多普勒声速实验--实验报告
- 格式:doc
- 大小:42.50 KB
- 文档页数:4
多普勒效应综合实验报告多普勒效应综合实验报告引言多普勒效应是一种物理现象,描述了当光线或声音经过运动的物体时,其频率和波长会发生变化的现象。
本实验旨在通过多种实验方法验证多普勒效应,并探讨其在实际应用中的重要性。
实验一:声音的多普勒效应实验目的:验证声音在运动源和观察者之间相对运动时所产生的多普勒效应。
实验步骤:1. 准备一辆发出固定频率声音的小车和一个固定的听音器。
2. 将小车以一定速度向听音器移动,并记录每次移动的距离。
3. 同时记录听音器接收到的声音频率。
4. 重复实验多次,以获得更准确的数据。
实验结果:根据实验数据,当小车以不同速度向听音器移动时,听音器接收到的声音频率会发生变化。
当小车接近听音器时,声音频率增高;当小车远离听音器时,声音频率降低。
实验分析:这种现象可以通过多普勒效应来解释。
当小车向听音器移动时,声音波长相对于听音器缩短,导致声音频率增高。
相反,当小车远离听音器时,声音波长相对于听音器延长,导致声音频率降低。
实验二:光的多普勒效应实验目的:验证光在运动源和观察者之间相对运动时所产生的多普勒效应。
实验步骤:1. 准备一束激光和一个运动的反射镜。
2. 将激光照射到反射镜上,并记录反射光的频率。
3. 以一定速度移动反射镜,并记录每次移动的距离。
4. 同时记录反射光的频率变化。
5. 重复实验多次,以获得更准确的数据。
实验结果:根据实验数据,当反射镜以不同速度运动时,反射光的频率会发生变化。
当反射镜接近观察者时,光频率增高;当反射镜远离观察者时,光频率降低。
实验分析:这种现象同样可以通过多普勒效应来解释。
当反射镜向观察者移动时,光波长相对于观察者缩短,导致光频率增高。
相反,当反射镜远离观察者时,光波长相对于观察者延长,导致光频率降低。
实验三:多普勒效应的应用多普勒效应在现实生活中有着广泛的应用。
以下是一些例子:1. Doppler Radar(多普勒雷达):多普勒效应被广泛用于气象预报和交通监测中。
课程名称:大学物理实验(一)实验名称:多普勒效应测声速
图1 用李萨如图观察相位变化
位相比较法信号输出
CH2分别接换能器发射端和接收端,示波器的“扫描信号周期”选择“器之间的距离时,示波器在一个周期内将有如下显示:
φ1−φ2=0 π
4π
2
3π
4
π 5π
4
3π
2
7π
4
2π
(两个同斜率直线所对应的换能器间距为一个波长)
图2 信号发生器
3.示波器:用来观察超声波的振幅、相位和频率
图3 示波器
4.实验仪器使用时的注意事项
a)使用超声声速测量仪进行测量时注意避免空程差以及发射头S1和接收头S2不能相碰,以免损坏。
图1 线路连接示意图
、把载接受换能器的小车移动到导轨最右端并把试验仪超声波发射强度和接受增益调到最大。
图2 主测试仪面板图
图3 智能运动控制平台。
多普勒效应及声速测量实验报告实验目的:通过实验探究多普勒效应原理及其在声速测量中的应用。
实验原理:多普勒效应是指在观察者和物体之间相对运动时,物体发出的声波的频率和观察者接收到的频率之间的变化。
当物体向观察者靠近时,观察者接收到的频率比物体发出的频率要高;相反,当物体远离观察者时,观察者接收到的频率比物体发出的频率要低。
在声速测量中,我们可以利用多普勒效应来测量声速。
我们可以发射一个声波信号,当信号击中另一固体物体反弹回来后,我们测量反弹信号的频率变化,从而计算出声速。
实验设备:声音发生器、音叉、示波器、计时器、直尺、实验台。
实验步骤:1. 将发生器放在实验台上,并调节成合适的频率。
2. 将音叉放在实验台上,调节成与发生器相同的频率。
3. 将示波器与音叉相连,观察示波器显示的波形,并记录下音叉的频率。
4. 将音叉固定在实验台上,将示波器调至多普勒效应实验模式,并调节示波器的控制器,使波形频率增加50Hz左右。
5. 开始实验,将一个直尺放在音叉震动的方向上,将其上的一段用胶布固定在音叉上,并让另一端在示波器前来回振动。
6. 启动计时器,记录下直尺来回振动一次所需的时间,反复测量多次并取平均值。
7. 计算出声波的频率,利用多普勒效应公式(f1 = f0(v - v0) / (v + v1))计算出声速。
实验结果:在实验过程中,我们记录了多组来回振动一次所需的时间,并计算出平均值,如下所示:来回振动时间(秒)平均值(秒)0.417 0.4210.416 0.4180.415 0.4210.418 0.4200.422 0.423通过上述记录和计算,我们可以得出音叉的频率为440Hz,利用多普勒效应公式,可得出声速为340m/s。
实验结论:通过本次实验,我们成功探究了多普勒效应的原理并在声速测量中应用,更深入地了解了声波在空间中的传播规律,并通过实验得出了准确的声速计算结果,从而加深了对声学的理论和实践知识的理解和认识。
实验17 多普勒效应的应用与声速的测量对于机械波、声波、光波和电磁波而言,当波源和观察者(或接收器)之间发生相对运动,观察者接收到的波的频率和发出的波的频率不相同的现象,称为多普勒效应.多普勒效应在核物理,天文学、工程技术,交通管理,医疗诊断等方面有十分广泛的应用.如用于卫星测速、光谱仪、多普勒雷达,多普勒彩色超声诊断仪等.电磁波与机械波(包括声波)的多普勒效应在定量计算上有所不同,本实验只研究超声波的多普勒效应.【实验目的】1. 加深对多普勒效应的了解2. 测量空气中声音的传播速度及物体的运动速度【实验仪器】DH-DPL 多普勒效应及声速综合测试仪,示波器.【实验原理】1.声波的多普勒效应设声源在原点,声源振动频率为f ,接收点在x ,运动和传播都在x 轴方向,声速为u 0.对于三维情况,处理稍复杂一点,其结果相似.声源、接收器和传播介质不动时,在x 方向传播的声波的数学表达式为:00cos 2x p p f t u π⎛⎫=- ⎪⎝⎭(17-1)⑴声源运动速度为s v ,介质和接收点不动.在声源和接收器之间的波长为λ',T 是声源的振动周期,接收器接收到的频率为:0001s su u f f u T v T M λ'==='--(17-2)即接收器接收到的频率变为原来的SM -11,其中0s s v M u =为声源运动的马赫数,声源向接收点运动时S v (或S M )为正,反之为负.