多普勒效应 实验报告——大连理工大学大学物理实验报告
- 格式:doc
- 大小:1.01 MB
- 文档页数:10
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节实验名称 多普勒效应及声速的测试与应用教师评语实验目的与要求:1. 加深对多普勒效应的了解2. 测量空气中声音的传播速度及物体的运动速度主要仪器设备:DH-DPL 多普勒效应及声速综合测试仪,示波器其中, DH-DPL 多普勒效应及声速综合测试仪由实验仪、智能运动控制系统和测试架三个部份组成。
实验原理和内容: 1、 声波的多普勒效应实际的声波传播多处于三维的状态下, 先只考虑其中的一维(x 方向)以简化其处理过程。
设声源在原点,声源振动频率为f ,接收点在x 0,运动和传播都在x 轴向上, 则可以得到声源和接收点没有相对运动时的振动位移表达式:⎪⎪⎭⎫⎝⎛-=000cos x c t p p ωω , 其中00x c ω-为距离差引起的相位角的滞后项, 0c 为声速。
然后分多种情况考虑多普勒效应的发生: 1.1 声源运动速度为S V ,介质和接收点不动假设声源在移动时只发出一个脉冲波, 在t 时刻接收器收到该脉冲波, 则可以算出从零时刻到声源发出该脉冲波时, 声源移动的距离为)(0c x t V S -, 而该时刻声源和接收器的实际距离为)(00c x t V x x S --=, 若令S M =S V /0c (声源运动的马赫数), 声源向接收点运动时S V (或S M )为正, 反之为负(以下各个马赫数的处理方法相同, 均以相互靠近的运动时记为正)。
则距离表达式变为)1/()(0S S M t V x x --=, 代回到波函数的普适表达式中, 得到变化的表达式:⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛--=0001cos c x t M p p S ω可见接收器接收到的频率变为原来的SM 11-, 即:1.2 根据同样的计算法, 通过计算脉冲波发出时的实际位移并代换普适表达式中的初始位移量, 便可以得到声源、介质不动,接收器运动速度为r V 时, 接收器接收到的频率为1.3介质不动,声源运动速度为S V,接收器运动速度为r V ,可得接收器接收到的频率为1.4 介质运动。
多普勒效应综合实验报告多普勒效应综合实验报告引言多普勒效应是一种物理现象,描述了当光线或声音经过运动的物体时,其频率和波长会发生变化的现象。
本实验旨在通过多种实验方法验证多普勒效应,并探讨其在实际应用中的重要性。
实验一:声音的多普勒效应实验目的:验证声音在运动源和观察者之间相对运动时所产生的多普勒效应。
实验步骤:1. 准备一辆发出固定频率声音的小车和一个固定的听音器。
2. 将小车以一定速度向听音器移动,并记录每次移动的距离。
3. 同时记录听音器接收到的声音频率。
4. 重复实验多次,以获得更准确的数据。
实验结果:根据实验数据,当小车以不同速度向听音器移动时,听音器接收到的声音频率会发生变化。
当小车接近听音器时,声音频率增高;当小车远离听音器时,声音频率降低。
实验分析:这种现象可以通过多普勒效应来解释。
当小车向听音器移动时,声音波长相对于听音器缩短,导致声音频率增高。
相反,当小车远离听音器时,声音波长相对于听音器延长,导致声音频率降低。
实验二:光的多普勒效应实验目的:验证光在运动源和观察者之间相对运动时所产生的多普勒效应。
实验步骤:1. 准备一束激光和一个运动的反射镜。
2. 将激光照射到反射镜上,并记录反射光的频率。
3. 以一定速度移动反射镜,并记录每次移动的距离。
4. 同时记录反射光的频率变化。
5. 重复实验多次,以获得更准确的数据。
实验结果:根据实验数据,当反射镜以不同速度运动时,反射光的频率会发生变化。
