将它分别代入方程的左、右两边,看它们的值是否相等。
二者缺一不可。
题型二:列方程—和、差、倍、分问题点拨:列方程解应用题,首先要设未知数某,用代数式表示题中其他的量,然后找出题中的等量关系,列出方程。
题型三:列方程—劳力分配问题点拨:劳力分配问题中要弄清楚调配前、调配、调配后的人数;还要弄清楚从哪个量调出调入哪个量及调配后的两量之间的关系,从而找出相等关系。
题型四:利用隐含的等量关系列方程点拨:隐含的等量关系是指问题中的一些隐含的条件,这类关系需充分地去挖掘、分析,才能清晰地找出其中的等量关系。
初中数学一元一次方程知识点初中数学一元一次方程知识点引导语:一元一次方程是初中数学学习的一个重点、难点,需要同学们好好掌握。
以下是初中数学一元一次方程相关知识点,希望能帮助到同学们!一元一次方程定义通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。
通常形式是ax+b=0(a,b为常数,且a≠0)。
一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。
我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。
这里a是未知数的系数,b是常数,x的次数必须是1。
即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1; ⑷含未知数的项的系数不为0。
一元一次方程的五个核心问题一、什么是等式?1+1=1是等式吗?表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母, 等式的两边总是相等, 由数字组成的等式也是恒等式, 如2+4=6, a+b=b+a等都是恒等式;第二类是条件等式, 也就是方程, 这类等式只能取某些数值代替等式中的字母时, 等式才成立, 如x+y=-5, x+4=7等都是条件等式;第三类是矛盾等式, 就是无论用任何值代替等式中的字母, 等式总不成立, 如x2=-2, |a|+5=0等。
一个等式中, 如果等号多于一个, 叫做连等式,连等式可以化为一组只含有一个等号的等式。
等式与代数式不同, 等式中含有等号, 代数式中不含等号。
等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式, 所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零, 所得结果仍然是一个等式。
二、什么是方程, 什么是一元一次方程?含有未知数的等式叫做方程,如2x-3=8,x+y=7 等。
判断一个式子是否是方程, 只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。
7.1等式的基本性质学习目标:1、通过实例,理解掌握等式的基本性质.2、会用等式的基本性质将等式变形;能对变形说明理由.一、考你一下:1、小明和小营今年是同岁,那5年之后两个人还是同岁吗?2、小明比小营今年大3岁,10年之后小明比小营还大3岁吗?二、自主学习:自学课本152至153页内容,完成以下问题:(一)、等式的基本性质11、用语言叙述等式的基本性质1:2、用字母表示等式的基本性质1:3、尝试练习:(1)如果a=b,那么a+5=b+( )(2)如果x-3=5,那么x=5+( )(3)如果2x=x-2,那么x= ( )(4)如果x+3=10,那么x=10-( )(5)由等式a=b,得到a+10=b+10,其理由是______________________________.(二)、等式的基本性质21、用语言叙述等式的基本性质2:2、用字母表示等式的基本性质2:3、尝试练习:(1)如果-3x=18,那么x=____;(2)如果a4=2,那么a=____(3)从x=y 能不能得到yx=99呢?为什么?(4)从-3a=-3b 能不能得到a=b 呢?为什么?(5)如果12x=3,那么x= ( ) (6)如果3x=-15,那么x= ( )三、巩固练习:1、若a=b ,请同学根据等式性质编出三个等式并说出你的编写根据。
2、填空:(1)在等式7m-6=3m 的两边同时 _____________,得到4m-6=0,这是根据 __________________________.(2)在等式5a-7=8-9a 的两边同时 ____________,得到14a=15, 这是根据 ______________________.(3)在等式43x=-5的两边都______ 或 _________,得到x=-320.(4)a+b=0,可得a=_________;由a-b=0,可得a= _________;由ab=1,可得a=______________.(5)比x 的一半少3的数是y 的32,用等式可以表示为______________ .四、反馈练习:1.选择题:(1)下列结论正确的是( )A .若x+3=y-7,则x+7=y-11;B .若7y-6=5-2y,则7y+6=17-2y;C .若0.25x=-4,则x=-1;D .若7x=-7x,则7=-7.(2)下列说法错误的是( ).A .若a y a x ,则x=y; B .若x 2=y 2,则-4x 2=-4y 2; C .若-41x=6,则x=-23; D .若6=-x,则x=-6.(3)下列说法正确的是( )A .等式两边都加上一个数或一个整式,所得结果仍是等式;B .等式两边都乘以一个数,所得结果仍是等式;C .等式两边都除以同一个数,所以结果仍是等式;D .一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式;2.(1)将等式3a-2b=2a-2b 变形;两边都加上2b,得3a=2a,两边同除以a,得3=2,错在什么地方?(2)由ac=bc,则a=b 一定是正确的吗?为什么?(3)如果在等式5(x+2)=2(x+2)的两边同除以(x+2)就会得到5=2,而我们知道5≠2,由此可以猜测x+2的值等于多少?为什么?五、课堂小结:1、请同学们叙述等式的两个基本性质。
《一元一次方程及等式的基本性质》教学设计 教 学 目 标
知识与技能 理解一元一次方程以及方程的解的概念; 数学思考 理解等式的基本性质,能利用等式的基本性质解简单的一元一次方程.