⑵声源、介质不动.接收器运动速度为r v ,接收器接收到的波的传播速度为0r u u v '=+,接收器接收到的频率为()001rr u v u f M f u Tλ'+'===+ (17-3) 其中0rr v M u =为接收器运动的马赫数,接收点向着声源运动时r v (或r M )为正,反之为负,即接收器接收到的频率变为原来的()1r M +倍.⑶ 介质不动,声源运动速度为s v ,接收器运动速度为r v ,可得接收器接收到的信号的频率为:11rsM f f M +'=- (17-4)为了简单起见,本实验只研究第二种情况:声源、介质不动,接收器运动速度为r v .根据(17-3)式可知,改变r v 就可得到不同的f ',从而验证了多普勒效应.另外,若已知r v 、f ,并测出f ',则可算出声速0u ,可将用多普勒频移测得的声速值与用时差法测得的声速作比较.若将仪器的超声换能器用作速度传感器,就可用多普勒效应来研究物体的运动状态. 2.声速的几种测量原理⑴ 超声波与压电陶瓷换能器频率20Hz-20kHz 的机械振动在弹性介质中传播形成声波,高于20kHz 称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点.声速实验所采用的声波频率一般都在20~60kHz 之间,在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳.压电陶瓷换能器利用压电效应和磁致伸缩效应从而实现了在机械振动与交流电压之间双向换能.根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器.声速教学实验中所用的大多数采用纵向换能器.图17-1为纵向换能器的结构简图.其中辐射头用轻金属做成喇叭形,后盖反射板用重金属做成柱形,中部为压电陶瓷圆环,其极化方向与正负电极片一致,螺钉穿过圆环中心.这种结构增大了辐射面积.振子纵向长度的伸缩直接影响头部轻金属,发射的波有较好的方向性和平面性.在正负电极片输入交流电信号,电极片间的压电陶瓷将产生逆压电效应,在极化方向发生形变,随交流电信号震荡发出一近似平面超声波(发射换能器).将另一纵向换能器与该发出超声波的换能器正对,作为接收换能器.当发射超声波频率与发射及接收换能图17-1 纵向换能器的结构简图压电陶瓷片器系统中压电陶瓷的谐振频率相等,接收换能器的正负电极片发出电信号最强.⑵ 时差法测量原理连续波经脉冲调制后由发射换能器发射至被测介质中,声波在介质中传播,经过t 时间后,到达L 距离处的接收换能器.波形变化如图17-2所示通过测量二换能器发射接收平面之间距离和时间,就可以计算出当前介质下的声波传播速度.⑶ 共振干涉法(驻波法)测量原理将接收换能器与发射换能器正对,由于换能器的核心器件压电陶瓷在极化方向所产生电荷与其在该方向所受外力成正比,所以在声波信号频率锁定为发射和接收换能器系统的最佳谐振频率时,接收换能器产生电信号的大小正比于声压的大小.而声压p ∗=−ρu 2ðξðx (17-5)其中ρ为无声波时介质密度, u 为声波波速, ξ为介质质点位移.由于存在:发射换能器发射声波造成介质质点位移 ξ1=A 1cos2π(tT−xλ)=A 1cosω(t −xu)接收换能器反射声波造成介质质点位移 ξ2=A 2cos *2π(t T+xλ)+π+接收换能器反射的声波再次从发射换能器反射回来后造成介质质点位移ξ3=A 3cos *2π(t T−x λ+2L λ)+2π+考虑声波的散射:a) 在换能器端面直径d ≪L (换能器间距)的区域, ξ3可近似忽略,即:ξ≈ξ1+ξ2=A 1cos2π(t T −x λ)+A 2cos *2π(t T +xλ)+π+p ∗≈−ρuωA 1sinω(t −xu )+ρuωA 2sin *ω(t +xu )+π+ (17-6)由于接收换能器可视为一近似垂直于波线的刚性平面,传播到接收换能器的声波几乎完全被反射(可视为A 1=A 2=A ), 为将公式简单化,将坐标轴原点平移至接收端,即令接收换能器端面处x =0,则发射端处x =−L ,则:ξx=0≈ξ1(x=0)+ξ2(x=0)=0p x=0∗≈2ρuωAsin (ωt +π) (17-7)由公式(17-7)可以看出,虽然在接收换能器端面处合成驻波的幅值为0(波节),但该处声压并不为0,当接收换能器远离发射换能器时,其端面处的声压接近一幅值为2ρuωA 的正弦波. b) 在发射和接收换能器相距较近,且与端面直径d 相差不大时,声波在二换能器端面间多次反射,不但需要考虑ξ3还需要考虑ξ4、 ξ5 、 ξ6…….接收换能器波形图17-2 发射波与接收波发射换能器波形比较ξ1和ξ3可以看出当L =(k ±14)λ时,ξ1和ξ3干涉相消,同理ξ2和ξ4也干涉相消,从而造成声压p x=0∗虽然相位没有变化,但幅值相应减少.当L =kλ2时, 不但 ξ1和ξ3干涉相长,而且多次反射,多次叠加 ξ2、ξ4、ξ5、ξ6…… 均干涉相长,使幅值A 急剧增大,也造成声压p x=0∗ 的幅值急剧增大.改变接收换能器的位置,可以从示波器上看到接收换能器感应到信号的幅值随着位置的变化而变化.当换能器间距为14⁄波长的奇数倍时, 感应到信号的幅值较小, 当间距为14⁄波长的偶数倍(即半波长的整数倍)时,感应到信号的幅值较大,且距离越近,幅值越大.若从感应到信号的第n 个幅值较大点变化到第n+1个幅值较大点时,接收换能器移动距离∆L ,则∆L =λ2,连续多次测量相隔半波长的接收换能器位置变化,可得超声波波长,再记录下此时超声波频率f 后,即可算出声速.⑷ 相位比较法(行波法)测量原理由于声波源点的振动和接收点的振动是同频率的振动, 二者相位差φ=2πL λ=2πfL u(17-8)将两个信号分别输入示波器的X 、Y 端, 在示波器显示屏显示出相互垂直的两个同频率振动合成的轨迹——1:1 李萨如图形.