当反射镜接近观察者时,光频率增高;当反射镜远离观察者时,光频率降低。
实验分析:这种现象同样可以通过多普勒效应来解释。
当反射镜向观察者移动时,光波长相对于观察者缩短,导致光频率增高。
相反,当反射镜远离观察者时,光波长相对于观察者延长,导致光频率降低。
实验三:多普勒效应的应用多普勒效应在现实生活中有着广泛的应用。
以下是一些例子:1. Doppler Radar(多普勒雷达):多普勒效应被广泛用于气象预报和交通监测中。
实验名称:多普勒效应实验实验目的:1. 理解多普勒效应的原理和现象;2. 掌握多普勒效应的实验方法;3. 通过实验验证多普勒效应的存在;4. 分析实验数据,得出实验结论。
实验原理:多普勒效应是指当波源与接收器之间存在相对运动时,接收器接收到的波的频率会发生变化的现象。
当波源向接收器移动时,接收到的频率会升高;当波源远离接收器时,接收到的频率会降低。
实验仪器:1. 发射器:频率为f的连续波发生器;2. 接收器:频率计;3. 跟踪器:用于控制波源与接收器之间的相对运动;4. 移动平台:用于承载波源和接收器;5. 测量工具:尺子、计时器等。
实验步骤:1. 将发射器和接收器放置在移动平台上,确保两者之间的距离为L;2. 设置发射器的频率为f,打开发射器;3. 通过跟踪器控制波源和接收器之间的相对运动,分别进行以下实验:a. 波源向接收器移动,记录接收器接收到的频率f1;b. 波源远离接收器,记录接收器接收到的频率f2;c. 接收器向波源移动,记录接收器接收到的频率f3;d. 接收器远离波源,记录接收器接收到的频率f4;4. 计算相对速度v,公式为v = (f1 - f) / f L;5. 计算相对速度v,公式为v = (f2 - f) / f L;6. 计算相对速度v,公式为v = (f3 - f) / f L;7. 计算相对速度v,公式为v = (f4 - f) / f L;8. 分析实验数据,得出实验结论。
实验结果:1. 波源向接收器移动时,接收器接收到的频率f1高于原始频率f;2. 波源远离接收器时,接收器接收到的频率f2低于原始频率f;3. 接收器向波源移动时,接收器接收到的频率f3高于原始频率f;4. 接收器远离波源时,接收器接收到的频率f4低于原始频率f;5. 计算得到的相对速度v分别为v1、v2、v3、v4,符合多普勒效应的规律。
实验结论:通过实验验证了多普勒效应的存在,即当波源与接收器之间存在相对运动时,接收器接收到的波的频率会发生变化。
多普勒效应实验报告引言多普勒效应是19世纪初由奥地利物理学家克里斯蒂安·多普勒提出的一种物理现象,它描述了由于发射源或接收源相对于观察者的相对运动而导致的频率变化。
这一现象在日常生活中也有很多实际应用,例如各种雷达设备、医学超声波和天文学测量等领域。
本次实验旨在通过模拟和观察多普勒效应来加深对其原理的理解。
实验目的通过模拟车辆行驶时发出声音的多普勒效应,验证多普勒效应的存在及其原理。
实验材料- 一个声音发生器- 一个车辆模型- 一台频率计- 扬声器- 一个音高计实验步骤1. 搭建实验装置:将声音发生器和频率计连接,通过扬声器发出声音;在一固定位置放置车辆模型。
2. 测量静止状态下的频率:在车辆静止的情况下,记录频率计显示的数值。
3. 测量追上车辆时的频率:由于车辆以一定速度远离发声源,观察者向车辆靠近。
记录频率计显示的数值。
4. 测量追赶车辆时的频率:车辆以一定速度迎面驶来,观察者离开车辆。
记录频率计显示的数值。
5. 分析数据结果:对比静止状态下的频率和追上、追赶车辆时的频率,观察差异并得出结论。
实验结果在进行实验的过程中,我们记录下了实验数据并进行了数据分析。
在静止状态下,声音发生器发出的声音频率为2000 Hz。
当观察者向车辆靠近时,频率计显示的数值逐渐增加,最终达到2050Hz。