问题解决 使学生在分析实际问题情境的活动中体会数学与现实的密切联系.
情感态度与价值观 体会解一元一次方程就是利用等式的基本性质将方程变形为x=a(a为常数)的形式.
教学重点 掌握一元一次方程的概念、等式的基本性质,体验用等式的性质解方程.
教学难点 利用等式的基本性质对方程进行变形,利用等式的基本性质将方程变形为x=a(a为常数)的形式.
授课类型 新授课 课时 1 教具 多媒体课件 教学活动
教学步骤 师生活动 设计意图 回顾 问题1:小学学习过方程,你知道什么是方程吗? 问题2:列方程解应用题需要注意什么?
复习回顾,做
好铺垫.
活动 一: 创设 情境 导入 新课
师:如果把你的年龄乘2再减5的结果告诉我,我就能猜出你的年龄,试一下.
图3-1-3 师:如果把我的年龄乘2再减5的话,结
从一个趣味游戏入手,有效地激发了学生的学习兴趣,唤起了他们的求知欲望. 果等于65,谁能猜出我的年龄呢? 你能告诉我,你是怎么猜出来的吗?
活动 二: 实践 探究 交流 新知
【探究1】 一元一次方程以及方程的解 活动内容1:根据实际情景列方程 先独立思考以下问题,再以小组为单位交流讨论,最后总结出答案. 情景1:小颖种了一株树苗,开始时树苗的高为40 cm,栽种后树苗每周长高约15 cm,大约几周后树苗长高到1 m?
图3-1-4 解:设x周后树苗长高到1米.
由此可以得到方程:__40+15x=100__. 情景2:在参加2008年北京奥运会的中国代表队中,羽毛球运动员有19人,比跳水运动员的2倍少1人.问参加奥运会的跳水运动员有多少人? 解:设参加奥运会的跳水运动员有x人,由此可以得到方程:__2x-1=19.__ 情景3:根据第六次全国人口普查统计数据,截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000
设置丰富的问题情境,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望. 年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?
解:设2000年第五次全国人口普查时每10万人中约有x人具有大学文化程度, 由此可以得到方程:__x(1+147.30%)=8930__. 活动内容2:一元一次方程的概念 (1)上面得到的方程中有没有你熟悉的方程?它们是哪几个? (2)方程40+15x=100,2x-1=19,x(1+147.30%)=8930有什么共同特点? (3)满足什么条件的方程是一元一次方程? 一元一次方程:只含有__一个__未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程. 判断一个方程是否是一元一次方程,必须同时满足三个条件:①只含有一个未知数;②未知数的次数是1;③等式两边都是整式. 活动内容3:方程的解 在“猜年龄”游戏中,当你告诉我计算的结果是21时,所列的方程为2x-5=21,当x=13时,方程的两边相等,我们就把13叫做方程2x-5=21的解.
方程的解:使方程两边相等的未知数的值叫做方程的解. 活动 二: 实践 探究 交流 新知
【探究2】 等式的基本性质 如图3-1-5,在天平两边的秤盘里,放着质量相等的物体,使天平保持平衡. 第一步,在天平两边同时放入相同质量的砝码,观察天平是否平衡. 第二步,在天平两边同时拿去相同质量的砝码,观察天平是否平衡.