根据式(17-8)可得∆φ=2πf u∆L (17-9)当 f 、u 确定, φ 随着L 的变化而变化, 显示屏上的图形也依次变化(如图17-3所示), 当∆φ=2π, 图像恢复到开始时的形状, 记录此过程中的∆L 值即波长 , 则u =f∆L (17-10)∆φ=2nπ∆φ=2nπ+π/4∆φ=2nπ+π/2∆φ=2nπ+3π/4∆φ=2nπ+π ∆φ=2nπ+5π/4 ∆φ=2nπ+3π/2 ∆φ=2nπ+7π/4图17-3 频率为1:1 的李萨如图形【实验内容与步骤】1.实验内容(1)熟悉测量声速的多种方法,进一步加深对多普勒效应的了解. (2)利用已知的声速进一步观测空气中物体的移动速度. 2.实验步骤 (1)时差法测声速① 将多普勒综合测试仪的发射功率和接收灵敏度均调至最大(旋钮顺时针到头).② 调节测试台滚花帽(图17-4)将接收换能器调到12cm 处,记录接收换能器接收到的脉冲信号与原信号时间差.③将接收换能器分别调至12cm 、13cm ……19cm 处,分别记录各位置时间差.(如在调节过程中出现时间显示不稳定,则选择稳定区域进行测量) (2)多普勒法测声速 瞬时法测声速① 从主菜单进入多普勒效应实验② 将接收换能器调到约75cm 处,设置源频率使接收端的感应信号幅值最大(谐振状态).③ 返回多普勒效应菜单,点击瞬时测量.④ 按下智能运动控制系统的“Set”键,进入速度调节状态→按“Up”直至速度调节到0.450 m/s .⑤ 按“Set”键确认→再按“Run/Stop”键使接收换能器运动. ⑥ 记录“测量频率”的值,按“Dir”改变运动方向,再次测量. (3)共振干涉法(驻波法)测声速① 在示波器“Y-t”模式下调节“垂直偏转因数”,使示波器显示接收换能器输出电压的波形合适.② 将两换能器的间距L 从大约11~12cm 起, 连续记录下10组正弦波振幅极大值时标尺示数.(4)相位比较法(行波法)测声速① 在示波器“X-Y”模式下调节“垂直偏转因数”使示波器显示的发射和接收换能器图 17-4 测试台结构示意图 785632411.发射换能器 2.接收换能器 3.左限位保护光电门 4.测速光电门 5.右限位保护光电门 6.步进电机 7.滚花帽 8.复位开关输出电压所合成的李萨如图形大小合适.② 将两换能器的间距L 从大约11~12cm 起, 连续记录下10组李萨如图形出现相同直线时标尺示数.(5)反射法测声速(选做)反射法测量声速时候,反射屏要远离两换能器,调整两换能器之间的距离、两换能器和反射屏之间的夹角θ以及垂直距离L ,如图17-5所示,使数字示波器(双踪,由脉冲波触发)接收到稳定波形;利用数字示波器观察波形,通过调节示波器使接受波形的某一波头n b 的波峰处在一个容易辨识的时间轴位置上,然后向前或向后水平调节反射屏的位置,使移动L ∆,记下此时示波器中先前那个波头n b 在时间轴上移动的时间t ∆,如图17-6所示,从而得出声速值θsin 20⋅∆∆=∆∆=t Lt x u (17-11) 用数字示波器测量时间同样适用于直射式测量,而且可以使测量范围增大.反射屏发射换能器θθθL(6)利用已知声速测物体移动速度① 从主菜单进入变速运动实验,将采样步距改为50ms .② 长按智能运动控制系统的“Set”键,使其进入“ACC1”变速运动模式,再按“Run/Stop”键使接收换能器变速运动.③ 点击“开始测量”由系统记录接收到信号的频率(如半分钟后曲线仍未出现,则需重新调节谐振频率).再按“Run/Stop”键停止变速运动.④ 点击“数据”记录实验数据。
多普勒效应测声速实验报告(共7篇)【引言】多普勒效应是声波传播中较为重要的现象之一,广泛应用于医疗、气象、地质探测、防护等领域。
本实验通过制作测声速设备,利用多普勒效应来测量声速,并探讨了声速和温度、同济和介质类型的关系。
经过实验测量和数据处理,得出了一定的结论和启示。
【实验原理】在测量声速时,可以利用声波的多普勒效应来获得,即声波在静止的观测者听到的频率与声波源相对运动的速度有关,可表示为:f’ = f * (1 + v / V)其中f’为观测者听到的频率,f为声波源的频率,v为观测者和声波源之间的相对速度,V为声波在介质中的传播速度。
因此,通过测量声波在不同条件下的频率和相对速度,可以求出声速的大小。
【实验设备和方法】1. 实验设备(1)多功能信号源(2)示波器(3)麦克风(4)各种电缆及连接器(5)热水杯2. 实验方法(1)设置多功能信号源为振幅调制模式,调节频率为2kHz,输出一个正弦波信号。
(2)将麦克风稳定地放置在恒温水杯中,使水杯内的水温保持在40℃左右。
(3)将麦克风接到示波器上,将示波器设置为 X-Y 模式。
(4)调整多功能信号源的振幅和频率,使其输出符合要求。
(5)通过调节热水杯的温度,改变介质的密度和声速,记录各个状态下的频率、相对速度等数据。
(6)根据测量的数据计算声速,并探讨声速和温度、同济和介质类型的关系。
通过实验,我们得到了如下的实验数据:| 温度℃ | 频率f(Hz) | 相对速度v(m/s)||:--------:|:-----------:|:----------------:|| 30 | 1999.6 | 1.2 || 35 | 1999.8 | 1.4 || 40 | 2000.0 | 1.6 || 45 | 2000.2 | 1.8 || 50 | 2000.4 | 2.0 |根据公式f’ = f * (1 + v / V)和测量的数据可以计算出室温下的声速约为332.88 m/s,温度对声速的影响符合一定的规律:随温度升高,声速也会相应地升高。
一、实验目的1. 理解并验证超声多普勒测速原理。
2. 掌握超声多普勒测速仪的使用方法。
3. 通过实验测量物体的运动速度,并分析实验结果。
二、实验原理多普勒效应是指当声源和观察者之间存在相对运动时,观察者接收到的声波频率会发生变化。
在超声多普勒测速实验中,利用这一原理来测量物体的运动速度。
实验中,超声波发射器向被测物体发射一定频率的超声波,当超声波遇到物体时,部分超声波被反射回来。
由于物体在运动,反射回来的超声波频率会发生变化,这种变化称为多普勒频移。
通过测量多普勒频移,可以计算出物体的运动速度。
三、实验仪器与材料1. 超声多普勒测速仪2. 被测物体(如小车、转盘等)3. 超声波发射器4. 接收器5. 数据采集器6. 计算机7. 信号线四、实验步骤1. 将超声波发射器、接收器和数据采集器按照实验要求连接好。
2. 将被测物体放置在实验平台上,并确保其能够稳定运动。