而当观察者离开车辆时,频率计显示的数值逐渐减小,最终达到1950 Hz。
讨论及分析根据实验结果可知,当观察者向车辆靠近时,接收到的声波频率较高;当观察者远离车辆时,接收到的声波频率较低。
这是由于车辆和观察者相对运动导致的多普勒效应。
在静止状态下,观察者接收到的声波频率与声音发生器发出的声音频率相等,因两者相对静止。
但是当观察者向车辆靠近时,观察者将接收到来自车辆发出的频率较高的声波,导致频率计显示数值增加。
而当观察者远离车辆时,观察者将接收到来自车辆发出的频率较低的声波,导致频率计显示数值减小。
这一现象可以通过多普勒公式来解释。
多普勒效应实验报告多普勒效应是指当光源和观测者之间有相对运动时,光的频率会发生改变的现象。
本实验旨在通过测量不同速度下的多普勒效应来验证这一现象,并分析其中的规律。
实验仪器与原理实验中使用的仪器包括平行光管、声源、频率计、速度计等。
声源发出的声波通过平行光管发射出去,频率计用于测量声波的频率,速度计用于测量平行光管的运动速度。
当声源静止时,所发出的声波频率为f0。
当声源以速度v向观测者运动时,观测者接收到的声波频率为f1,根据多普勒效应公式,可以得出:f1 = f0 * (v + c) / (v + c')其中,f1为观测者接收到的声波频率,f0为声源发出的声波频率,v为声源的运动速度,c为声波在空气中的传播速度,c'为平行光管的移动速度。
实验步骤(1)调节频率计和速度计,保证其准确度。
(2)测量声源相对于观测者的运动速度v。
(3)让观测者在不同速度下测量接收到的声波频率。
(4)记录实验数据。
数据处理与分析在不同速度下,我们分别记录了声波的频率和声源的运动速度,并计算出了实验数据。
通过对实验数据的处理与分析,我们可以得出以下结论:(1)当声源向观测者运动时,接收到的声波频率会增加,而当声源远离观测者时,接收到的声波频率会减小,这符合多普勒效应的规律。
(2)通过实验数据的对比分析,可以得出声波频率与声源运动速度之间的关系,验证多普勒效应公式的准确性。
结论通过实验,我们验证了多普勒效应的存在,并成功测量了不同速度下声波的频率变化。
实验结果表明,多普勒效应在声波传播中起着重要作用,对于相关研究具有重要意义。
以上是本次多普勒效应实验的报告内容,希望能够对相关知识有所帮助。
感谢您的阅读。
附件:实验项目名称:多普勒效应实验学号:____________姓名:_________班级:___________实验序号___第_____周星期______第________节课联系方式:__________________[实验目的](1)了解多普勒效应的原理(2)学会利用多普勒效应测量速度等运动参数的方法[实验仪器]多普勒效应实验仪[实验原理及预习问题]1.若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度大小v靠近声源运动,接收器接收到的频率比声源的频率大还是小?为什么?对于远离声源情况再次讨论上述问题。
2.多普勒效应有哪些应用?[实验内容与原始数据记录]实验1:多普勒效应验证及声速的测量谐振频率f0=_________Hz温度t=________℃表1多普勒效应的验证与声速的测量测量数据直线斜率k(1/m)声速测量值u=f0/k(m/s)声速理论值2731330tu+=百分误差(u-u0)/u0次数i12345V i(m/s)f i(Hz)注:表中斜率计算见下页公式画出f-V 关系曲线:斜率的计算:=i V ___________=i f __________=⨯i i f V _________=⨯i i f V _________=2i V __________=2i V __________=-⨯-⨯=22ii ii i i V V f V f V k _____________实验2:变速运动(简谐振动)的研究表2简谐振动的研究N 1maxN 5max T=0.02(N 5max -N 1max )(s)ω=2π/T (1/s)ω平均值ω标准差12345三、思考题1.试分析实验1中误差产生的主要原因。