图3-1-5 等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式. 如果天平两边的物体的质量同时扩大相同的倍数(例如2倍)或同时缩小为原来的几分之一 ,天平还保持平衡吗?你能得出等式的什么性质?
图3-1-6 等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式. 等式的基本性质: 性质1 等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式即
如果a=b,那么__a+c=b+c__, __a-c
此试验活动既培养了学生观察、思考、分析、总结、归纳的能力,又培养了学生的语言表达能力,特别是培养了学生用符号语言表示等式的四个基本性质. =b-c__. 性质2 等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式,即
如果a=b, 那么__ac=bc__,__a/c =b/c (c≠0).__ 性质3 如果a=b,那么b=a.(对称性) 性质4 如果a=b,b=c,那么a=c.(传递性)
活动 三: 开放 训练 体现 应用 【应用举例】 例1 在横线上填写适当的代数式,并说明根据等式的哪一条性质. (1)若x+2=y+2,则x=________( ); (2)若4x=-8,则x=________( ); (3)若5x=2x+2,则3x=________( ). 加深对等式的基本性质的理解,并且能够利用等式的基本性
质解一元一次方程.
活动 三: 开放 训练 体现 应用
变式训练 1.下列变形,正确的是( B ) A.若ac=bc,则a=b B.若a/c=b/c ,则a=b C.若a2=b2,则a=b D.若-x=6,则x=-
2 2.如图3-1-7所示,天平右盘里放了一块砖,左盘里放了半块砖和2 kg的砝码,天平两端正好平衡,那么一块砖的质量是( D )
举一反三,灵活掌握,熟练解题. 图3-1-7 A.1 kg B.2 kg C.3 kg D.4 kg
例2 解方程:2x-1=19. 变式训练 1.利用等式的基本性质解方程:
(1)5x-3=2x+6; 【拓展提升】 例3 下列说法中,正确的个数是( C ) ①若mx=my,则mx-my=0;②若mx=my,则x=y;
③若mx=my,则mx+my=2my;④若x=y,则mx=my. A.1 B.2 C.3 D.4 例4 已知关于x的方程2x+3a-2=6的解为x=1,求a.
例5 解方程:3x-3=2x-3. 小胡同学是这样解的: 方程两边都加上3,得 3x=2x. 方程两边都除以x,得 3=2. 所以此方程无解. 小胡同学的解题过程是否正确?如果正确,指出每一步的依据;如果不正确,指出错在哪里,并进行改正.
领会题意,熟练方法,提高学生的解题能力. 活动 四: 课堂 总结 反思
【当堂训练】 1.下列各式中,是一元一次方程的有 __(1)(3)__. (1)x/3+8=3;(2)18-x;(3)1=2x+2;(4)5x2=20;
(5)x+y=8. 2.方程3x-1=5的解是( D ) A.x=4/3 B.x=5/3 C.x=18 D.x=2 3.(1)等式3x-10=2x+15的两边都__加上10-2x__,得到等式x=25,这是根据__等式的基本性质1__; (2)等式- x=的两边都__除以- __,得到等式x=__-__,这是根据__等式的基本性质2__ . 4.利用等式的性质解下列方程:
(1)4.7+3x=11;
检测本课所学,对学生多进行激励性评价.
提纲挈领,重点突出. 活动 四: 课堂 总结 反思
【教学反思】 ①[授课流程反思] 本节课通过设置丰富的问题情境,使学生经历模型化的过程,引出一元一次方程的概念,整个探究过程自然顺畅,学生易于理解,效果较好. ②[讲授效果反思] 在整个教学实施过程中,教师自始至终坚持以问题为主线,诱导学生思考问题,进而去解决问题.借助天平操作培养学生从实际操作中获取信息,通过亲身感受,体验归纳总结并抽象数学模型的能力. ③[师生互动反思] 相信学生,只要教师引导得当,学生在师生、生生的交流碰撞中,会适时调整自己对数学的学习方式及获取各种信息的途径,教师更应该把握以最简单最直接的方式揭开最有价值的数学思维方式.
反思,更进一步提升.