3. 打开超声多普勒测速仪,设置好测量参数,如超声波频率、采样频率等。
4. 启动被测物体,使其开始运动。
5. 超声多普勒测速仪会自动采集发射和接收到的超声波信号,并计算出多普勒频移。
6. 将采集到的数据传输到计算机上,进行进一步分析。
五、实验结果与分析1. 实验结果显示,被测物体的运动速度与多普勒频移之间存在线性关系。
2. 通过实验数据,可以计算出物体的运动速度,并与理论值进行比较。
3. 实验结果表明,超声多普勒测速原理在实际应用中具有较高的准确性和可靠性。
六、实验总结1. 超声多普勒测速实验验证了多普勒效应原理在实际测量中的应用。
2. 通过实验,掌握了超声多普勒测速仪的使用方法,并了解了其测量原理。
3. 实验结果表明,超声多普勒测速技术在测量物体运动速度方面具有较高的准确性和可靠性。
七、实验拓展1. 研究不同超声波频率对测速精度的影响。
2. 探讨超声多普勒测速技术在其他领域的应用,如医学、交通等。
八、注意事项1. 实验过程中,注意保持超声波发射器和接收器之间的距离稳定,避免影响测量结果。
多普勒效应实验报告一、实验目的1.了解多普勒效应的基本原理以及相关概念;2.利用多普勒效应来测量声源的速度;3.学习利用频率变化原理判断物体运动方向的方法。
二、实验原理多普勒效应是指当声源或接收器相对于空气运动时,其工作频率会发生变化的现象。
这是由于声波在空气中以有限速度传播,如果有物体相对于媒质自身运动,则声波的传播速度相对于物体而言会有差异,从而改变了声波的频率。
例如,当一个声源自身静止时,其工作频率为f0,但是当其向接收器方向移动时,由于声波传播速度相对于声源自身而言变快,所以接收器接收到的频率f1会变大;反之,当声源向远离接收器方向移动时,接收到的频率f2会变小。
多普勒效应还可以用来测量物体的速度和运动方向,例如利用多普勒雷达来测量飞机的速度和方向。
三、实验器材1.震荡器、扬声器;2.频率计、示波器;3.电源、电缆。
四、实验步骤1.连接实验线路,将示波器接收端接在扬声器上,将震荡器与扬声器固定在相距一定的地方(约1m);2.将震荡器的频率调整为f0,扬声器发出的声音的频率与震荡器的频率相同;3.移动扬声器,使其相对于震荡器和示波器运动,记录频率计显示的频率;4.测量不同距离下的频率,记录数据。
根据多普勒效应的公式计算出声源运动的速度。
五、实验结果在进行实验过程中,我们记录了不同距离下频率计显示的频率值,根据多普勒效应公式计算出了在此距离下的速度,并绘制出速度与距离的关系曲线(图1)。
从图中可以看出,当声源与接收器间的距离越远,测量得到的速度值越接近真实值。
此外,我们还利用多普勒效应来判断物体的运动方向。
当声源向接收器方向运动时,我们发现接收到的声音的频率较大;当声源远离接收器方向运动时,接收到的频率较小。
因此,通过观察频率变化可以判断物体的运动方向。
图1:声源速度与距离关系曲线六、实验分析从实验结果可以看出,多普勒效应是一种非常重要的物理现象,在实际应用中有很大的作用。
例如,利用多普勒雷达可以测量飞机、汽车等运动物体的速度和方向;利用多普勒医学成像可以观察人体内部的血流情况。
多普勒效应测声速新方法研究性实验报告多普勒效应测声速新方法研究性实验报告一、实验目的本实验旨在通过使用多普勒效应的原理,探索一种测量声速的新方法,并通过对实验数据的分析,验证该方法的可行性和准确性。
二、实验原理多普勒效应是指波源和观测者之间的相对运动会导致观测到的波的频率发生变化的现象。
在声学中,当声源和接收器之间存在相对运动时,接收器所接收到的声波的频率将会发生变化。
如果声源和接收器之间的距离缩短,接收器所接收到的声波的频率将会增加;反之,如果声源和接收器之间的距离增加,接收器所接收到的声波的频率将会减少。
这种现象被称为多普勒效应。
本实验中,我们将使用一个超声波发生器和一个超声波接收器来模拟声源和接收器之间的相对运动。
通过改变超声波发生器和超声波接收器之间的距离,我们可以测量出接收器所接收到的超声波的频率变化。
根据多普勒效应的原理,我们可以通过测量频率变化来计算出声源和接收器之间的相对速度,从而得到声速。
三、实验步骤1.将超声波发生器和超声波接收器固定在支架上,并调整它们之间的距离。
2.打开超声波发生器的电源,使其发出超声波。
3.使用示波器观察超声波接收器的输出信号,并调整示波器的参数,使其能够清晰地显示出信号的波形。
4.缓慢地改变超声波发生器和超声波接收器之间的距离,同时观察示波器上信号的频率变化。
5.记录下每次测量时超声波发生器和超声波接收器之间的距离以及示波器上信号的频率变化。
6.重复实验多次,取平均值以减小误差。
7.使用多普勒效应的原理,计算出声源和接收器之间的相对速度,从而得到声速。
8.将实验得到的声速与理论值进行比较,分析误差的原因。
四、实验结果与分析在本实验中,我们使用了多普勒效应的原理来测量声速。
通过改变超声波发生器和超声波接收器之间的距离,我们测量了接收器所接收到的超声波的频率变化。
根据测量结果,我们计算出了声源和接收器之间的相对速度,从而得到了声速。
我们将实验得到的声速与理论值进行了比较,发现两者之间存在一定的误差。
多普勒效应实验报告一、实验目的1、观察并验证多普勒效应现象。
2、测量声速,并通过多普勒效应计算声源的运动速度。
3、深入理解多普勒效应的原理及其在实际生活中的应用。
二、实验原理多普勒效应是指当波源与观察者之间存在相对运动时,观察者接收到的波的频率会发生变化。
对于声波来说,如果声源向着观察者运动,观察者接收到的频率会升高;如果声源远离观察者运动,观察者接收到的频率会降低。
设声源的频率为 f₀,声速为 v,观察者相对于介质的速度为 v₀(靠近声源为正,远离声源为负),声源相对于介质的速度为 vs(靠近观察者为正,远离观察者为负),则观察者接收到的频率 f 为:当声源运动,观察者静止时:f = f₀×(v + v₀) /(v vs)当观察者运动,声源静止时:f = f₀×(v + v₀) / v当声源和观察者都运动时:f = f₀×(v + v₀) /(v vs)三、实验仪器1、信号发生器:用于产生稳定的音频信号。
2、扬声器:作为声源。
3、麦克风:用于接收声音信号。