2.在实验二中,每次需要使小车偏离平衡位置一定距离再放手,如果每次实验偏离平衡位置的距离不一样(仍然在弹簧弹性限度内),是否会对实验结果有明显影响?为什么?评分:批改教师签名:。
多普勒效应实验报告一、实验目的1.了解多普勒效应的基本原理以及相关概念;2.利用多普勒效应来测量声源的速度;3.学习利用频率变化原理判断物体运动方向的方法。
二、实验原理多普勒效应是指当声源或接收器相对于空气运动时,其工作频率会发生变化的现象。
这是由于声波在空气中以有限速度传播,如果有物体相对于媒质自身运动,则声波的传播速度相对于物体而言会有差异,从而改变了声波的频率。
例如,当一个声源自身静止时,其工作频率为f0,但是当其向接收器方向移动时,由于声波传播速度相对于声源自身而言变快,所以接收器接收到的频率f1会变大;反之,当声源向远离接收器方向移动时,接收到的频率f2会变小。
多普勒效应还可以用来测量物体的速度和运动方向,例如利用多普勒雷达来测量飞机的速度和方向。
三、实验器材1.震荡器、扬声器;2.频率计、示波器;3.电源、电缆。
四、实验步骤1.连接实验线路,将示波器接收端接在扬声器上,将震荡器与扬声器固定在相距一定的地方(约1m);2.将震荡器的频率调整为f0,扬声器发出的声音的频率与震荡器的频率相同;3.移动扬声器,使其相对于震荡器和示波器运动,记录频率计显示的频率;4.测量不同距离下的频率,记录数据。
根据多普勒效应的公式计算出声源运动的速度。
五、实验结果在进行实验过程中,我们记录了不同距离下频率计显示的频率值,根据多普勒效应公式计算出了在此距离下的速度,并绘制出速度与距离的关系曲线(图1)。
从图中可以看出,当声源与接收器间的距离越远,测量得到的速度值越接近真实值。
此外,我们还利用多普勒效应来判断物体的运动方向。
当声源向接收器方向运动时,我们发现接收到的声音的频率较大;当声源远离接收器方向运动时,接收到的频率较小。
因此,通过观察频率变化可以判断物体的运动方向。
图1:声源速度与距离关系曲线六、实验分析从实验结果可以看出,多普勒效应是一种非常重要的物理现象,在实际应用中有很大的作用。
例如,利用多普勒雷达可以测量飞机、汽车等运动物体的速度和方向;利用多普勒医学成像可以观察人体内部的血流情况。
多普勒效应实验报告——⼤连理⼯⼤学⼤学物理实验报告⼤连理⼯⼤学⼤学物理实验报告院(系)材料学院专业材料物理班级 0705 姓名学号实验台号实验时间 2020 年 03 ⽉ 30 ⽇,第六周,星期⼀第 5-6 节实验名称多普勒效应及声速的测试与应⽤教师评语实验⽬的与要求:1. 加深对多普勒效应的了解2. 测量空⽓中声⾳的传播速度及物体的运动速度主要仪器设备:DH-DPL 多普勒效应及声速综合测试仪,⽰波器其中, DH-DPL 多普勒效应及声速综合测试仪由实验仪、智能运动控制系统和测试架三个部份组成。
实验原理和内容: 1、声波的多普勒效应实际的声波传播多处于三维的状态下,先只考虑其中的⼀维(x ⽅向)以简化其处理过程。
设声源在原点,声源振动频率为f ,接收点在x 0,运动和传播都在x 轴向上,则可以得到声源和接收点没有相对运动时的振动位移表达式:-=000cos x c t p p ωω,其中00x c ω-为距离差引起的相位⾓的滞后项, 0c 为声速。