4、数据采集卡:将麦克风接收到的模拟信号转换为数字信号,并传输给计算机。
5、计算机:用于控制实验、采集数据和进行数据分析。
四、实验步骤1、连接实验仪器将信号发生器的输出连接到扬声器,以提供声源信号。
将麦克风连接到数据采集卡的输入端口。
将数据采集卡插入计算机的 PCI 插槽,并安装驱动程序和相关软件。
2、软件设置打开计算机上的实验控制软件,设置采样频率、通道选择等参数。
选择合适的显示方式,以便观察和分析采集到的数据。
3、测量声速在实验环境中,让扬声器和麦克风保持固定距离。
信号发生器产生一个已知频率 f₀的正弦波信号,通过扬声器发出声音。
麦克风接收声音信号,并通过数据采集卡传输到计算机。
测量声音信号从扬声器发出到麦克风接收的时间差 t。
根据声速公式 v = d / t(其中 d 为扬声器和麦克风之间的距离),计算出声速 v。
实验九 多普勒效应及声速综合实验对于机械波、声波、光波和电磁波而言,当波源和观察者(或接收器)之间发生相对运动,或者波源、观察者不动而传播介质运动时,或者波源、观察者、传播介质都在运动时, 观察者接收到的波的频率和发出的波的频率不相同的现象,称为多普勒效应。
多普勒效应在核物理,天文学、工程技术,交通管理,医疗诊断等方面有十分广泛的应用。
如用于卫星测速、光谱仪、多普勒雷达,多普勒彩色超声诊断仪等。
一.实验目的1、 掌握和理解多普勒效应2、 掌握利用多普勒效应测量声速的原理和方法二.实验原理1、声波的多普勒效应设声源在原点,声源振动频率为f ,接收点在x ,运动和传播都在x 方向。
对于三维情况,处理稍复杂一点,其结果相似。
声源、接收器和传播介质不动时,在x 方向传播的声波的数学表达式为:⎪⎪⎭⎫⎝⎛-=x c t p p 00cos ωω (1-1) ① 声源运动速度为S V ,介质和接收点不动 设声速为0c ,在时刻t ,声源移动的距离为)(0c x t V S -因而声源实际的距离为)(00x t V x x S --=∴ )1/()(0S S M t V x x --= (1-2)其中S M =S V /0c 为声源运动的马赫数,声源向接收点运动时S V (或S M )为正,反之为负,将式1-2代入式1-1:⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛--=0001cos c x t M p p Sω可见接收器接收到的频率变为原来的SM 11-, 即: SS M ff -=1 (1-3)② 声源、介质不动,接收器运动速度为r V ,同理可得接收器接收到的频率:f c V f M f rr r )1()1(0+=+= (1-4) 其中0c V M rr =为接收器运动的马赫数,接收点向着声源运动时r V (或r M )为正,反之为负。
③介质不动,声源运动速度为S V ,接收器运动速度为r V ,可得接收器接收到的频率: f MsM f rrs -+=11 (1-5) ④介质运动,设介质运动速度为m V ,得t V x x m -=0根据1-1式可得:∴ ()⎭⎬⎫⎩⎨⎧-+=0001cos x c t M p p m ωω (1-6) 其中0m m c V M =为介质运动的马赫数。
大连理工大学大 学 物 理 实 验 报 告院(系) 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节实验名称 多普勒效应及声速的测试与应用教师评语实验目的与要求:1. 加深对多普勒效应的了解2. 测量空气中声音的传播速度及物体的运动速度主要仪器设备:DH-DPL 多普勒效应及声速综合测试仪,示波器其中, DH-DPL 多普勒效应及声速综合测试仪由实验仪、智能运动控制系统和测试架三个部份组成。
实验原理和内容: 1、 声波的多普勒效应2、 实际的声波传播多处于三维的状态下, 先只考虑其中的一维(x 方向)以简化其处理过程。
3、 设声源在原点,声源振动频率为f ,接收点在x 0,运动和传播都在x 轴向上, 则可以得到声源和接收点没有相对运动时的振动位移表达式: 4、 ⎪⎪⎭⎫ ⎝⎛-=000cos x c t p p ωω , 其中00x c ω-为距离差引起的相位角的滞后项, 0c 为声速。
5、 然后分多种情况考虑多普勒效应的发生: 6、 声源运动速度为S V ,介质和接收点不动7、 假设声源在移动时只发出一个脉冲波, 在t 时刻接收器收到该脉冲波, 则可以算出从零时刻到声源发出该脉冲波时, 声源移动的距离为)(0c x t V S -, 而该时刻声源和接收器的实际距离为)(00c x t V x x S --=, 若令S M =S V /0c (声源运动的马赫数), 声源向接收点运动时S V (或S M )为正, 反之为负(以下各个马赫数的处理方法相同, 均以相互靠近的运动时记为正)。
8、 则距离表达式变为)1/()(0S S M t V x x --=, 代回到波函数的普适表达式中, 得到变化的表达式:9、 ⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛--=0001cos c x t M p p Sω10、可见接收器接收到的频率变为原来的SM 11-, 即:12、13、根据同样的计算法, 通过计算脉冲波发出时的实际位移并代换普适表达式中的初始位移量,便可以得到声源、介质不动,接收器运动速度为r V 时, 接收器接收到的频率为16、介质不动,声源运动速度为S V ,接收器运动速度为r V ,可得接收器接收到的频率为19、介质运动。
DH-DPL系列多普勒效应及声速综合实验实验报告一:实验目的多普勒效应是一种与波动紧密相关的物理现象.利用多普勒效应可以测量运动物体的速度,但目前许多高校使用的多普勒效应实验仪集成化和智能化程度太高,实验时需要学生动手操作的环节太少;信号的转换、传输和处理过程不透明,不利于学生在实验过程中细致观察各种物理现象,分析测量误差的来源等,难以满足深入培养学生自主动手能力和观察分析能力的需要.本实验以商用超声多普勒实验系统(杭州大华DH -DPL1)的导轨模块作为开发平台,以模拟乘法器作为测量系统的核心单元;实验过程中学生需自行搭建信号拾取和处理电路,并利用示波器观察各个环节的信号波形,有助于培养学生得动手能力,并加深对多普勒效应及对模拟电子实验的理解。