然后分多种情况考虑多普勒效应的发⽣: 1.1 声源运动速度为S V ,介质和接收点不动假设声源在移动时只发出⼀个脉冲波,在t 时刻接收器收到该脉冲波,则可以算出从零时刻到声源发出该脉冲波时,声源移动的距离为)(0c x t V S -,⽽该时刻声源和接收器的实际距离为)(00c x t V x x S --=, 若令S M =S V /0c (声源运动的马赫数),声源向接收点运动时S V (或S M )为正,反之为负(以下各个马赫数的处理⽅法相同,均以相互靠近的运动时记为正)。
则距离表达式变为)1/()(0S S M t V x x --=,代回到波函数的普适表达式中,得到变化的表达式:?--=0001cos c x t M p p S ω可见接收器接收到的频率变为原来的SM 11-, 即:1.2 根据同样的计算法,通过计算脉冲波发出时的实际位移并代换普适表达式中的初始位移量,便可以得到声源、介质不动,接收器运动速度为r V 时,接收器接收到的频率为1.3介质不动,声源运动速度为S V,接收器运动速度为r V ,可得接收器接收到的频率为1.4 介质运动。
⼤物实验报告——多普勒效应实验4.12 多普勒效应实验报告⼀、实验⽬的与实验仪器实验⽬的1、了解多普勒效应原理,并研究相对运动的速度与接收到频率之间的关系。
2、利⽤多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及其机械能转化的规律。
实验仪器ZKY-DPL-3 多普勒效应综合实验仪、电⼦天平、钩码等。
⼆、实验原理(要求与提⽰:限400字以内,实验原理图须⽤⼿绘后贴图的⽅式)声波的多普勒效应假设⼀个点声源的振动在各向同性且均匀的介质中传播,当声源相对于介质静⽌不动时,各个波⾯可以组成个同⼼圆,声波的频率f0、波长λ0以及波速u0表⽰为f0=u0/λ0现将接收器测得的声波频率、波长和波速分别称为观测频率、观测波长和观测波速,并分别记为f、λ、u,可表⽰为f=u/λ当接收器以⼀定的速度向声源运动时,接收器所测得的各个球⾯波的观测波长λ仍等于λ0,测得的观测波速u 变为u0+v0,因此有f=(u0+v0)/λ0f=(1+v/u0)*f0式中,v0表⽰声源相对介质静⽌时,接收器与声源的相对运动速率,接收器朝向声源运动为正值,反之为负值。
同样地,如果接收器相对于介质静⽌,⽽声源以速率v’朝向接收器运动,此时接收器所测得的观测波长为λ'可表⽰为(u0-v')*T,其中,T为声源的振动周期。
同时,由于接收器相对于介质处于静⽌状态,其测得的观测波速u'仍等于u0,则接收器测得的观测频率为f'=u’/λ’=u0*f0/(u0-v’)对于更为普遍的情况,当声源与接收器之间的相对运动如图所⽰时,可以得到接收器的观测频率f为f=f0*(u0+v1*cosθ1)/(u0-v2*cosθ2)此式是具有普适性的多普勒效应公式。
三、实验步骤(要求与提⽰:限400字以内)1、超声的多普勒效应1.1 连接好实验仪器,使滑车牵引绳绕过滑轮与滑车驱动电动机后两端与滑车的前后端相连,并调整好滑车牵引绳的松紧。
多普勒效应实验报告一、实验目的1、观察并验证多普勒效应现象。
2、测量声速,并通过多普勒效应计算声源的运动速度。
3、深入理解多普勒效应的原理及其在实际生活中的应用。
二、实验原理多普勒效应是指当波源与观察者之间存在相对运动时,观察者接收到的波的频率会发生变化。
对于声波来说,如果声源向着观察者运动,观察者接收到的频率会升高;如果声源远离观察者运动,观察者接收到的频率会降低。
设声源的频率为 f₀,声速为 v,观察者相对于介质的速度为 v₀(靠近声源为正,远离声源为负),声源相对于介质的速度为 vs(靠近观察者为正,远离观察者为负),则观察者接收到的频率 f 为:当声源运动,观察者静止时:f = f₀×(v + v₀) /(v vs)当观察者运动,声源静止时:f = f₀×(v + v₀) / v当声源和观察者都运动时:f = f₀×(v + v₀) /(v vs)三、实验仪器1、信号发生器:用于产生稳定的音频信号。