二:实验原理根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器收到的信号频率f为:f = f0 (u + v1 cosα1 ) / (u - v2 cosα2 ) (1)式中f0为声源发射频率, u为声速, v1 为接收器运动速率, v2 为声源运动速率,α1 是声源与接收器连线与接收器运动方向之间的夹角,α2 是声源与接收器连线与声源运动方向之间的夹角.在实验过程中,声源保持不动,接收换能器在导轨上沿声源与接收换能器连线方向上运动,则从式(1)可以得到接收换能器上得到的信号频率为:f = f0 (1 + v/u) (2)式中v为接收换能器的运动速度,当向着声源运动时, v取正,反之取负.利用式(2)可以得到接收换能器的运动速度为:v = u(f - f0 ) /f0 = uΔf/f0 ………..(3) 式中Δf = f - f0为多普勒频移.在本研究中,采用的信号处理电路如图1所示,其中模拟乘法器采用了AD633,其信号的输入输出关系为:W =(x1 - x2 ) (y1 - y2 )/10+ z (4)若输入到AD633的信号为x1 = E1 cos(2πf0 t +φ1 ) , y1 = E2 cos(2πft +φ2 ) , x2、y2 以及z均接地,则AD633的输出为:W =E1 E2{cos[2π(f + f0 ) t +φ2 +φ1 ] /20+cos[2π(f - f0 ) t +φ2 -φ1 ]} (5)其中包含了两路信号的和频分量与差频分量. 利用低通滤波器可以提取出其中的差频分量,即多普勒频移,从而计算出接收换能器的运动速度.在实际测量过程中,由于接收换能器与声源(发射换能器)的距离在不断变化过程中,因此接收换能器输出信号的幅度不是恒定值. 为了保证乘法器的输出信号幅度稳定,本研究中采用OA1组成的限幅放大电路,使输入到乘法器的信号幅度保持恒定值,以便于观察.因为本实验中只关心输出信号的频率,因此对接收换能器输出信号幅度的处理不会影响到实验结果.利用OA2构建的有源低通滤波器,可以有效提取出多普勒频移信号.三:实验仪器本研究所使用的机械平台是杭州大华出品的DH-DPL1多普勒效应实验仪的导轨. 在该装置中,超声发射换能器固定于导轨一端,接收换能器则安装在由步进电机控制的小车上,可以在接收与发射换能器连线方向上做匀速直线运动,运动速度最高可达47 cm /s. 在靠近导轨两端处有限位开关,用于防止小车运动时出现过冲. 在导轨中段则有一光电门,可用于检测固定在小车上的U型挡光片的速度,从而与利用超声多普勒方法测到的小车运动速度比对,验证多普勒效应的公式.本设计方案中使用的主要观察和测量工具是数字存储示波器. 使用这种示波器的主要原因是因为在实验过程中,小车的运动距离及时间有限,必须在其运动过程中及时将有关的信号波形储存,以便进行分析计算.本实验中采用了Tektronix m TDS1002B数字示波器,而超声发射换能器的激励信号则来自Agilentm 33220A数字信号发生器.四:试验内容及操作步骤1,按图示电路图连接电路,将示波器调至正常工作状态;2,检查电路,接通电源,调节输入信号的频率,使发射信号与接收信号发生谐振,记录此时的信号频率,约为37kHz;3,调节小车的速度,使小车在轨道上运动,用数字采集卡记录输出信号的波形;4,在电脑上处理信号,读出多普勒频移Δf及小车经过光电门挡板时的时间t1和t2;5,对原始数据进行列表,分别利用多普勒公式和光电门实验计算小车的速度,进行比较,验证声波的多普勒公式。
多普勒效应测声速新方法研究性实验报告本实验采用多普勒效应测量声速的新方法,通过采集超声波经过不同介质传播时的多普勒频移,计算出声速。
该方法不仅操作简便,还能在不同介质中测量声速,具有实际应用价值。
实验步骤如下:1. 实验仪器准备本实验所需的仪器包括:多普勒测速仪、超声波发生器和探头、样品、计算机等。
2. 实验原理声波在不同介质中传播时,其波长和传播速度会发生变化。
在多普勒效应中,声源和接收器之间相对运动时,观察到声波频率的改变,即多普勒频移。
多普勒频移的大小取决于声源和接收器之间相对速度以及声波的频率。
当声波速度确定时,多普勒频移大小与声源和接收器之间的相对速度成正比。
因此,我们可以通过测量不同介质中超声波的多普勒频移来计算声速。
3. 实验操作首先,将超声波发生器和探头依次接入多普勒测速仪。
然后,将超声波发生器连接到计算机,打开测速软件。
接下来,将样品放置在测速仪下方,调整探头位置使其接近样品表面。
调整探头与样品表面的距离可以通过仪器上的显示屏上的距离显示实时检测。
在软件控制下,通过控制超声波发生器的频率和幅度,开始进行超声波的发射。
同时,用手平稳地将样品移动,形成样品表面的运动。
运动的速度不宜过快,以保证探头可以检测到足够多的多普勒频移数据。
在测量完成后,将数据导入计算机,并进行数据分析和处理,得到声速值。
4. 实验结果本实验使用该方法测量了不同介质中声速的值,结果如下:水:1485 m/s铝:6420 m/s由于不同介质的密度和弹性模量不同,导致声波的传播速度也会有所不同。
因此,在不同介质中测量声速是具有应用价值的。
大学物理多普勒效应实验报告一、实验目的1、观察并理解多普勒效应现象。
2、测量声速,并通过实验数据验证多普勒效应公式。
3、掌握使用多普勒效应测量物体运动速度的方法。
二、实验原理多普勒效应是指当波源和观察者之间有相对运动时,观察者接收到的波的频率会发生变化。
对于机械波,如声波,其频率变化的规律可以用以下公式表示:当波源向着观察者运动时,观察者接收到的频率$f'$为:$f' =\frac{v + v_{o}}{v v_{s}} f$当波源远离观察者运动时,观察者接收到的频率$f'$为:$f' =\frac{v v_{o}}{v + v_{s}} f$其中,$v$为波在介质中的传播速度,$v_{o}$为观察者相对于介质的运动速度,$v_{s}$为波源相对于介质的运动速度,$f$为波源发出的频率。
在本实验中,我们使用超声发射器作为波源,接收器接收超声信号。
通过测量接收器接收到的频率变化,来研究多普勒效应。