2、扬声器:作为声源。
3、麦克风:用于接收声音信号。
4、数据采集卡:将麦克风接收到的模拟信号转换为数字信号,并传输给计算机。
5、计算机:用于控制实验、采集数据和进行数据分析。
四、实验步骤1、连接实验仪器将信号发生器的输出连接到扬声器,以提供声源信号。
将麦克风连接到数据采集卡的输入端口。
将数据采集卡插入计算机的 PCI 插槽,并安装驱动程序和相关软件。
2、软件设置打开计算机上的实验控制软件,设置采样频率、通道选择等参数。
选择合适的显示方式,以便观察和分析采集到的数据。
3、测量声速在实验环境中,让扬声器和麦克风保持固定距离。
信号发生器产生一个已知频率 f₀的正弦波信号,通过扬声器发出声音。
麦克风接收声音信号,并通过数据采集卡传输到计算机。
测量声音信号从扬声器发出到麦克风接收的时间差 t。
根据声速公式 v = d / t(其中 d 为扬声器和麦克风之间的距离),计算出声速 v。
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 学号 实验台号实验时间 2020 年 03 月 30 日,第六周,星期 一 第 5-6 节实验名称 多普勒效应及声速的测试与应用教师评语实验目的与要求:1. 加深对多普勒效应的了解2. 测量空气中声音的传播速度及物体的运动速度主要仪器设备:DH-DPL 多普勒效应及声速综合测试仪,示波器其中, DH-DPL 多普勒效应及声速综合测试仪由实验仪、智能运动控制系统和测试架三个部份组成。
实验原理和内容: 1、 声波的多普勒效应实际的声波传播多处于三维的状态下, 先只考虑其中的一维(x 方向)以简化其处理过程。
设声源在原点,声源振动频率为f ,接收点在x 0,运动和传播都在x 轴向上, 则可以得到声源和接收点没有相对运动时的振动位移表达式:⎪⎪⎭⎫⎝⎛-=000cos x c t p p ωω , 其中00x c ω-为距离差引起的相位角的滞后项, 0c 为声速。
然后分多种情况考虑多普勒效应的发生: 1.1 声源运动速度为S V ,介质和接收点不动假设声源在移动时只发出一个脉冲波, 在t 时刻接收器收到该脉冲波, 则可以算出从零时刻到声源发出该脉冲波时, 声源移动的距离为)(0c x t V S -, 而该时刻声源和接收器的实际距离为)(00c x t V x x S --=, 若令S M =S V /0c (声源运动的马赫数), 声源向接收点运动时S V (或S M )为正, 反之为负(以下各个马赫数的处理方法相同, 均以相互靠近的运动时记为正)。
则距离表达式变为)1/()(0S S M t V x x --=, 代回到波函数的普适表达式中, 得到变化的表达式:⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛--=0001cos c x t M p p S ω可见接收器接收到的频率变为原来的SM 11-, 即:1.2 根据同样的计算法, 通过计算脉冲波发出时的实际位移并代换普适表达式中的初始位移量, 便可以得到声源、介质不动,接收器运动速度为r V 时, 接收器接收到的频率为1.3介质不动,声源运动速度为S V,接收器运动速度为r V ,可得接收器接收到的频率为1.4 介质运动。
同样介质的运动会改变声波从源向接收点传播的实际表观速度(真实声速并没有发生变化), 导致计算收发声时的实时位移量变为t V x xm -=0, 通过同样的计算法, 可以得到此状态下接收器收到的频率为(以介质向接收器运动时, 马赫数记为正)另外, 当声源和介质以相同的速度和方向运动时, 接收器收到的频率不变(从定性的分析即可得到这一点结论)。
本实验重点研究第二种情况, 即声源和介质不动, 接收器运动。
设接收器运动速度为r V ,根据1.2 式可知,改变r V 就可得到不同的r f ,从而验证了多普勒效应。
另外,若已知r V 、f ,并测出r f ,则可算出声速0c ,可将用多普勒频移测得的声速值与用时差法测得的声速作比较。
若将仪器的超声换能器用作速度传感器,就可用多普勒效应来研究物体的运动状态。
2、 声速的几种测量原理2.1超声波与压电陶瓷换能器频率高于20kHz 的声波称为超声波,超声波的传播速度等于声波的传播速度,而超声波具有波长短,易于定向发射等优点, 故实验中采用超声波来验证多普勒效应。
本实验使用的压电陶瓷换能器为纵向换能器, 即能够将轴向的机械振动转换为电压的变化并输出。
右图为其结构示意简图2.2时差法测量原理连续波经脉冲调制后由发射换能器发射至被测介质中,声波在介质中传播,经过t 时间后,到达L 距离处的接收换能器。
显然声波在介质中传播的速度V=L/t 。
测量过程中发射与接收端的显示波形如下:步骤与操作方法:1. 时差法测声速1.1 通过调节滚花帽, 将接收换能器调到距发射换能器12cm 处,记录接收换能器接收到的脉冲信号与原信号时间差。
1.2将接收换能器分别调至12cm 、13cm ……19cm 处,分别记录各位置时间差。
(注意避开时间不稳定的区域, 使用稳定的区域进行测量)2. 多普勒法测声速瞬时法测声速2.1 从主菜单进入多普勒效应实验2.2 将接收换能器调到约75cm 处,设置源频率使接收端的感应信号幅值最大(谐振状态)后盖反射板压电陶瓷片辐射头正负电极片2.3 返回多普勒效应菜单,点击瞬时测量。
2.4 按下智能运动控制系统的Set 键,进入速度调节状态→按Up 直至速度调节到0.450m/s 2.5 按Set 键确认→再按Run/Stop 键使接收换能器运动。
2.6 记录“测量频率”的值,按Dir 改变运动方向,再次测量。
3. 反射法测声速用发射发测声速时,反射屏要远离两换能器,调整两换能器之间的距离、两换能器和反射屏之间的夹角θ以及垂直距离L ,如左下图所示,使数字示波器(双踪,由脉冲波触发)接收到稳定波形。
利用数字示波器观察波形,通过调节示波器使接受波形的某一波头b n 的波峰处在一个容易辨识的时间轴位置上,然后向前或向后水平调节反射屏的位置,使移动△L ,记下此时示波器中选定的波头b n 在时间轴上移动的时间△t ,如右下图所示,从而得出声速值0c反射屏发射换能器接受换能器θθθL根据几何关系, 可以得到声速的计算表达式为:θsin 20⋅∆∆=∆∆=t Lt x c 多次测量后, 与理论给出值比较: 16.273145.3310tc +=(m/s ), t 为摄氏温标下的室温。
4. 利用已知声速测物体移动速度4.1 从主菜单进入变速运动实验,将采样步距改为50ms 。
4.2 长按智能运动控制系统的Set 键,使其进入ACC1变速运动模式,再按Run/Stop 键使接收换能器变速运动。
4.3 点击“开始测量”由系统记录接收到信号的频率(如半分钟后曲线仍未出现,则需重新调节谐振频率)。
再按Run/Stop 键停止变速运动。
4.4 点击“数据”记录实验数据。
计算接收换能器的最大运行速度,画出相应v t -曲线。
数据记录与处理:1. 时差法测声速实验数据2. 多普勒法侧声速实验数据f0=37340Hzf+=37390Hz, V r+=+0.449m/s;f-=37291Hz, V r-=-0.449m/s3. 已知声速求运动物体速度实验数据而在160个完整的采样数据中,最大和最小频率分别为:f max=37373Hzf min=37309Hz结果与分析:1. 由时差法的测量数据, 通过作图法计算声速: 根据已知数据, 作图如下:如图, 取4个数据点, 使用逐差法, 取平均值得到直线的斜率为k=0.0342cm/μs 故测得的声速为 c 0=342m/s2. 