三、实验仪器1、多普勒效应实验仪,包括超声发射器、接收器、导轨、小车等。
2、数字频率计,用于测量频率。
3、计算机及相关软件,用于数据采集和处理。
四、实验步骤1、仪器调节将超声发射器和接收器安装在导轨上,并确保它们对准。
打开实验仪和数字频率计的电源,预热一段时间。
调节实验仪上的增益旋钮,使数字频率计上显示的频率稳定且清晰。
2、测量声速让小车静止在导轨上,记录此时接收器接收到的频率$f_{0}$。
已知超声发射器的频率$f$,根据公式$v = f \lambda$,其中$\lambda$为波长,由于发射器和接收器之间的距离固定,可通过测量距离计算出波长,从而得到声速$v$。
3、研究多普勒效应让小车以不同的速度沿着导轨运动,分别测量小车靠近和远离接收器时接收器接收到的频率$f_{1}$和$f_{2}$。
记录小车的运动速度$v_{s}$,根据多普勒效应公式计算理论上接收到的频率,并与实验测量值进行比较。
多普勒效应综合实验报告结论1. 引言嘿,大家好,今天咱们聊聊多普勒效应,简单来说,就是声音和光在移动的时候的“魔法”。
想象一下,当救护车呼啸而过时,声音是高高低低,像是在跟你打招呼。
今天的实验,咱们就是要深度探讨这个现象,让大家听得懂、看得懂,甚至还要乐得起来!2. 实验内容2.1 实验目的首先,我们得明确实验的目的。
咱们想要探究的就是多普勒效应如何影响声音的频率。
简单来说,就是当声源靠近你时,声音变高;而当它远离时,声音又变低,这就像你在和朋友打电话时,他往前走,突然声音变得清晰又尖锐,接着又模糊了,感觉是不是有点儿好玩?2.2 实验步骤在实验中,我们首先准备了一个音响系统和一个可以移动的发声器。
然后让发声器在固定轨道上来回移动,同时我们用手机录下声音的变化。
过程中的每一个音符,都是在告诉我们多普勒效应的“秘密”。
当发声器往我们这边冲来时,声音就像过山车一样,急速上升;而它一转身,声音就“啪”地掉下来了,仿佛是被什么东西打了一下。
3. 结果分析3.1 数据观察通过录音,我们发现,确实如我们所料,声音的频率随着距离的变化而变化。
数据记录下来后,我们分析发现,这个变化幅度还真是让人惊讶,大家几乎都笑出声来,感叹声波的“脾气”真是变化多端。
这就好比一首歌曲的节奏,有时快、有时慢,让人忍不住想跟着哼哼。
3.2 实验结论最终,咱们得出的结论是,声源运动的方向和速度直接影响声音的频率变化,真是再明显不过的事儿了!就像打篮球,球员们的移动决定了篮球飞向的方向和速度一样,声波也在告诉我们,它的旅行同样有着独特的节奏。
换句话说,多普勒效应就像一场无声的音乐会,让我们听见了声波的舞蹈。
4. 总结所以,朋友们,通过这个实验,我们不仅了解了多普勒效应的基本原理,还体会到了科学的乐趣。
每一个音符都在呼唤我们去探索更深层次的奥秘,仿佛在说:“嘿,快来跟我一起跳舞吧!”未来,我们还会继续探索更多这样的“魔法”,让科学的世界变得更加丰富多彩。
一、实验目的1. 深入理解多普勒效应的基本原理。
2. 通过实验验证多普勒效应在声波和光波中的表现。
3. 掌握多普勒效应在实际应用中的重要性。
二、实验原理多普勒效应是指当波源与观测者之间有相对运动时,观测者接收到的波的频率会发生变化的现象。
这种现象在声波和光波中都有体现。
当波源远离观测者时,接收到的频率会降低,称为红移;当波源靠近观测者时,接收到的频率会升高,称为蓝移。
三、实验器材1. 多普勒效应实验装置2. 发射器3. 接收器4. 波源(如扬声器)5. 激光发生器6. 光接收器7. 移动平台8. 示波器9. 计时器四、实验步骤1. 实验准备(1)搭建实验装置,将发射器、接收器、波源和移动平台连接好。
(2)调整实验装置,确保发射器、接收器和波源之间的距离合适。
2. 实验过程(1)首先进行声波实验,将波源(扬声器)放置在发射器处,接收器放置在接收器处。
启动实验装置,记录接收器接收到的频率。
(2)然后进行光波实验,将激光发生器放置在发射器处,光接收器放置在接收器处。
启动实验装置,记录光接收器接收到的频率。
(3)接下来进行相对运动实验,将波源和接收器分别放置在移动平台上,启动实验装置,分别记录不同相对速度下的接收频率。
3. 数据处理(1)计算声波和光波的频率变化量,并与理论值进行比较。
(2)分析相对运动实验中不同速度下的接收频率,验证多普勒效应。
五、实验结果与分析1. 声波实验根据实验数据,计算声波频率变化量为△f1,与理论值进行比较。
实验结果显示,声波频率变化量与理论值基本吻合,验证了声波多普勒效应。
2. 光波实验根据实验数据,计算光波频率变化量为△f2,与理论值进行比较。
实验结果显示,光波频率变化量与理论值基本吻合,验证了光波多普勒效应。
3. 相对运动实验根据实验数据,分析不同速度下的接收频率,验证多普勒效应。
实验结果显示,随着相对速度的增加,接收频率逐渐增大,符合多普勒效应的规律。
六、实验结论1. 多普勒效应在声波和光波中都有体现,实验结果与理论值基本吻合。
DH-DPL系列多普勒效应及声速综合实验
实验报告
一:实验目的
多普勒效应是一种与波动紧密相关的物理现象.利用多普勒效应可以测量运动物体的速度,但目前许多高校使用的多普勒效应实验仪集成化和智能化程度太高,实验时需要学生动手操作的环节太少;信号的转换、传输和处理过程不透明,不利于学生在实验过程中细致观察各种物理现象,分析测量误差的来源等,难以满足深入培养学生自主动手能力和观察分析能力的需要.本实验以商用超声多普勒实验系统(杭州大华DH -DPL1)的导轨模块作为开发平台,以模拟乘法器作为测量系统的核心单元;实验过程中学生需自行搭建信号拾取和处理电路,并利用示波器观察各个环节的信号波形,有助于培养学生得动手能力,并加深对多普勒效应及对模拟电子实验的理解。
二:实验原理
根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器收到的信号频率f为:
f = f0 (u + v1 cosα1 ) / (u - v2 cosα2 ) (1)
式中f0为声源发射频率, u为声速, v1 为接收器运动速率, v2 为声源运动速率,α1 是声源与接收器连线与接收器运动方向之间的夹角,α2 是声源与接收器连线与声源运动方向之间的夹角.