多普勒法测声速已知, 接收器向声源运动时, 00)1(f c V f r +++=, 远离声源运动时, 00)1(f c Vf r --+=, 综合两式可以得到声速的计算公式为:00f f f V V c r r ⋅-+=-+-+代入已知数据, s m f HzHz s m s m c /7002.3383729137390/449.0/449.000=⋅--+=又已知相关的不确定度为U f0=U f+=U f-=1Hz, U vr+=U vr-=0.002m/s()()014629.02222222000=+++-++⎪⎪⎭⎫ ⎝⎛=-+-+-+-+r r vr vr f f f c V V U U f f U U f U c U U c0=4.9549=5m/s声速的最终结果形式为:()s m c /53380±=3. 由已知的声速测量物体(接收器)的运动速度根据第二种多普勒效应的频率变化公式, 可以得到由变化后的频率计算运动速度的公式为:⎪⎪⎭⎫⎝⎛-=-+-+10/0/f f c V r , 其中V 为正表示接收器向声源移动, 反之表示远离声源移动将采样数据的编号根据采样步长值改为采样时间t , 在列出V-f 的对应关系后, 可以得到以下这张 表现时间-频率-运动速度对应关系的t-f-V 表:根据V-t 的对应关系, 可以画出两者的变化规律曲线。
为保证曲线的准确性, 以下使用Matlab 6.5作为计算工具, 通过傅里叶变换逼近, 来得到函数图像。
以下为计算过程的程序代码:以t 为X 变量, V 为y 变量, 将数据输入程序中, x=[0 250 500 750 1000 125015001750200022502500275030003250 3500 3750 4000 4250 4500 4750 5000 5250 55005750600062506500675070007250750077507900]y=[-0.19914301-0.244402785 -0.27155865 -0.262506695 -0.23535083 -0.19914301 -0.10862346-0.05431173 0.063363685 0.10862346 0.19914301 0.244402785 0.280610605 0.289662560.244402785 0.208194965 0.12672737 0.081467595 -0.03620782 -0.117675415 -0.171987145-0.226298875 -0.262506695 -0.280610605 -0.244402785 -0.19914301 -0.16293519 -0.0814675950.01810391 0.12672737 0.171987145 0.23535083 0.262506695]使用函数拟合工具箱Curve Fitting Tools,以Fourier模拟(工具箱不提供三角函数拟合)得到以下的函数曲线:可见图像明显地表达出了接收器的变速运动是水平简谐运动。
另外根据完整采样数据中得到的f的最大和最小值f max=37373Hz,f min=37309Hz可以计算出接收器运动速度的最大和最小值分别为f max=0.299m/s,f min=-0.281m/s(数值最小),f min’=0.010m/s(实际最小,但由于采样点不完全,该数据可能不准确)讨论、建议与质疑:1.马赫是怎样定义的?马赫是相对速度单位,设在介质中(一般应为空气)的声速为c,某一物体的运动速度为v,则该物体运动的马赫数Ms=v/c。
或者说是飞行速度与当地音速的比值,简称M数,M数是以奥地利物理学家伊·马赫的姓氏命名的。
2.物体的运动速度跨越音速时,需要考虑什么问题?在超越音速时,需要考虑的问题是音障。