在实验过程中,声源保持不动,接收换能器在导轨上沿声源与接收换能器连线方向上运动,则从式(1)可以得到接收换能器上得到的信号频率为:
f = f0 (1 + v/u) (2)
式中v为接收换能器的运动速度,当向着声源运动时, v取正,反之取负.利用式(2)可以得到接收换能器的运动速度为:
v = u(f - f0 ) /f0 = uΔf/f0 ………..(3) 式中Δf = f - f0为多普勒频移.
在本研究中,采用的信号处理电路如图1所示,
其中模拟乘法器采用了AD633,其信号的输入输出
关系为:
W =(x1 - x2 ) (y1 - y2 )/10+ z (4)
若输入到AD633的信号为x1 = E1 cos(2πf0 t +φ1 ) , y1 = E2 cos(2πft +φ2 ) , x2、y2 以及z均接地,则AD633的输出为:
W =E1 E2{cos[2π(f + f0 ) t +φ2 +φ1 ] /20+cos[2π(f - f0 ) t +φ2 -φ1 ]} (5)
其中包含了两路信号的和频分量与差频分量. 利用低通滤波器可以提取出其中的差频分量,即多普勒频移,从而计算出接收换能器的运动速度.
在实际测量过程中,由于接收换能器与声源(发射换能器)的距离在不断变化过程中,因此接收换能器输出信号的幅度不是恒定值. 为了保证乘法器的输出信号幅度稳定,本研究中采用OA1组成的限幅放大电路,使输入到乘法器的信号幅度保持恒定值,以便于观察.因为本实验中只关心输出信号的频率,因此对接收换能器输出信号幅度的处理不会影响到实验结果.利用OA2构建的有源低通滤波器,可以有效提取出多普勒频移信号.
三:实验仪器
本研究所使用的机械平台是杭州大华出品的DH-DPL1多普勒效应实验仪的导轨. 在该装置中,超声发射换能器固定于导轨一端,接收换能器则安装在由步进电机控制的小车上,可以在接收与发射换能器连线方向上做匀速直线运动,运动速度最高可达47 cm /s. 在靠近导轨两端处有限位开关,用于防止小车运动时出现过冲. 在导轨中段则有一光电门,可用于检测固定在小车上的U型挡光片的速度,从而与利用超声多普勒方法测到的小车运动速度比对,验证多普勒效应的公式.
本设计方案中使用的主要观察和测量工具是数字存储示波器. 使用这种示波器的主要原因是因为在实验过程中,小车的运动距离及时间有限,必须在其运动过程中及时将有关的信号波形储存,以便进行分析计算.本实验中采用了Tektronix m TDS1002B数字示波器,而超声发射换能器的激励信号则来自Agilentm 33220A数字信号发生器.
四:试验内容及操作步骤
1,按图示电路图连接电路,将示波器调至正常工作状态;
2,检查电路,接通电源,调节输入信号的频率,使发射信号与接收信号发生谐振,记录此时的信号频率,约为37kHz;
3,调节小车的速度,使小车在轨道上运动,用数字采集卡记录输出信号的波形;
4,在电脑上处理信号,读出多普勒频移Δf及小车经过光电门挡板时的时间t1和t2;
5,对原始数据进行列表,分别利用多普勒公式和光电门实验计算小车的速度,进行比较,验证声波的多普勒公式。
五:实验数据处理及实验结果讨论:
首先,根据超声发射和接收换能器的谐振频率,确定信号发生器的输出频率为37. 312 kHz,如图一所示,电路中各阻容元件的取值分别为: R1 =100 kΩ, R2 =47 kΩ,R3 = 1 kΩ, R4 = 10kΩ, R5 = 1 kΩ, C1 = 0147μF, C2 =0101μf,C3 =011μF.
为了在实验过程中同时利用光电门测量小车的运动速度,与多普勒测速结果进行对比,需要让示波器工作在“单次采集”模式,并将光电门输出的开关信号作为数字示波器“单次采集”的触发信号,这样当小车经过光电门时,将触发示波器采集并记录下。
实验用Lati-pro作为电子信号的采集软件,测得得数据如下:
实验中由多普勒效应计算小车运动速度得公式为:v = u(f - f0 ) /f0 = uΔf/f0 (3)
实验中小车两次经过光电门的距离为s=88mm.由此计算公式为v=s/Δt
计算结果见下表:(以v=s/Δt计算得到得数据为准确值,比较由多普勒效应得到的速度数据之间得误差)
因此验证了声波的多普勒效应公式。
误差分析:1,测定发射信号与接收信号的谐振频率时不够准确,可能导致误差;
2,由于电路中乘法运算器等并非完全在理想状态下工作产生的系统误差;
3,利用数据采集卡处理数据和读取数据时可能产生误差。